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1.   Introduction 

A MANET is a collection of wireless mobile nodes, 
possibly heterogeneous, communicating among 
themselves over possibly multi-hop paths, without 
the help of any fixed infrastructure.  Furthermore, in 
wireless mobile networks high mobility may result in 
nodes frequently going out of range or running out of 
battery power, leading in temporary links. Collisions, 
low link quality, distance between nodes and various 
other factors result in unreliable links or excessive 
delay in the network. Due to the increasing demand 
for secure and scalable multicast services in 
MANETs, key distribution protocols designed for 
such mobile wireless environments are needed. Key 
Distribution and Entity Authentication are the major 
parts of Key Management that ensures secure 
communications. Here we assume that participating 
members  have  already  been  authenticated  and  we 
(*) Research partially supported by the U.S. Army Research    
Laboratory under Cooperative Agreement DAAD19-01-2-0011. 

focus on key distribution only. Most of the current 
key distribution protocols are designed for wireline 
networks that are free from most of the constraints of 
MANETs. Furthermore, the computational power of 
nodes is considered an issue for some wireless 
mobile nodes due to resources or capacity limitations.  
Thus, key distribution protocols that are robust 
enough to survive or tolerate frequent node failures, 
network partitions and merges, delays in critical 
messages, ambiguity to determine the state of group 
members under certain circumstances, extensive 
computations etc., are needed. In MANETs, we 
cannot always guarantee the existence of a node with 
direct connections to all other participants that can 
broadcast to the whole group. Also, a change in the 
topology of a group might occur while the group key 
is being calculated. In some protocols this event may 
cause enormous overhead, as the operation of 
calculating the group key must start all over. These 
constraints render most group key distribution 
protocols inefficient in an environment that requires 
fast operations with the lowest possible overhead.  

We classify existing protocols in two families: 
contributory protocols where all participants take 
equally part in the key generation and guarantee for 
their part that the resulting key is fresh, and non-
contributory, where group key generation does not 
require equal participation from all members. 

Our objectives are to study the properties of these 
two families, discuss and analyze their limitations 
from the perspective of MANETs. Most of all, we 
want to design a key distribution protocol that is 
fault-tolerant to failures that occur frequently in 
MANETs but not at the expense of efficiency. We 
claim that the contributory 2d-Octopus protocol that 
is based on the Hypercube key exchange scheme is a 
very appropriate protocol for MANETs: it can 
tolerate various kinds of failures or resume from 
failures with minimal overhead. To this end, we 
designed two new hybrid protocols based on the 2d-
Octopus protocol (GDH.2-based (MO) and (TGDH)-
based (MOT)) that are more efficient than the 

Abstract: In this paper we address the Fault-
Tolerance and Efficiency of key distribution 
protocols for group communications in Mobile Ad 
Hoc Networks. Most key distribution protocols 
that exist today are primarily designed for 
wireline networks. These protocols either fail to 
work as intended or cannot work at all when they 
are applied to the demanding environment of 
MANETs. The main reasons for this are:  
frequent node failures, network partitions and 
merges, inefficient computational and 
communication capabilities of certain wireless 
nodes, network delay, bad quality of signal etc. 
We determine the framework under which 
protocols can efficiently work in MANETs, design 
new protocols or modify existing ones, so that they 
can be robust, scalable and applicable in this 
environment.  We classify these protocols in two 
families: contributory and non-contributory. We 
evaluate them from the point of view of MANETs 
and compare their performance. 
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existing 2d-Octopus in terms of Computational and 
Communication Costs. We also compare these 
protocols to the One-Way Function Tree protocol 
(OFT) (a non-contributory protocol). The original 
OFT assumes a fixed group leader with considerable 
processing capabilities and therefore may not be 
fault-tolerant or scalable in MANETs. On the other 
hand, it is considered highly efficient. By comparing 
the fault-tolerant Octopus-based protocols to OFT, 
we gain insight about the overhead required to render 
key distribution protocols robust, scalable and 
applicable in MANETs.  

Some of the most important aspects of Fault 
Tolerance for key distribution protocols that we 
consider are:  the issue of a single, non-flexible, 
“omnipotent” group leader that may constitute a 
single point of failure, the issue of whether protocols 
can recover from members’ failure during the group 
key establishment without starting this very costly 
procedure all over again, and the issue of whether 
protocols tolerate frequent node failures, group 
partitions and merges at any time during a session. 

