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Abstract—Information broadeasting is an effective method to deliver pop-
ular information packages to a large number of users in wireless and satel-
Lite networks. In this paper, we address the problem of broadcast schedul-
ing in the pull environment and try to solve this problem by formmlating
it as a dynamic optimization problem. This approach allows us to find a
near-optimal scheduling policy, which as such, we use as a benchmark to
evaluate n number of other existing heuristic policies. Also, in addition
to providing a solution for the nsual case with Poisson arrivals and equal
priority pages, our approach enables us to address the extended versions
of this problem with other arrival processes and with distinct weights as-
signed to different pages.

1. INTRODUCTION

ANY data communication applications are inherently asym-

metric. That is, there are a few information sources and a large
number of users, and the volume of data transferred from the sources
to the users is much larger than that in the reverse direction and we
use the term data delivery to refer to this specific type of applications.
Some data delivery applications have become increasingly popular in
recent years. For example, many cellular phones or wireless hand-held
devices are currently capable of receiving periodic updates of infor-
mation like news, weather, traffic or stocks quotes from the air and the
number of these applications is expected to increase with the growth of
the Mobile Computing field. The WWW traffic can also be regarded as
a daia delivery application particularly in the networks with caching.
One of the major issues in the design of a data delivery system is its
scalability. Generally, sateilite and wireless environments due to their
inherent broadcast capability are the perfect media for highly scalable
data delivery systems. The two main architectures for broadcast deliv-
ery are the one-way(or Push) and the two-way{or Pull) systems. The
two systems differ in the lack or presence of a return channel to trans-
fer the user requests to the server. In a push system, the server does
not actually receive the requests and schedules its transmissions based
on the statistics of the user request pattern(hence the term push). Con-
versely, in a pull system the server receives all the requests and can
schedule the transmissions based on the number of requests for differ-
ent data packages. A pull system is potentially able to achieve a better
performance than a push systemn bui the cost of a return channel can
generally overshadow this performance improvement. For this reason
hybrid architectures, those that combine push and pull systems, are
commonly suggested in the literature [1], {2], [3]. The main problem
with both of the above broadcast methods is the scheduling of data
transmission. As we will mention in the next section, the problem of
scheduling in a push system is solved 1o a large extent. However, to
our knowledge, the problem of finding the optimal broadeast schedul-
ing policy for a pull system apparently has not been solved vet.
Based on the nature of the applications supported by a data delivery
systemn, different performance metrics can be used to evaluate the per-
formance of the system. In this work, we try to minimize the weighted
average waiting time of the users to allow some flexibility ip assigning
soft priorities to the packages.
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This paper addresses the scheduling problem in a pudf system. it aims
to find the optimal (with respect to the weighted average waiting time)
scheduiing policy and also provide a benchmark for evaluating current
and possibly future heuristic algerithms. We approached the schedul-
ing problem from a dynamic optimization point of view. This formu-
lation is similar to the forrulation in [4] and [5] but instead of using
numerical methods for extremely simplified versions of the probler or
using this formulation to find a few propenties of the unknown optimal
policy, our goal is to reach an analytical solution and present an index
policy through optimization arguments. Using the Restless Bandii[6]
formulation, our approach naturally addresses the systems with multi-
ple broadcast channels, or prioritized pages and also provides guide-
lines for the case with unequal page sizes. ’

This papet is organized as follows. Section Il addresses the motivation
of our work. There we review the current results for the problem of
broadcast scheduling mainly in pull systems, the subject of our work,
and to some extent in push systems. In section IIl the mathematical
formulation of the problem as a dynamic optimization problem is pre-
sented. Section 1V describes our approach for solving the optimization
problem and contains the main results of this work. Finally in section
V we compare the performance of our algorithm with some of the
current well-known algorithms in this field and present a discussion
followed by some concluding remarks.

fl. RELATED WORK

The series of works by Ammar and Wong are probably the first pa-
pers addressing the breadeast scheduling problem in detail. In (7], [8],
they consider various aspects of the push systems by analyzing the
probiems associated with a Feletext system. They derive the theoreti-
cal lower bound for the average waiting time of the users of a Teletext
system and showed that the optimal scheduling policy is of the cyclic
type. They also presented a heuristic algornithm to design the broadcast
cycle based on the arrival rates. Vaidya and Hameed (9], [10] extended
the so called square root formula to cover push systerns with unequal
page sizes and also considered the systems with multiple broadcast
channels. There are also a number of other works about push systems
[11}, 1123, [13), [4] where all of them address the scheduling problem
for different variations of a push sysiem.

