
________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003

Fault-tolerance and efficiency considerations for key
distribution protocols in MANETs.(*)

Maria Striki and John S. Baras

Electrical and Computer Engineering Department

and the Institute for Systems Research
University of Maryland College Park

College Park, MD 20742
mstriki@isr.umd.edu, baras@isr.umd.edu

1. Introduction

A MANET is a collection of wireless mobile nodes,
possibly heterogeneous, communicating among
themselves over possibly multi-hop paths, without
the help of any fixed infrastructure. Furthermore, in
wireless mobile networks high mobility may result in
nodes frequently going out of range or running out of
battery power, leading in temporary links. Collisions,
low link quality, distance between nodes and various
other factors result in unreliable links or excessive
delay in the network. Due to the increasing demand
for secure and scalable multicast services in
MANETs, key distribution protocols designed for
such mobile wireless environments are needed. Key
Distribution and Entity Authentication are the major
parts of Key Management that ensures secure
communications. Here we assume that participating
members have already been authenticated and we
(*) Research partially supported by the U.S. Army Research
Laboratory under Cooperative Agreement DAAD19-01-2-0011.

focus on key distribution only. Most of the current
key distribution protocols are designed for wireline
networks that are free from most of the constraints of
MANETs. Furthermore, the computational power of
nodes is considered an issue for some wireless
mobile nodes due to resources or capacity limitations.
Thus, key distribution protocols that are robust
enough to survive or tolerate frequent node failures,
network partitions and merges, delays in critical
messages, ambiguity to determine the state of group
members under certain circumstances, extensive
computations etc., are needed. In MANETs, we
cannot always guarantee the existence of a node with
direct connections to all other participants that can
broadcast to the whole group. Also, a change in the
topology of a group might occur while the group key
is being calculated. In some protocols this event may
cause enormous overhead, as the operation of
calculating the group key must start all over. These
constraints render most group key distribution
protocols inefficient in an environment that requires
fast operations with the lowest possible overhead.

We classify existing protocols in two families:
contributory protocols where all participants take
equally part in the key generation and guarantee for
their part that the resulting key is fresh, and non-
contributory, where group key generation does not
require equal participation from all members.

Our objectives are to study the properties of these
two families, discuss and analyze their limitations
from the perspective of MANETs. Most of all, we
want to design a key distribution protocol that is
fault-tolerant to failures that occur frequently in
MANETs but not at the expense of efficiency. We
claim that the contributory 2d-Octopus protocol that
is based on the Hypercube key exchange scheme is a
very appropriate protocol for MANETs: it can
tolerate various kinds of failures or resume from
failures with minimal overhead. To this end, we
designed two new hybrid protocols based on the 2d-
Octopus protocol (GDH.2-based (MO) and (TGDH)-
based (MOT)) that are more efficient than the

Abstract: In this paper we address the Fault-
Tolerance and Efficiency of key distribution
protocols for group communications in Mobile Ad
Hoc Networks. Most key distribution protocols
that exist today are primarily designed for
wireline networks. These protocols either fail to
work as intended or cannot work at all when they
are applied to the demanding environment of
MANETs. The main reasons for this are:
frequent node failures, network partitions and
merges, inefficient computational and
communication capabilities of certain wireless
nodes, network delay, bad quality of signal etc.
We determine the framework under which
protocols can efficiently work in MANETs, design
new protocols or modify existing ones, so that they
can be robust, scalable and applicable in this
environment. We classify these protocols in two
families: contributory and non-contributory. We
evaluate them from the point of view of MANETs
and compare their performance.

________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003

existing 2d-Octopus in terms of Computational and
Communication Costs. We also compare these
protocols to the One-Way Function Tree protocol
(OFT) (a non-contributory protocol). The original
OFT assumes a fixed group leader with considerable
processing capabilities and therefore may not be
fault-tolerant or scalable in MANETs. On the other
hand, it is considered highly efficient. By comparing
the fault-tolerant Octopus-based protocols to OFT,
we gain insight about the overhead required to render
key distribution protocols robust, scalable and
applicable in MANETs.