Most non-contributory protocols are based on a 
fixed trusted central controller to distribute the key. 
Finding members within the group able to replace the 
faulty leader is not enough. The new leader should 
securely and quickly obtain all the information 
gathered by the previous leader up to that point. It 
would be preferred that the “leader” is selected 
among group members (as in contributory protocols) 
and have a rather coordinating role, storing the least 
information possible that can be easily retrieved by 
any member becoming leader in the future (as in 
TGDH). Furthermore, in order to reduce group 
partitions and frequent leader elections, we must take 
into account the mobility of nodes in the network, the 
robustness, the computational and processing 
capabilities of individual nodes. One solution is to 
dynamically select a node as group leader according 
to a certain policy that makes sense in a MANET 
(e.g. select the node that stays connected with the 
largest number of nodes within its group for the 
largest amount of time), and to make every such 
leader operate in a rather restricted area of the 
network. Therefore, we also require that the 
procedure of leader election be dynamic and flexible. 
In most non-contributory protocols (tree-based), in 
the event of a node failure, a new group key is 
computed by updating only a restricted number of 
keys. The contributions of members for the key 
establishment are independent and need not follow a 
strict ordering. In the event of a node failure or delay 
to respond, the rest of the nodes proceed normally to 
the key establishment process.  

In a contributory protocol like GDH.2, each member 
is expected to contribute its portion of the key in a 
defined slot according to strict ordering. If a node 
does not respond during the given slot, the whole 
procedure comes to a standstill as all further actions 
of members depend on the contribution of the 
“disappeared” member and we cannot always 
determine on time if the response of the node is 
simply delayed or lost, or if the node itself is down or 
out of reach. Inevitably the key establishment process 
starts all over again. However, contributory protocols 
still acquire some very important properties: they are 
most appropriate when no previously agreed common 
secrets among nodes exist, they reflect the totally 
distributed nature of a group, and their nature is such 
that no node constitutes a single point of failure. It 
would be desirable to derive a hybrid protocol that is 
fault tolerant in MANETs, efficient, and combines 
the main advantages of the two families of protocols. 

We claim that MO and particularly MOT satisfy 
these requirements. We prove the fault tolerance of 
Octopus-based protocols by analyzing in detail 
scenarios of failures most likely to occur in 
MANETs. We discuss the modifications we made to 
the original 2d-Octopus. We then show how these 
modifications that lead to the new protocols MO and 
MOT, improve the fault-tolerance, the scalability and 
efficiency of the original 2d-Octopus for MANETs.  

2.  Previous Work 

Becker and Wille [1] derived lower bounds for 
contributory key distribution systems from the results 
of the gossip problem and applied them to DH-based 
protocols. They used the basic DH distribution 
extended to groups from the work of Steiner et al [2]. 
TGDH by Kim et al [10], is a new hybrid, efficient 
protocol that blends binary key trees with DH key 
exchange. Becker et al [1], introduced the Hypercube 
protocol as requiring minimum number of rounds. In 
[5], Asokan added to the Hypercube protocol ways to 
recover from node failures. Becker introduced the 
Octopus protocol that required minimum number of 
messages and then derived the 2d-Octopus, that 
combined Octopus with Hypercube to a very efficient 
protocol that worked for an arbitrary number of 
nodes. Most protocols from the non-contributory 
family are based on a simple key distribution center. 
The simplest is Group Key Management Protocol 
(GKMP) [9]. The Logical Tree Hierarchy method 
(LKH) [8], creates a hierarchy of keys. It is more 
complicated but more efficient. Evolution of the 
latter is OFT [7], that minimizes the number of bits 
broadcast to members after a membership change. It 
was selected to represent the family of contributory 
protocols. 
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3.  Secure Group Key Agreement and Extensions 