Despite the wealth of resources about the push systems, the number of
works addressing the pull broadcast systems is very limited. However,
none of those papers(except {4], te our knowledge) have tried to find
the optimal scheduling policy and most of them have suggested heuris-
tic algorithms which despite their good performances in some cases
{14}, (5], do not contain any notion of optimality. in {4}, the problem
of finding the optimal scheduling policy for a pull system is formu-
lated as a Dynamic Programming{DP} problem. This work might be
the first attempt for an analytical approach to the pul! scheduling prob-
lem, However, the question of finding the cptimal policy still remains
unanswered. In [1] a number of heuristic policies for a pull system are
proposed and their resulting average waiting times are compared. In
(5], an index policy called PTP was intraduced and after experimental
tuning of the parameter of that function for the case with Zipf distribu-
tion of the arrival rates, it resulted in very satisfying results in a num-
ber of experiments. The work by Aksoy and Franklin [14) proposes
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Fig. . The pull type broadcast as a queuing system.

another index policy named Rx# and reports a performance compara-
ble to PIP in different experiments. The two above works are probably
the best known scheduling metheds for a puil system. However, the
distance between their performances and that of an optimal policy still
remains unknown. From another point of view, all of the above works
only consider the case where all pages are of equal importance and
have equal sizes and do not apply to cases like cache broadcasting
where the pages can have unequal lengths. In the following chapters
we present our formulation of the problem and the solution to it.

[1I. PROBLEM FORMULATION

In this section a mathematical formulation for the pull hroadcast
scheduling is presented. We denote by N(> 1), the number of infor-
mation packages stored in the system. In this work we analyzs the case
where all packages have equal sizes. This assumption is also made in
{51, [4], [14] and most of the other works on this subject and is a rea-
sonable assumption for many applications. Throughout this paper, we
will use the terms page and information package interchangeably to
simplify the notation and also to stress the equal sizes of the packages.
The fixed page size assumption naturally introduces a time unit that
is equal to the time required to broadcast a page on a channel and it
can be set to one without loss of generality. All of the broadzast times
therefore, start at integer times denoted by £; { =G, 1,....

Here we assume that the system has K {1 < K < N) identizal broad-
cast channels. In a pull broadcast system, the systern receives the re-
quests for all packages from the users and based on this information
the scheduler decides which pages to transmit in the next time unit in
order to minimize the average waiting time over ail users.

For the systems with a large number of users it is reasonable to assume
that the requests for each page i; ¢ = 1,..., N arrive as a Poisson
process and denote by At he rate of that process. The waiting time for

every request is the time since the arrival of the request to the system -

until the beginning of the broadcast of the requested page. Due to the
Poisson assumption for the request arrival process we can assume that
the requests for every page 7 arrive at discrete time instants ¢ as batches
of random size having Pofsson();) distributions and ignore the resid-
ual waiting times without loss of generality. The system therefore, can
be shown by a system of N queues where each queue corrssponds to
one of the packages and holds all the pending requests for that pack-
age, and K servers as in figure 1. Due to the broadcast nature of the
system, the queues are of the bulk service type [15] with infinite bulk
size i.e. the requests waiting in a queue will be served altogether once
the queue is serviced. The state of this system at each time ¢ is shown
by X(t) = (z:(), z2(t),...,zn(t)) where z:(t) is the number of
pending requests for page i at time ¢. Each z;(¢); i=1,...,Nisa
Markov process with transition probability

PO gi(t) = ol zi(t + 1) = 27) =

Fig. 2. Sample path of a system with three pages.

Q)]

pi(Ailt)) if 2@ =al + Aut) - 2i1(i € d(t))
0 otherwise

where A((t}; i = 1,..., N is the number of new requests for page ¢
during the time interval [¢,£ + 1) and d(t) ¢ {1,..., N} is the set
containing the indices of the K pages broadcast at time ¢. Figure 2
shows a sample path of the evolution of a system with three pages and
a single broadcast channel.