Some of the most important aspects of Fault
Tolerance for key distribution protocols that we
consider are: the issue of a single, non-flexible,
“omnipotent” group leader that may constitute a
single point of failure, the issue of whether protocols
can recover from members’ failure during the group
key establishment without starting this very costly
procedure all over again, and the issue of whether
protocols tolerate frequent node failures, group
partitions and merges at any time during a session.

Most non-contributory protocols are based on a
fixed trusted central controller to distribute the key.
Finding members within the group able to replace the
faulty leader is not enough. The new leader should
securely and quickly obtain all the information
gathered by the previous leader up to that point. It
would be preferred that the “leader” is selected
among group members (as in contributory protocols)
and have a rather coordinating role, storing the least
information possible that can be easily retrieved by
any member becoming leader in the future (as in
TGDH). Furthermore, in order to reduce group
partitions and frequent leader elections, we must take
into account the mobility of nodes in the network, the
robustness, the computational and processing
capabilities of individual nodes. One solution is to
dynamically select a node as group leader according
to a certain policy that makes sense in a MANET
(e.g. select the node that stays connected with the
largest number of nodes within its group for the
largest amount of time), and to make every such
leader operate in a rather restricted area of the
network. Therefore, we also require that the
procedure of leader election be dynamic and flexible.
In most non-contributory protocols (tree-based), in
the event of a node failure, a new group key is
computed by updating only a restricted number of
keys. The contributions of members for the key
establishment are independent and need not follow a
strict ordering. In the event of a node failure or delay
to respond, the rest of the nodes proceed normally to
the key establishment process.

In a contributory protocol like GDH.2, each member
is expected to contribute its portion of the key in a
defined slot according to strict ordering. If a node
does not respond during the given slot, the whole
procedure comes to a standstill as all further actions
of members depend on the contribution of the
“disappeared” member and we cannot always
determine on time if the response of the node is
simply delayed or lost, or if the node itself is down or
out of reach. Inevitably the key establishment process
starts all over again. However, contributory protocols
still acquire some very important properties: they are
most appropriate when no previously agreed common
secrets among nodes exist, they reflect the totally
distributed nature of a group, and their nature is such
that no node constitutes a single point of failure. It
would be desirable to derive a hybrid protocol that is
fault tolerant in MANETs, efficient, and combines
the main advantages of the two families of protocols.

We claim that MO and particularly MOT satisfy
these requirements. We prove the fault tolerance of
Octopus-based protocols by analyzing in detail
scenarios of failures most likely to occur in
MANETs. We discuss the modifications we made to
the original 2d-Octopus. We then show how these
modifications that lead to the new protocols MO and
MOT, improve the fault-tolerance, the scalability and
efficiency of the original 2d-Octopus for MANETs.

2. Previous Work

Becker and Wille [1] derived lower bounds for
contributory key distribution systems from the results
of the gossip problem and applied them to DH-based
protocols. They used the basic DH distribution
extended to groups from the work of Steiner et al [2].
TGDH by Kim et al [10], is a new hybrid, efficient
protocol that blends binary key trees with DH key
exchange. Becker et al [1], introduced the Hypercube
protocol as requiring minimum number of rounds. In
[5], Asokan added to the Hypercube protocol ways to
recover from node failures. Becker introduced the
Octopus protocol that required minimum number of
messages and then derived the 2d-Octopus, that
combined Octopus with Hypercube to a very efficient
protocol that worked for an arbitrary number of
nodes. Most protocols from the non-contributory
family are based on a simple key distribution center.
The simplest is Group Key Management Protocol
(GKMP) [9]. The Logical Tree Hierarchy method
(LKH) [8], creates a hierarchy of keys. It is more
complicated but more efficient. Evolution of the
latter is OFT [7], that minimizes the number of bits
broadcast to members after a membership change. It
was selected to represent the family of contributory
protocols.

