
Intrusion Detection with Support Vector
Machines and Generative Models

Ab8trac:t. This paper addre8ses the task of detecting intru8ions in the
form of malicious attacb on programs running OD a host computer sys-
tem by inspecting the trace of system calla made by these programs.
We use 'attack-tree' type generative models for such intru8ions to se-
lect features that are used by a Support Vector Machine Clu8ifier. Our
approach combines the ability of an HMM generative model to handle
variable-length strinp, i.e. the tl'8CS, and the non-asymptotic nature
of Support Vector Machines that permits them to work well with small
training sets.

1 Introduction

This article concerns the task of monitoring programs and processes running on
computer systems to detect break-ins or misuse. For example, programs like
s8Ddlu.il and f iuger on the UNIX operating system run with administra-
tive privileges and are susceptible to misuse because of design short-comings.
Any user can paa specially crafted inputs to these programs and effect 'Bufler-
rwerftOVl' (or some such exploit) and break into the system. To detect such
attacks, the execution of vulnerable programs should be screened at run-time.
This can be done by observing the trace (sequence of operating system calls; with
or without argument values) of the program. In [3J, S. Hofmeyr et.aI. describe a
method of learning to discriminate between eequences of system calls (without
argument values) generated by normal use and mlsuse of processes that run with
(root) privileges. In their scheme, a trace is flagged to be anomalous if its similar-
ity to example (training) traces annotated aa normal falls below a threshold; the
similarity meaaure is based on the extent of partial matches with short sequences
derived from the training traces. From annotated examples of traces, they com-
pile a list of subsequences for comparing (at various positions) with a given trace
and flag anomalous behavior when a similarity measure croues a threshold. In
[15J, A. Wespi et. aI. use the Teiresiaa pattern matching algorithm on the traces
in a similar manner to ftag off anomalous behavior. In both of the above, the
Bet of subsequences used for comparison haa to be learnt from the annotated
set of traces (sequences of system calls) because, no other usable information or
formal specification on legal or compromised execution of programs is available.
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The approach advocated in this article is to obtain a compact representation of
program behavior and use it (after some reduction) to eelect features to be used
with a Support Vector Machine learning classifier.

Let ~ be the let of all pO88ible system calls. A trace Y is then an element of~.
which is the let of all strings composed of elements of OJJ. For a given program,
let the training let be ~ = {(Yi' Li)li = 1,... ,T}, where Li e {O, I}, is the
label corresponding to trace Yi, 0 for normal traces and 1 for attack traces. The
detection problem then is to come up with a rule t, based on the training set, that
attempts to minimize the probability of mivlNSification P. = Pr[t(y) #: L(Y)I.
What is of more interest to system atlminiJltrators is the trade-off between the
probability of detection PD = Pr[t(y) = lIL(Y) = 1] and the probability of
false alarms PFA = Pr[t(y) = lIL(Y) = 0] that the classifier provides. These
probabilities are independent of the probabilities of occurrence of normal and
malicious traces.

Annotation (usually manual) of live traces is a difficult and slow procedure.
Attacks are also rare occurrences. Hence, traces corresponding to attacks are
few in number. Likewiee, we dont even have a good representative sample of
traces corresponding to normal use. Hence, regardless of the features used, we
need to use non-parametric classifiers that can handle finite (small) training
sets. Support Vector Machine learning carves out a decision rule reflecting the
complicated statistical relationships amongst features from finite training sets
by m~mizing true generalization (strictly speaking, a bound on generalization)
instead of just the performance on the training let. To use Support Vector M.
chines, we need to map each variable length trace into a (real-vector-valued)
feature space where Kernel functions (section 4) can be used. This conversion is
performed by parsing the raw traces into shorter stringB and extracting models
of program execution from them.

2 Models for Attacks

The malicious nature of a program is due to the presence of a subsequence, not
necessarily contiguous, in its trace of system cal18. For the same type of attack
on the host, there are several different combinations of system calls that can
be used. Furthermore, innocuous system calls or sequences can be injected into
various stages of program execution (various segments of the traces). Thus the
intrinsic variety of attack sequences and the padding with harmless cal18 leads
to a polymorphism of traces for the same plan of attack. Real attacka have a
finite (and not too long) underlying attack sequence of system calls because they
target specific vulnerabilities of the host. This and the padding are represented
in a 'plan of attack' called the Attack 7ree [12).