3.1 Octopus Protocol 

It uses DH key computed in one round as a random 
input for the subsequent round. Four parties A, B, C, 
D generate a group key using only four exchanges. 
First, A and B, then C and D perform a DH key 
exchange generating keys abα and cdα  respectively. 
Then, A and C as well as B and D do a DH key 
exchange using as secret values the keys generated in 

the first step. A(B) sends ( )abaφα  to C(D), while C(D) 

sends ( )cdaφα  to A(B) so that A and C (B, D) can 

generate the joint key ( ) ( )cd aba aφ φα . Parties P1, P2,…, 
Pn-4, A, B, C, D generate a common group key by first 
dividing themselves into five groups. A, B, C, D take 
charge of the central control. The remaining parties 
are distributed into 4 groups: {Pi | i∈IA}, {Pi | i∈IB}, 
{Pi | i∈IC}, {Pi | i∈ID}, where IA, IB, IC, ID are pair-
wise disjoint, and IA∪ IB∪ IC∪ ID = {1,...,n-4}. 
P1,…,Pn  generate a group key as follows: 

1.∀  X ∈  {A, B, C, D}, ∀ i ∈  IX, X generates a joint key 
ki with Pi via the DH key exchange. 
2. A, B, C, D do the 4-party key exchange using values: 
a=K(IA),…,d = K(ID), K(J) = ( )i J ikφ∈∏  forJ⊆{1, .., n-4} 

and hold the joint key K= 
( )( )( ) ( )K I IK I I C DA Ba aaφ φ ∪∪

. 

3. The step is described only for A. Parties B, C, D act 
accordingly. ∀ j∈ IA, A sends 2 values to Pj: 

( \{ })B AK I I ja ∪ ,
( )( )K I IC Daaφ

∪

. Pj derives
( )( \{ }( ) jB A kK I I ja φ∪ = 

( )A BK I Ia ∪  first, then K= 
( ) ( )( ) ( )K I I K I IC D A Ba aaφ φ∪ ∪

. 

3.2 Hypercube Protocol 

    It minimizes the number of simple rounds. 2d 
parties agree upon a key within d simple rounds by 
performing DH key exchanges on the edges of a d-
dimensional cube. We identify the 2d participants on 
the d-dimensional space GF(2)d and choose a basis 
b1,…, bd of GF(2)d. In round 1, every participant v∈  
GF(2)d generates a random number rv and does a DH 
key exchange with participant v+b1 using the values 
rv and rv+b1. In round i, every participant v does a DH 
key exchange with v+bi, where both parties use as 
secret value the one generated in round i-1. In every 
round, parties communicate on a maximum number 
of parallel edges of the d cube.  All parties share a 
common key at the end of this protocol. 

3.3 2d-Octopus Protocol 

For an arbitrary number of participants that require 
low number of rounds, the idea of Octopus is 
generalized. In 2d–Octopus participants act as in the 

simple Octopus. However, 2d instead of four parties 
are distinguished to take charge of the central control. 
The remaining n-2d parties divide into 2d groups.  

3.4 GDH.2 and One-Way Function Tree (OFT) 

We omit them for lack of space. All protocols are 
described in our references and Technical Report [6].  

3.5 Tree Group Diffie-Hellman (TGDH) protocol 

The DH protocol resembles OFT. The basic 
differences are the following: any member of the tree 
can act as a leader (or group security controller-GSC) 
depending on its position in the tree, a member 
knows all blinded keys of the tree at any given time, 
and in TGDH the merging function is the two-party 
DH key exchange. The secret key x of an internal 
node s is the result of the DH key exchange between 
its offspring left(s) and right(s) with associated secret 
keys y and z. Then, yzx α=  and the blinded key of 

node s is xα . Any member at any time can become 
group leader and broadcast a message to all members 
of the group. During the initial construction of the 
tree every member becomes a sponsor: computes all 
nodes from the leaf up to the root and broadcasts 
them to the group. For every successive level of 
nodes in the tree, the number of sponsors is reduced 
to half. Each member knows all keys in its path from 
the leaf to the root and all blinded keys of the tree.  

4. Fault Tolerance Issue for 2d-Octopus protocol 

In [5] the authors claim that the scheme is fault 
tolerant but they don't analyze all the group 
disruption cases that may occur in a MANET. Here, 
we attempt to look at the most frequent scenarios and 
determine whether the protocol is or can be made 
fault tolerant. We will use an example to make the 
study of all cases easier. Each node is assigned to a 
vertex in the hypercube and has a unique d-bit 
address. The protocol takes d rounds. Assume that in 
round j, a node with address i performs a two-party 
DH with the node whose address is i⊕ 2j-1. In round 
j neighbors along the jth dimension of the hypercube 
participate in a two-party DH protocol run. After d 
such rounds, all parties obtain the same key.  
1st Round: {000-001, 010-011, 110-111, 100-101} 
2nd Round:{000-010, 001-011, 100-110, 111-101} 
3d Round: {000-100, 011-111, 001-101, 110-010} 
1st round DH keys: ABa , CDa , EFa , GHa  .                                         

2nd round DH keys: 
AB CDa aa , 

EF GHa aa  

3d round DH keys: 
AB CD EF GHa a a aa aa (group key). 