________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003

3. Secure Group Key Agreement and Extensions

3.1 Octopus Protocol

It uses DH key computed in one round as a random
input for the subsequent round. Four parties A, B, C,
D generate a group key using only four exchanges.
First, A and B, then C and D perform a DH key
exchange generating keys abα and cdα respectively.
Then, A and C as well as B and D do a DH key
exchange using as secret values the keys generated in

the first step. A(B) sends ()abaφα to C(D), while C(D)

sends ()cdaφα to A(B) so that A and C (B, D) can

generate the joint key () ()cd aba aφ φα . Parties P1, P2,…,
Pn-4, A, B, C, D generate a common group key by first
dividing themselves into five groups. A, B, C, D take
charge of the central control. The remaining parties
are distributed into 4 groups: {Pi | i∈IA}, {Pi | i∈IB},
{Pi | i∈IC}, {Pi | i∈ID}, where IA, IB, IC, ID are pair-
wise disjoint, and IA∪ IB∪ IC∪ ID = {1,...,n-4}.
P1,…,Pn generate a group key as follows:

1.∀ X ∈ {A, B, C, D}, ∀ i ∈ IX, X generates a joint key
ki with Pi via the DH key exchange.
2. A, B, C, D do the 4-party key exchange using values:
a=K(IA),…,d = K(ID), K(J) = ()i J ikφ∈∏ forJ⊆{1, .., n-4}

and hold the joint key K=
()()() ()K I IK I I C DA Ba aaφ φ ∪∪

.

3. The step is described only for A. Parties B, C, D act
accordingly. ∀ j∈ IA, A sends 2 values to Pj:

(\{ })B AK I I ja ∪ ,
()()K I IC Daaφ

∪

. Pj derives
()(\{ }() jB A kK I I ja φ∪ =

()A BK I Ia ∪ first, then K=
() ()() ()K I I K I IC D A Ba aaφ φ∪ ∪

.

3.2 Hypercube Protocol

 It minimizes the number of simple rounds. 2d
parties agree upon a key within d simple rounds by
performing DH key exchanges on the edges of a d-
dimensional cube. We identify the 2d participants on
the d-dimensional space GF(2)d and choose a basis
b1,…, bd of GF(2)d. In round 1, every participant v∈
GF(2)d generates a random number rv and does a DH
key exchange with participant v+b1 using the values
rv and rv+b1. In round i, every participant v does a DH
key exchange with v+bi, where both parties use as
secret value the one generated in round i-1. In every
round, parties communicate on a maximum number
of parallel edges of the d cube. All parties share a
common key at the end of this protocol.

3.3 2d-Octopus Protocol

For an arbitrary number of participants that require
low number of rounds, the idea of Octopus is
generalized. In 2d–Octopus participants act as in the

simple Octopus. However, 2d instead of four parties
are distinguished to take charge of the central control.
The remaining n-2d parties divide into 2d groups.

3.4 GDH.2 and One-Way Function Tree (OFT)

We omit them for lack of space. All protocols are
described in our references and Technical Report [6].

3.5 Tree Group Diffie-Hellman (TGDH) protocol

The DH protocol resembles OFT. The basic
differences are the following: any member of the tree
can act as a leader (or group security controller-GSC)
depending on its position in the tree, a member
knows all blinded keys of the tree at any given time,
and in TGDH the merging function is the two-party
DH key exchange. The secret key x of an internal
node s is the result of the DH key exchange between
its offspring left(s) and right(s) with associated secret
keys y and z. Then, yzx α= and the blinded key of

node s is xα . Any member at any time can become
group leader and broadcast a message to all members
of the group. During the initial construction of the
tree every member becomes a sponsor: computes all
nodes from the leaf up to the root and broadcasts
them to the group. For every successive level of
nodes in the tree, the number of sponsors is reduced
to half. Each member knows all keys in its path from
the leaf to the root and all blinded keys of the tree.