2.1 Attack Trees

An Attack Tree (st) [12] is a directed acyclic graph (DAG) with a set of nodes and
888Ociated sets of system caI.18 used at these nodes. It represents a hierarchy of
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pairs of taBles and methods to fulfill those tub. These nodes and seta of system
calJs are of the following three types:

1. 'V' = t VI, 112. . .. . Vtl }. the nodes representing the targeting of specific vulner-
abilities in the host system. and a corresponding collection of subsets of ~ :
~ V = {~~. <!I;. . .. . ~:I} representing the poesible system-calls that target

those vulnerabilities.
2. ~ = {pI,P2 .Pt3}' the set of instances where padding can be done

along with a corresponding collection of subsets of C!I u {~} (~is the
null alphabet signifying that no padding system-cal1 has been included):
~!J = {«!Ir.~r ;~3}'

3. !J = {11. h. ... . fta}. the final states into which the scheme jumps after
completion of the attack plan along with a collection of subsets of ~ U {f}:
~'§ = {~{. ~~ . ay'~}; a set that is not of much interest from the point
of view of detecting attacks.

There may be multiple system calls issued ~hile at a state with possible restric-
tions on the sequence of issue. The baaic attack scheme encoded in the Attack
Tree is not changed by modifications such 88 altering the padding scheme or the
amount of padding (time spent in the padding nodes). Given an attack tree, it is

straightforward to find the list (~ C ~.) of all traces that it can generate. But
given a trace, we don't have a scheme to check if it could have been generated by
.sf without searching through the list ~. Our intrusion detection scheme needs
to execute the following stens:

1. Learn about .sl from the training set ~.
2. Form a rule to determine the likelihood of a given trace being generated by

nil---

These objectives can be met by a probabilistic modeling of the Attack Tree.

2.2 Hidden Markov Models for Attack Trees

Given an Attack Tree ~. we can set up an equivalent Hidden Markov model
HI that captures the uncertainties in padding and the polymorphism of attacks.
The state-space of HI, ~ 1 = {%l, %~,... . %~} (the superscript 1 corresponding

to the attack model (abnormal or malicious program) and the superscript 0 cor-
responding to the normal program model) is actually the union: {%~}U'VU~U~
with %~ being the start state representing the start node with no attack initiated
and n = 1 + k1 + ~ + k3. We now need to describe the statistics of state tran-

sitions (with time replacing the position index along a trace) to reflect the edge
structure of .st and to also refiect the duration of stay in the vulnerability and
padding nodes. The only allowed state transitions are the ones already in .st and
self-loops at each of the states. The picture is completed by defining conditional
output probabilities given the state of system calls in a way that captures the
information in ~ 'V and ay~. Thus we have, V %t ,%} E ~ I . V 'III E ~ U {~} and

"It E N

~.

~
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Fig. 1. An Attack Tree and its equivalent HMM with k1 = 5,~ = 5,- - 1,n = 12.

We can write down a similar HMM for the normal traces also. This nornuJl
HMM, Ho has as its sta~space a set f;' 0 in general bigger than f;' 1, and cer-

tainly with a different state transition structure and conditional output probe.-
bilities of system calls given the,state. The associated probabilities are as followa.
It :z:~,:z:~ e Ir°, It Y. e ~ and It teN

P[X(t + 1) - :r:~IX(t) - :r:1] == ~. (3)

P[Y(t + 1) .. y.IX(t) -:r:1] == r'., (4)

We would like to represent the probabilities for the above HMMs 88 functions of
some vector (J of real-valued parameters so 88 to be able to use the framework of
[4] and [51. In the next section, we use these parametric HMMs to derive a real
valued feature vector of fixed dimension for these variable length strings that
will enable us to use Support Vector Machines for classification.

Real Valued Feature Vectors from Traces3

Since we are dealing with variable length strings, we would like to extract the
features living in a subset of an Euclidean space on which kernel functions are
readily available enabling use of Support Vector Machines[14J[1]. In [4] and [5],

35

P[X(t + 1) - ztIX(t) = z}] = Ql.,
P[Y(t + 1) -u,IX(t) - z}] = rl"

{I)

(2)
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each observation Y ia either the output of a parametric HMM (Correct Hypoth-
esia HI) or not (Null Hypothesia Ho). Then we can compute the Fiaher score:

Uy = V, log (P[YIH1,IJ]) (IS)

as the feature vector corresponding to each y, (} being the real-vector valued
parameter. What is not clear in this set-up is how, given only the training set
~, the Fisber score is computed. For instance, the ith entry of Uy will look like

This could clearly depend on (J. To use some feature like the Fisher score, we
need to identify a real-valued vector parameter (J and to completely specify the
computation of Uy.