5. Possible Scenarios:                    

1. Node A {000} becomes faulty immediately before 
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 the first round and does not re-appear even after the 
group key has been derived. Node B does not 
exchange DH keys with any node in the 1st round, it 
uses a secret of its own, say BB. In the 2nd round, all 
nodes that need to communicate with A in the 
hypercube, communicate with its pair-mate of the 1st 
round, i.e. B. This idea applies for all three rounds. 

2. Two nodes from the same pair become faulty 
before the first round begins. Another pair of the 
hypercube “logically splits” to fill the gap of the 
disappeared pair: one substitutes the pair that became 
faulty so that this scenario resembles the previous 
one. Now however, two nodes instead of one 
undertake the duties of two pairs of nodes. 

3. A participating node A goes down during the 1st 
round and does not re-appear during the group key 
establishment. As in scenario 1, its pair-mate B takes 
over on behalf of A as well; B has already computed 
the common DH key with A: ABa . B creates a new 
secret share BB, computes BBa . B takes over from 
hereon exactly as in scenario 1 but it communicates 
both ABa and BBa  blinded values to its future pair-
mates. The result is that two group keys are 
computed, based either on the secret share A known 
to A, or on the secret share BB unknown to A. If A 
returns to the group before any data transmissions 
and authenticates itself to the group, it can 
reconstruct the first group key itself, by getting the 
appropriate blinded values of keys that are 
communicated freely in the network. If it comes back 
after the 2nd round, it can be sent the partial key CDα  
by any node that knows this value. A requires this to 

reconstruct the partial key 
AB CDa aa . Even if the node 

reappears in another part of the network and its direct 
neighbors are different, the scheme still works. As 
long as multi-hop communication is supported by the 
routing protocol, two nodes can be virtual neighbors 
as well. Assume that node A reappears at the end of 
the 3d round. Then the group key has been already 
established. Similarly to the previous case, A will 

receive partial information: 
CDaa and 

EF GHa aaa . On 
receiving this information A adds its own portion, and 
with the appropriate computations derives the group 
key.  This scenario demands that each node stores the 
partial keys it computes during all d-1 rounds. 
Considering however that d itself is not a very large 
number, we see that the nodes need not store too 
many values. The overhead would be significant if 
we started over the procedure of key establishment.  
 
If A does not reappear on time, the second group key 
that excludes A is used. Then, if A comes back after 

the session has started, authenticates itself and still 
wishes to participate in the group, the group key 
should be changed again if we want to maintain 
backward secrecy. However, since the “new” node is 
a reappearing node we might want to overlook the 
backward secrecy rule. In this case, B can 
communicate either the group key or the share BB to 
A, encrypted with ABa , the common two-party DH 
key A and B had initially calculated. This notion can 
be generalized to prevent the group key 
establishment from starting all over because of the 
abrupt disappearance of any node during this process.  
So, during the first round any of the 2d nodes, 
computes two values:  one generated by itself only, 
and one based on the contribution of its pair node as 
we have already seen. The remaining process 
changes only in that more blinded values are 
communicated now from one pair to another, and 
more group-keys are finally derived. 

4. Network merge and partition. If the group gets 
partitioned due to bad network connectivity then 
again there is no need to start the computation of the 
sub-group keys from scratch. The network gets 
partitioned in two or more groups, each of which can 
create new subgroup keys, based on previously stored 
information, limiting the communication and 
computation overhead. Given the structure of the 
subgroups, the communication and computation 
savings can be more (when pairs of one direction in a 
subgroup were initially pairs in the original group) or 
less (when all members of one subgroup acquired the 
same key in the d-1 round of the original group. They 
have to retrieve partial keys stored from the previous 
round, take scenario 2 into account and perform a 
hypercube key exchange the same manner as before, 
using an alternate direction pattern this time).  