4. Fault Tolerance Issue for 2d-Octopus protocol

In [5] the authors claim that the scheme is fault
tolerant but they don't analyze all the group
disruption cases that may occur in a MANET. Here,
we attempt to look at the most frequent scenarios and
determine whether the protocol is or can be made
fault tolerant. We will use an example to make the
study of all cases easier. Each node is assigned to a
vertex in the hypercube and has a unique d-bit
address. The protocol takes d rounds. Assume that in
round j, a node with address i performs a two-party
DH with the node whose address is i⊕ 2j-1. In round
j neighbors along the jth dimension of the hypercube
participate in a two-party DH protocol run. After d
such rounds, all parties obtain the same key.
1st Round: {000-001, 010-011, 110-111, 100-101}
2nd Round:{000-010, 001-011, 100-110, 111-101}
3d Round: {000-100, 011-111, 001-101, 110-010}
1st round DH keys: ABa , CDa , EFa , GHa .

2nd round DH keys:
AB CDa aa ,

EF GHa aa

3d round DH keys:
AB CD EF GHa a a aa aa (group key).

5. Possible Scenarios:

1. Node A {000} becomes faulty immediately before

________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003

 the first round and does not re-appear even after the
group key has been derived. Node B does not
exchange DH keys with any node in the 1st round, it
uses a secret of its own, say BB. In the 2nd round, all
nodes that need to communicate with A in the
hypercube, communicate with its pair-mate of the 1st
round, i.e. B. This idea applies for all three rounds.

2. Two nodes from the same pair become faulty
before the first round begins. Another pair of the
hypercube “logically splits” to fill the gap of the
disappeared pair: one substitutes the pair that became
faulty so that this scenario resembles the previous
one. Now however, two nodes instead of one
undertake the duties of two pairs of nodes.

3. A participating node A goes down during the 1st
round and does not re-appear during the group key
establishment. As in scenario 1, its pair-mate B takes
over on behalf of A as well; B has already computed
the common DH key with A: ABa . B creates a new
secret share BB, computes BBa . B takes over from
hereon exactly as in scenario 1 but it communicates
both ABa and BBa blinded values to its future pair-
mates. The result is that two group keys are
computed, based either on the secret share A known
to A, or on the secret share BB unknown to A. If A
returns to the group before any data transmissions
and authenticates itself to the group, it can
reconstruct the first group key itself, by getting the
appropriate blinded values of keys that are
communicated freely in the network. If it comes back
after the 2nd round, it can be sent the partial key CDα
by any node that knows this value. A requires this to

reconstruct the partial key
AB CDa aa . Even if the node

reappears in another part of the network and its direct
neighbors are different, the scheme still works. As
long as multi-hop communication is supported by the
routing protocol, two nodes can be virtual neighbors
as well. Assume that node A reappears at the end of
the 3d round. Then the group key has been already
established. Similarly to the previous case, A will

receive partial information:
CDaa and

EF GHa aaa . On
receiving this information A adds its own portion, and
with the appropriate computations derives the group
key. This scenario demands that each node stores the
partial keys it computes during all d-1 rounds.
Considering however that d itself is not a very large
number, we see that the nodes need not store too
many values. The overhead would be significant if
we started over the procedure of key establishment.

If A does not reappear on time, the second group key
that excludes A is used. Then, if A comes back after

the session has started, authenticates itself and still
wishes to participate in the group, the group key
should be changed again if we want to maintain
backward secrecy. However, since the “new” node is
a reappearing node we might want to overlook the
backward secrecy rule. In this case, B can
communicate either the group key or the share BB to
A, encrypted with ABa , the common two-party DH
key A and B had initially calculated. This notion can
be generalized to prevent the group key
establishment from starting all over because of the
abrupt disappearance of any node during this process.
So, during the first round any of the 2d nodes,
computes two values: one generated by itself only,
and one based on the contribution of its pair node as
we have already seen. The remaining process
changes only in that more blinded values are
communicated now from one pair to another, and
more group-keys are finally derived.