The weighted average waiting time over all users is defined by

A @

N
W= Gy,
i=1
where W is the average waiting time for all page 1 requests and A is
the total request arrival rate to the system. The ¢: coefficients are the
weights associated with the pages to aliow more flexibility in assign-
ing soft priorities to the pages. Due to the discrete-time nature of the
system, and to avoid technical difficulties associated with the DP prob-
lems with average reward criteria, instead of minimizing (2), we use
the policy-dependent total discounted reward criteria. Using Little’s
law, the problem becomes to minimize the totai discounted expected
waiting ttme defined as

oo N
Ja(my=E[Y B> cimlt™)]

)]
t=0 i=1
where
ey 0 if page i is broadcast at time t
=) = { zi(t) otherwise “

and = is the scheduling policy resulting in Jg(#). Equations (3) and
(1), together with the initial condition X (0), define the minimization
problem

oa N
Ji(m) = minE(} 8D caleh)].

(5)
t=0  i=1
Which can be shown to be equal to the maximization problem
=]
Jam) = max EQY 6 3~ exmi(t)]. 6)

t=0  icd(t)

To facilitate the analysis we assume that the state space of each queue
i, i = 1,2,..., NV is a finite set S; and denote the state space of the
system by § = 81 % 82 x ... x Sn. This problem is in fact a DP
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problem with decision space [ = {d; ¢ C {1,2,... N} and[d| =
K} where [d] is the cardinality of set d. The decision space 2 is in fact
the set of all possible X tuples of the indices ! through V. The reward
function for broadeast of pagesind € D at state s = {=y,...,zn} €

Sis
r(s,d) = Ecmh

icd

*

This maximization problem is the problem we will address in the se-
quel to find a non-idling, stationary optima! policy for the puil broad-
cast environment and its derivation completes the formulation of the
problem. What we are specially interested in is an index-type policy
where there is an index associated with each queue at every instant of
time and the optimal decision is to service the queue(s) with the largest
index value(s). If the index for each quene only depends on the state of
that queue, the computation load for every decision would be of order
N which is important from a practical peint of view for systems with
a large number of stored pages.

1V. SOLUTION OF THE OPTIMIZATION PROBLEM

The discrete time nature of our fermuiatton atlows us to represent
each queue as a controllable discrete time Markov chain, This set
up is quite similar to the family of Bandir problems introduced in
a number of papers by different researchers [16], [17), [18]. In the
basic Multi-armed Bandit problem there are N independent control-
lable Markov chains(called projects) and at each instant of time only
one of the projects can be activated, With the activarion of project
i; i = 1,2,..., N, astationary reward of r = r;(x;) is achieved,
where z; is the state of project 4, and the project icha nges its state
according 1o its transition probability rule. The passive projecis nei-
ther produce any rewards nor change their states and the goal is to
maximize the expected discounted sum of the rewards. Gittins [19]
showed that the optimal policy is of the index type and the index for
each project is independent of other projects. The main restriction of
the Muiti-armed Bandit problem is the requirement that the passive
projects do not change their states which is obviously not the case
for our system. We therefore use what Whittle [6] introduced as an
extension to this problem named the Restless Bandit problem that al-
lows the passive projects to produce rewards and change their states
too. Unfortunately, with this generalization, the existence of an index-
type solution is no longer guaranteed. However, as Whittle showed,
in some cases an index-type solution can be found for a relaxed ver-
sion of this problem that results into reasonable conclusions about the
optimal policy for the onginal problem. In the following we briefly
explain the application of this appreach te our problem and refer the
reader to [6], [20] for mere detailed information.

A. Restless Bandit approach

The Linear Programming(LP) formulation of the DP probiems {21}
and the additive form of the reward in our problern allows us to convert
problem {6) into the (dual) LP problem

N
Mazimize Z 1:2 ri(8)zi(s, 1)]

i=1 Lses;

()

subject to
Z z(s',d) - Z Z Bptls, sNzls,d) = cils’)  (9)
dec§{D,1} se5; defo,1}

fori=1,...,Nand s’ € S;. Here, o:(.) is the initial probability dis-
tribution of the states, r;(3) is the reward for activating project i while

in state s, and z:(s, 1) is the discounted expected value of the number
of times queue 1 is served while at state s.

An additional constraint implicit to this scheduling probiem is that at
anty time ¢, exactly ¥ queues should be served, Whittle's relaxation as-
sumes that instead of having exactly K projects activated at any time,
only the time average of the number of activated projects be equal to
K. Using the Lagrangean Relaxation [22] method and some additional
arguments|20], this maximization problem can be broken into NV inde-
pendent maximization problems as

Mazimize z fri(s) — v)zi(s,1)

€5

(10}

subject to constraint (9} fori= 1,2,..., N where v/ is the Lagrange
multiplier of the problem.