The case of subgroups merging into the one original 
group after communication has been restored is less 
complicated and less costly. It suffices that one 
member of each subgroup blinds its own subgroup 
key, sends it to the rest of the subgroups according to 
a predefined directional pattern, exactly as we do for 
the hypercube key establishment via DH exchanges. 
Then, with some additional DH key exchanges-one 
per member, all the remaining members of all the 
subgroups can compute the new group key.  

6. Discussion 

The fact that the hypercube protocol requires 2d 
participants imposes restrictions to the 2d-Octopus 
protocol in terms of addition/eviction cases and group 
merging/partitions. However, the 2d-Octopus acquires 
a lot of beneficial properties. The 2d hypercube 
scheme is proven to be robust and fault-tolerant for 
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most cases. In 2d-Octopus, each member of the 
hypercube structure is the leader (GSC) of a 
subgroup of nodes of arbitrary number. Members of a 
subgroup establish a two-party DH key with the 
subgroup leader. The GSC uses the partial keys of its 
members to construct its initial secret share for the 
hypercube. After the group key is derived, the 2d 
GSCs distribute parts of the group key to their sub-
group members in a way that a member that does not 
belong to the sub-group cannot derive the group key. 
The key distribution protocols the sub-groups support 
can be selected with broad freedom. The original 
group is divided into 2d subgroups. Each of these 
subgroups can be deployed in a relatively restricted 
area of the network and it is easier to handle these 
subgroups in a localized manner. Given the topology 
of the network we have the freedom to assign to each 
subgroup from 0 to as many members the protocol 
allows.  This results in less communication overhead 
within the sub-group, in less bandwidth consumption, 
in less traffic for the routing protocol. Moreover, if a 
GSC becomes “faulty”, it can be replaced by another 
node from its own subgroup. It is clear now how 
these properties render the protocol fault tolerant in 
the cases of addition/deletion, merging/partition.  

7. Brief description of MO and MOT protocols. 

We modified the original Octopus (O) protocol by 
replacing its first step with GDH.2 or TGDH. The 
protocols derived are denoted as MO and MOT 
respectively. The members of the group are divided 
into 2d subgroups of equivalent size. The sponsor of 
TGDH for MOT, and the Mn member of GDH.2 for 
MO, becomes the sub-group leader (GSC). At step1, 
GDH.2 and TGDH produce subgroup keys: zaba = 

Na and x ya = Na  respectively. These keys are 
equivalent to the subgroup key produced by (O) 
when its subgroup contains one member only. During 
the 1st step, each subgroup establishes its own sub-
group key, or handles member additions/evictions 
exactly as indicated by GDH.2 and TGDH protocols. 

All these sub-groups are independent from each other 
and can support different key distribution protocols. 
The three steps of the protocol are independent 
modules: at the 2nd step only one secret share (sub-
group key) is received from each sub-group, 
regardless how it is derived. The task of the 2nd step 
is only to distribute the group key to all sub-group 
leaders. Then, it is the task of the 3d step to make sure 
that each sub-group leader distributes the sub-group 
key to its members. Thus, overall fault-tolerance of 
the protocol demands fault-tolerance for each step 
individually. Now, the key distribution protocol of 
each subgroup comes into play.  

The sub-group key distribution protocol in (O), 
assumes the existence of a single fixed sub-group 
leader that stores alone all the information of the sub-
group. This is not a fault tolerant protocol even when 
the size of the sub-group is relatively small. GDH.2 is 
used for sub-groups in MO. Like most contributory 
protocols, it requires strict ordering during key 
establishment and cannot tolerate delays and node 
failures. Even if the overhead for starting over key 
establishment in the event of failures is much smaller, 
GDH.2 cannot be considered fault-tolerant. TGDH is 
used for sub-groups in MOT. This protocol assumes 
that any node should be ready to become group 
leader and that the same amount of information is 
stored in all members with no considerable overhead. 
Since the size of the sub-group is relatively small, 
and it is also deployed on a restricted area of the 
network, TGDH can be considered fault-tolerant and 
applicable for MANETs. Thus, we can claim that 
MOT is scalable and fault-tolerant overall.     