4. Network merge and partition. If the group gets
partitioned due to bad network connectivity then
again there is no need to start the computation of the
sub-group keys from scratch. The network gets
partitioned in two or more groups, each of which can
create new subgroup keys, based on previously stored
information, limiting the communication and
computation overhead. Given the structure of the
subgroups, the communication and computation
savings can be more (when pairs of one direction in a
subgroup were initially pairs in the original group) or
less (when all members of one subgroup acquired the
same key in the d-1 round of the original group. They
have to retrieve partial keys stored from the previous
round, take scenario 2 into account and perform a
hypercube key exchange the same manner as before,
using an alternate direction pattern this time).

The case of subgroups merging into the one original
group after communication has been restored is less
complicated and less costly. It suffices that one
member of each subgroup blinds its own subgroup
key, sends it to the rest of the subgroups according to
a predefined directional pattern, exactly as we do for
the hypercube key establishment via DH exchanges.
Then, with some additional DH key exchanges-one
per member, all the remaining members of all the
subgroups can compute the new group key.

6. Discussion

The fact that the hypercube protocol requires 2d
participants imposes restrictions to the 2d-Octopus
protocol in terms of addition/eviction cases and group
merging/partitions. However, the 2d-Octopus acquires
a lot of beneficial properties. The 2d hypercube
scheme is proven to be robust and fault-tolerant for

________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003

most cases. In 2d-Octopus, each member of the
hypercube structure is the leader (GSC) of a
subgroup of nodes of arbitrary number. Members of a
subgroup establish a two-party DH key with the
subgroup leader. The GSC uses the partial keys of its
members to construct its initial secret share for the
hypercube. After the group key is derived, the 2d
GSCs distribute parts of the group key to their sub-
group members in a way that a member that does not
belong to the sub-group cannot derive the group key.
The key distribution protocols the sub-groups support
can be selected with broad freedom. The original
group is divided into 2d subgroups. Each of these
subgroups can be deployed in a relatively restricted
area of the network and it is easier to handle these
subgroups in a localized manner. Given the topology
of the network we have the freedom to assign to each
subgroup from 0 to as many members the protocol
allows. This results in less communication overhead
within the sub-group, in less bandwidth consumption,
in less traffic for the routing protocol. Moreover, if a
GSC becomes “faulty”, it can be replaced by another
node from its own subgroup. It is clear now how
these properties render the protocol fault tolerant in
the cases of addition/deletion, merging/partition.

7. Brief description of MO and MOT protocols.

We modified the original Octopus (O) protocol by
replacing its first step with GDH.2 or TGDH. The
protocols derived are denoted as MO and MOT
respectively. The members of the group are divided
into 2d subgroups of equivalent size. The sponsor of
TGDH for MOT, and the Mn member of GDH.2 for
MO, becomes the sub-group leader (GSC). At step1,
GDH.2 and TGDH produce subgroup keys: zaba =

Na and x ya = Na respectively. These keys are
equivalent to the subgroup key produced by (O)
when its subgroup contains one member only. During
the 1st step, each subgroup establishes its own sub-
group key, or handles member additions/evictions
exactly as indicated by GDH.2 and TGDH protocols.

All these sub-groups are independent from each other
and can support different key distribution protocols.
The three steps of the protocol are independent
modules: at the 2nd step only one secret share (sub-
group key) is received from each sub-group,
regardless how it is derived. The task of the 2nd step
is only to distribute the group key to all sub-group
leaders. Then, it is the task of the 3d step to make sure
that each sub-group leader distributes the sub-group
key to its members. Thus, overall fault-tolerance of
the protocol demands fault-tolerance for each step
individually. Now, the key distribution protocol of
each subgroup comes into play.