The solution to problem (10) is a function of the parameter ¢ and is an
upper bound to the solution of problem (8) with the new relaxed con-
straint. However, for a specific value 1 the solutions to both problems
will be equal. If " was known, the problem would become finding
the optimal policies for each of the N problems in (10) independently
where for each queue the reward for serving the queue at state « is
cx — ", We have shown [23] that the solution to this single queue
problem is of the threshold type that is, it is optimal to leave the queue
idle for the set of states {0, 1, .. ., z; }(for some (1-*)) and to serve the
quene otherwise. It can be also shown that the idling set monotoni-
cally increases from § to .S; as the service cost v* is increased from
—o0 10 co0. The solution 1o the ¥ queue problem is therefore to ser-
vice those queues with their states £;; © = 1,..., /V larger than their
corresponding z;(r") thresholds and leave other queues idle. Alter-
natively, for every state x; € 5; of each queue, we can find a value
vi{x:) as the service cost where it is optimal to, leave that queue idle
for states {0, 1,.. ., z; — 1}, service the queve forstates {zi 4+ 1,...}
and equally optimal te serve or not serve at state z;. Therefore the
optimal policy for (10} can be rephrased as: service the queues with
vi{x:)> v" and leave the other queues idle. The above monotonic-
ity property for the queucs is in fact the condition for indexability of
the projects. Based on this result, a meaningful heuristic for the opti-
mal solution to the original problem with the hard constraint{exactly
K queues active at every time) is to find the index v;(x:) associated
with each queue and serve the queues with K largest values of the in-
dex, This policy requires a method for calculation of the index function
which will be explained below.

B. Calculation of the index function

Calculation of the index function involves finding the proper value
of the service cost 1#(x) for a discrete-time queue with infinite bulk
service and Poissen arrivals so that it is optimal for the queue to remain
idle for states smaller than z, to be serviced for states targer than z and
indifferent for . The optimality is of course with respect to maxinmum
total discounted reward obtained given that the reward from serving
the queue at any state « € ' is equal to cz.

Assuming that the value of v(z) is known, the value function V'(.) of
the optimal policy satisfies the set of optimality equations

V() =8 pV(0+i)

i=0

V(z) =83 p(i)V(z+3) an

i=0

V(z+1)=—v+ez+1c+B Y pilV{E)
i=0 '
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Fig.3. The form of the index function for Poisson arrivals with different rates.

where V(x) is the expected reward of the optimal policy given the
initial state . Also, p(i) is the probability of i for a Poisson()\) distri~
bution. The critical value of v(z), by definition, adds another equation
to the above system

Viz)=—v+ez+8Y pHV()

i=0
Due to the special form of the V'(.) function we have
Vgt =

Therefore, the number of unknowns can be reduced to x + 2 i.e.
V(0),...,V(z),v{z). The soluticn to this set of equations can not
be expressed in a closed form expression. However, it can be shown
[23] that the value of »{x} can be calculated via recursive calculations
invelving the value of v(z — 1). Figure 3 shows the index function for
several values of the input rate and withc = 1.

Some thoughts about the form of the above equations reveal an impor-
tant property of the index function. If we consider the above equations
with ¢ = 1 and assume that V1{.) and t1(.} are the solutions of that
system, then it is not difficult to show that Vo{.) = ¢ + Vi()and
ve(.) = ¢ »v1(.) are the solutions of the general system with arbitrary
¢ value, hence:

Property I: 1f vs() is the index function for a bulk service queue
with the reward function at state « defined as 7{z) = cx, we have
Vz:(z') - CU](Z), r = 0 1
This property shows that the mdcx function scales lmcarly with the
weight factor ¢ therefore, we can also extend the definition of the PIP
index to cover the weighted case by mu]tiplying the index by ¢, the
original paper on PIP did not give a recipe for calculating the index in
this general case,

Another constructive observation is to investigate the shape of the in-
dex function in light traffic. In the light traffic regime, the probability
of having more than one arrival during any time interval of unit length
is negligible. For a Poisson()) distribution with a small value of A,
a closed form representation of the index function can be found which

is
B 8 *
y(w)_w+——;_5‘[(l—ﬂ+ﬁ)\> —1].

Although the above formula is meaningful only for A < 1 values, we
calculated the function for larger values of ) to find the behavior of this

Vizg)+ci; i=90,1,...