The 2nd step is identical for all three protocols. For 
the initial derivation of the group key the 2d GSCs 
execute the 2d–Cube protocol via DH exchanges with 
initial values the keys obtained from step1. It takes d 
rounds; in each we have an exchange of 2d messages 
for the group key to compute. In the case of member 
addition/eviction we can re-compute the subgroup 
key (step1) only for the subgroup where the change 
of membership has occurred.  We observe that for 
step2 not all calculations have to be done anew. The 
two-party DH exchanges between GSCs whose sub-
group keys were not modified at step1 or during the 
previous rounds of step2 need not be executed again. 
Thus, for round i, 2i DH key exchanges are done. In 
total 2(2d-1) messages are communicated. 

The initial case for step3 continuing with the same 
example where d=3 is as follows: the 2d GSCs 
broadcast d values to their group. For instance, GSC 
A sends the following d parts of the group key to its 

member j: 
EF GHa aaa ,

CDaa and 
/ jAB Ka for (O), or Ba  

for MO and MOT. The latter value differs for every 
member in (O), but is the same for MO or MOT since 
all members of a sub-group share a common sub-
group key. The rest (d-1) values are the same for all 
members in the subgroup for all three protocols. The 
GSC broadcast to its members such d values and 
members must do d expns to compute the final group 
key.  As for the addition/deletion case, (d-1) values 
need not be broadcast anew. They remain unchanged 
since they are already stored in every member from 
the previous time. All GSCs send at most one value 
to every member of their sub-group. Assume in our 
example that a change of membership occurs in the 
sub-group of A and its new sub-group key is x. At the 
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end of the 2nd step A stores: 

x, Ba ,
C Daa ,

E F G Ha a aa ,
AB CD EF GHa a a aa aa . Intermediate 

values of A remain unchanged from the previous time 
and will be used by the members of its subgroup to 
construct the group key. The number of messages 
communicated at step3 for MO and MOT is (2d-1) for 
the addition/eviction case.  

8. Results  

Cost 2d-Octopus (O) Mod.  2d- Oct   
(MO) 

Mod.2d-Oct 
(MOT) 
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n
2  + 
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n

2 Crr   

max. 
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CE(3  d
dn
2

2−  + 2 +     

2  2
1+d )  +            

2 (  d
dn
2

2−  -3) K2  + 

Crr,    one 

2( 2
2

d

d
n−  +  2

1+d )CE 

rest 

CE(  d
n

2  + 

2  2
1+d ) +Crr,   

one             

CE(2  2
1+d ),        

rest 

CE(2log  d
n
2

1+  

+2  2
1+d )+Crr
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2CE  2
1+d   
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Comm (2  d

dn
2

2− +3 2d-2) K (  d
n
2

1− +3 .2d-2)K (log  d
n
2

1−  +    

3 (2d-1))K 

Table 1: Comput. and Commun. costs  of  key agreement protocols 

Table1 shows some of the comparison results. The 
performance evaluation for OFT can be found in [6], 
[7]. MOT demonstrates the best behavior for Initial 
GSC Comput.. For GSC Add/Evict Comput., (O) is 
the worst, MO outperforms OFT for certain cases 
(small d, large n), MOT has the best performance. 
MO behaves poorly in terms of Initial Commun.. 
MOT and (O) however perform much better: they 
slightly outperform OFT. For the Addition/Eviction 
Communication (critical in MANETs), (O) is 
outperformed by both MO and MOT, and MOT gets 
closer to OFT than any other contributory protocol. 
 
 
 

 
 
 

 
 
 
 
 
 
Fig. 1: Add Communication vs Group Size, d=4. OFT achieves     
           the lowest overhead. MOT gets quite close to OFT. The  
           overheads of MO and (O) are similar but still much worse.                

 

 

 

 

 

 
 
 
Figure2: Delete Computation vs Group Size, d=4. MOT achieves 
        the lowest overhead. OFT and MO have similar performance 
        but (O) behaves poorly.                
9. Conclusions 

The paper addresses the issues of Fault-Tolerance 
and efficiency of key distribution protocols intended 
for MANETs. We show that Octopus-based protocols 
in general are fault-tolerant in MANETs. We present 
two novel hybrid protocols MO and MOT-based on 
the original Octopus, developed as an attempt to 
render contributory protocols scalable and efficient. 
The cost functions for all three protocols are derived 
in terms of communication and computation. From 
our performance evaluation, we demonstrate that 
MOT is the most efficient of all protocols in terms of 
the overall computation cost and achieves the lowest 
communication overhead among the Octopus-based 
protocols, getting quite close to OFT.  
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