The sub-group key distribution protocol in (O),
assumes the existence of a single fixed sub-group
leader that stores alone all the information of the sub-
group. This is not a fault tolerant protocol even when
the size of the sub-group is relatively small. GDH.2 is
used for sub-groups in MO. Like most contributory
protocols, it requires strict ordering during key
establishment and cannot tolerate delays and node
failures. Even if the overhead for starting over key
establishment in the event of failures is much smaller,
GDH.2 cannot be considered fault-tolerant. TGDH is
used for sub-groups in MOT. This protocol assumes
that any node should be ready to become group
leader and that the same amount of information is
stored in all members with no considerable overhead.
Since the size of the sub-group is relatively small,
and it is also deployed on a restricted area of the
network, TGDH can be considered fault-tolerant and
applicable for MANETs. Thus, we can claim that
MOT is scalable and fault-tolerant overall.

The 2nd step is identical for all three protocols. For
the initial derivation of the group key the 2d GSCs
execute the 2d–Cube protocol via DH exchanges with
initial values the keys obtained from step1. It takes d
rounds; in each we have an exchange of 2d messages
for the group key to compute. In the case of member
addition/eviction we can re-compute the subgroup
key (step1) only for the subgroup where the change
of membership has occurred. We observe that for
step2 not all calculations have to be done anew. The
two-party DH exchanges between GSCs whose sub-
group keys were not modified at step1 or during the
previous rounds of step2 need not be executed again.
Thus, for round i, 2i DH key exchanges are done. In
total 2(2d-1) messages are communicated.

The initial case for step3 continuing with the same
example where d=3 is as follows: the 2d GSCs
broadcast d values to their group. For instance, GSC
A sends the following d parts of the group key to its

member j:
EF GHa aaa ,

CDaa and
/ jAB Ka for (O), or Ba

for MO and MOT. The latter value differs for every
member in (O), but is the same for MO or MOT since
all members of a sub-group share a common sub-
group key. The rest (d-1) values are the same for all
members in the subgroup for all three protocols. The
GSC broadcast to its members such d values and
members must do d expns to compute the final group
key. As for the addition/deletion case, (d-1) values
need not be broadcast anew. They remain unchanged
since they are already stored in every member from
the previous time. All GSCs send at most one value
to every member of their sub-group. Assume in our
example that a change of membership occurs in the
sub-group of A and its new sub-group key is x. At the

________________________2003 Conference on Information Science and Systems, The Johns Hopkins University, March 12-14, 2003

end of the 2nd step A stores:

x, Ba ,
C Daa ,

E F G Ha a aa ,
AB CD EF GHa a a aa aa . Intermediate

values of A remain unchanged from the previous time
and will be used by the members of its subgroup to
construct the group key. The number of messages
communicated at step3 for MO and MOT is (2d-1) for
the addition/eviction case.

8. Results

Cost 2d-Octopus (O) Mod. 2d- Oct
(MO)

Mod.2d-Oct
(MOT)

Initial
GSC
Comp

CE (3 d
dn
2

2− +2d) +

(d
dn
2

2− 4/3 + 1.25

 ddn
2

2−)K2 + d
n

2 Crr

CE (2d
n +2d) +

 d
n
2 Crr

CE(2log d
n
2 +

2d) + d
n

2 Crr

max.

Delete
GSC
Comp

CE(3 d
dn
2

2− + 2 +

2 2
1+d) +

2 (d
dn
2

2− -3) K2 +

Crr, one

2(2
2

d

d
n− + 2

1+d)CE

rest

CE(d
n

2 +

2 2
1+d) +Crr,

one

CE(2 2
1+d),

rest

CE(2log d
n
2

1+

+2 2
1+d)+Crr

one

2CE 2
1+d

rest

Delete
Comm (2 d

dn
2

2− +3 2d-2) K (d
n
2

1− +3 .2d-2)K (log d
n
2

1− +

3 (2d-1))K

Table 1: Comput. and Commun. costs of key agreement protocols

Table1 shows some of the comparison results. The
performance evaluation for OFT can be found in [6],
[7]. MOT demonstrates the best behavior for Initial
GSC Comput.. For GSC Add/Evict Comput., (O) is
the worst, MO outperforms OFT for certain cases
(small d, large n), MOT has the best performance.
MO behaves poorly in terms of Initial Commun..
MOT and (O) however perform much better: they
slightly outperform OFT. For the Addition/Eviction
Communication (critical in MANETs), (O) is
outperformed by both MO and MOT, and MOT gets
closer to OFT than any other contributory protocol.