12)
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Fig. 4, Comparison of the total average waiting time for different scheduling
policies with the distribution of the arrival rates having a Zipf distribution.

Comparison of the indvidusl mean delays tor PIP and NOP policias.
T T T T T

r
nn( Total arrivel (ate = 200
Numbaer of pages = 100
c.fc
sof i d’ 4
7O+
g 80 4
£ o 4
E
< PP
W’- 4+ NOP
kT
wt & 1
o
a
|“k
Qn n k. k4 o 50 -] 70 a0 w0 100

Fig. 5. Average waiting times for the requests for each of the 400 pages under
different policies,

index function compared to the exact sclution and found reasonably
close results for the range of up to roughly 10 — 15 requests per period.

V. RESULTS

We tried to evaluate the performance of our policy through several
experiments with a single-channel system with 100 pages and used
different scheduling policies to schedule the broadcasts. During the
experiments, we changed the total request arrival rate A from small
to large values but kept the distribution of the (normalized) individ-
ual arrival rates to be according to a Zipf distribution{(¢ = 1). Figure
4 shows the resulting average waiting times for the FCFS, MRF, PIP
and our policy which we call NOP(Near-Optimal Policy) for notational
convenience. The results show that the performance of PIP is almost
the same as the performance of aur policy.

Figure 5 shows the individual average waiting times experienced by
the requests for cach page under PIP and NOP policies for a fixed ar-
rival rate in 2 system with 100 pages. The close maiching of the two
results suggests that the PIP policy is probably an approximate version
of the optimal policy. Since PIP is optimized [5] for a Zipf distribu-
tion of the arrival rates, we compared the performances of PIP and
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Fig. 6. Performance comparison of NOP and different versions of the PIP
policy for the weighted average delay case.

NOP policies for other artival distributions. To generate new distri-
butions with maximum contrast to the convex-decreasing shape of the
Zipf distribution, we chose two new distributions for the arrival rates
covering the same range {1 to 100) but having linear-decreasing and
concave-decreasing shapes. The resulting average waiting times un-
der both policies were again almost identical for both of. these new
cases. It should be noted that the optimal index function is noi unique
and any monotonic increasing function of that function can be also
used as an index function. Therefore, based on the above observa-
tion we conjecture that the PIP index is approximately a monotonic
increasing function of the optimal index policy. In another sct of ex-
periments we compared the performances of PIP and NOP policies for
the case where the pages have different weights. We showed in pre-
vious sections that the effect of weight €' in the index function #(s)
is in the form of a simple multiplicative factor. PIP, in its original
form, does not address the case with weights. Therefore, we tried to
use the same analogy and extend its definition so that the weight co-
efficient appears in the index function as well. In the first extension,
which we call EPIP1 for notational convenience, we define the index

function as v{z) = 5‘-};—‘ and in the second extension(EPIP2) we de-

fine it as »{z) = ﬁ—; We performed the experiments on a system
with 100 pages with Zipf distribution of the arrival rates and assigned
a weight of 5 to the first 10 pages. The weights of the other pages were
set to 1. Figure 6 shows the performances of all four policies under
different arrival rates. As we can sce, PIP by itself does not perform
very well which is not unexpected. EPIP1, which uses the same mul-
tiplicative form as NOP to incorporate the effect of weights, also does
not perform as good as NOP. However, EPIP2 have exactly the same
performance as NOP and suggests that the effect of weight in the PIP
index should be through a square root multiplicative factor.

V1. CONCLUSION AND DISCUSSION

In this report we derived an scheduling policy for the scheduling of
broadcasts in a pulf system. The policy defines an index function for
each page in the system and at every decision instant the first K pages
with the largest values of the index are broadcast. The performance
of our policy is almost identical to the performance of the PIP policy
however, since we have taken an analytical path for its derivation, it
can be readily applied to cases with non-Poisson arrivals or when there
are priority weights assigned to the pages. Other policies, due to their
heuristic reasoning , do not address these general cases. Our approach

shows that the index function scales linearly with the ¢ coefficient.
Using this result and through a number of experiments we also came
up with a heuristic extension to the PIP to include the weighted case as
weil. Another advantage of our approach is the guidelines it provides
to consider the scheduling problem for a system where the pages do
not have fixed lengths. This case is particularly of interest for cache
broadcasting in the Internet and the previous methods do not address
this important case. We are currently working on this case apd wiil
publish the results in another report.
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