Fig. 1: Add Communication vs Group Size, d=4. OFT achieves
 the lowest overhead. MOT gets quite close to OFT. The
 overheads of MO and (O) are similar but still much worse.

Figure2: Delete Computation vs Group Size, d=4. MOT achieves
 the lowest overhead. OFT and MO have similar performance
 but (O) behaves poorly.
9. Conclusions

The paper addresses the issues of Fault-Tolerance
and efficiency of key distribution protocols intended
for MANETs. We show that Octopus-based protocols
in general are fault-tolerant in MANETs. We present
two novel hybrid protocols MO and MOT-based on
the original Octopus, developed as an attempt to
render contributory protocols scalable and efficient.
The cost functions for all three protocols are derived
in terms of communication and computation. From
our performance evaluation, we demonstrate that
MOT is the most efficient of all protocols in terms of
the overall computation cost and achieves the lowest
communication overhead among the Octopus-based
protocols, getting quite close to OFT.

10. References
[1] K. Becker and U. Wille, “Communication Complexity of

Group Key Distribution”, Proc. 5th ACM Conf. on Comp. &
Comm. Security, pp. 1-6, Nov. 1998, ACM Press.

[2] M. Steiner, G. Tsudik and M. Waidner, “Diffie-Hellman Key
Distribution Extended to Groups”, Proc. 3rd ACM Conf. on
Comp. and Comm. Security, pp. 31-37, 1996, ACM Press.

[3] M. Hietalahti, Efficient Key Agreement for Ad-Hoc
Networks, M.S. Thesis, Helsinki University of Technology,
Department of Comp. Science and Eng., Finland, May 2001.

[4] A. Perrig, “Efficient Collaborative Key Management
Protocols for Secure Autonomous Group Communication”,
International Workshop on Cryptographic Techniques and E-
Commerce CrypTEC '99.

[5] N.Asokan and P. Ginzboorg, “Key-Agreement in Ad-Hoc
Networks”, in Computer Communications, Vol. 23, N. 17,
pp. 1627-1637, 2000.

[6] M. Striki and J.S. Baras, “Efficient Scalable Key Agreement
Protocols for Secure Multicast Communications in
MANETs”, CSHCN Technical Report 2002.

[7] D. McGrew and A.T. Sherman, “Key-Establishment in Large
Dynamic Groups Using One-Way Function Trees”,
Technical Report No. 0755, TIS Labs at Network Associates,
Inc., Glenwood, MD, May 1998.

[8] H. Harney and E.Harder, “Logical Key Hierarchy Protocol”,
Internet Draft, Internet Eng. Task Force, March 1999.

[9] H. Harney and C.Muckenhirn, “Group Key Management
Protocol (GKMP) Specification”, RFC 2093, Internet
Engineering Task Force, July 1997.

[10] Y. Kim, A. Perrig and G. Tsudik, “Simple and Fault Tolerant
Key Agreement for Dynamic Collaborative Groups”, Proc.
7th ACM Conf. on Comp. and Comm. Security, pp. 235-244,
Nov. 2000, ACM Press.

Add Communication vs. Group Size, d=4

1.00E+03

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

20
00

60
00

10
00

0

14
00

0

18
00

0

22
00

0

26
00

0

30
00

0

Group Size (n)

(O)
(MO)
(MOT)
(OFT)

Overall GSCs Deletion Computation vs. Group Size, d=4
(log. Scale)

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

20
00

60
00

10
00

0

14
00

0

18
00

0

22
00

0

26
00

0

30
00

0

Group Size (n)

(O)
(MO)
(MOT)
(OFT)