Let the sets of malicious and normal tr&ee8 in the training set be:

M,., {Y I (y,L(Y» e ~I L(Y) = l}
}/ - {YI (y,L{Y» e !f,L(Y).. O}

Let n 1 ,no be the sizes of the state-spaces of the attack and normal HMMs
respectively. For HI we compute an estimate of probabilities fIl = {qlj,f,~},
baaed on the Expectation M~mization algorithm(lO][2]. We obtain an updated
aet of estimates ill = {qtj, rlj} that (locally) increues the liblihood of M (i.e.
of the traces in M) by maximizing the auxiliary function 88 below:

ill = arg max L E HI [log P (Yi H) IY] (1)
Jl. YEM

Thi8 step can be executed by the fol1owing(in the same manner 88 equation (44)
of [10]): .

where for simplicity the null output t is not considered. A variant of this idea is
a scheme where instead of the summation over all Y e M, we repeat the update
separately for each Y e M (in some desired order) as follows:

8(Uy), = 86, log (P[YIH1. 9])

1 8- P[YIH1.9) X 86, (P[YIH1.1) (8)

-1 - 41- ~~M4P(Y;h1) )qi- -
E 41. E...Lp (Yt 111)1:-1 EM lJff.

(8)

'},
(E Jr:p(Yi /il )"

).:1 - )11M J(
ri' - t,]. ( E JrJ' (Yi /il ))pi \YE.M J.

(D)



Intrusion Detection with Support Vector

-1 41i (JkP(Yi /i1))q;i = n ji
.~14J" (~P(YiH1)) (10)

.111 rji (Jr:P (Yi 111))T;i =. ji
Elj" (Jr:p(yo/i1

)) (11)

..1 j. t

ill is set equal to the update ill and the above steps are repeated till some
criterion of convergence is met. We will now specify the initial value of ill with
which this recursion gets started. The acyclic nature of the Attack Tree means
that, with an appropriate relabelling of nodes, the state-transition matrix is
upper triangular:

qJ, > 0 <=> i ~ j

or block-upper triangular if some states (padding states for instance) are allowed
to communicate with each other. As initial values for the EM algorithm, we can
take(the equi-probable assignment):

4]i = 1. l' Vi ~ j (12)"1 - 1 +

noting that equation (8) preserves the triangularity. Similarly, we can take:

fI], =! V I, j. (13)
s

Since we want to be alert to variations in the attack by padding, it is not a good
idea to start with a more restrictive initial assignment for the conditional output
probabilities unless we have reliable information, such 88 constraints imposed by
the Operating System, or 'tips' of an 'expert-hacker' . Such system-dependent
restrictions, in the form of constraints on some of the probabilities qli' rJ, fur-
ther focus our attention on the real vulnerabilities in the system. to further
sharpen our attention, we can augment M, by adding to it, its traces segmented
by comparing with the traces in N and using any side information; essentially
an attempt at stripping off padding. These segmented traces would be given
smaller weights in the EM recursion (7). Going further in that direction, we can,
instead of using the EM algorithm use various segmentations of the traces in
~ (into "1 parts) and estimate the probabilities {qJi,rJ,}. Even though we face
difticulties such 88 a large number of unknowns, a relatively small training set,
and. the problem of settling on a local optimum point in the EM algorithm, we
are banking on the robustness of the Support Vector Machine cl88sifier that uses
the parameters of the generative model. We can compute similar eatimates(HO)
for the HMM representing the normal programs even though they do not, in
general, admit simplifications like triangularity of the state-transition matrix.

The parameter vector we are interested in is the following:

(J = [quI qlll'" I qlll'" I 9"HI rut ... .r.,,]2" (14.)

Machin. 37and Generative Models
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N being the larger of nl, no; setting to zero thoee probabilities that are not
defined in the smaller model. TJUa vector can be estimated for the two HMMs
BI,Bo : 81,fJO simply from b1,bO,

For any trace, be it from !f or from the testing set, we can define the following
feature vector:

Uy = [V, log (P(YIH1.9J) I,.,.] (15)

This vector measures the like1ihood of a given trace being the output of the
Attack Tree model and can be the basis of a Signature-lxued Intrusion Detection
Scheme. On the other hand, we can use the information about normal programs
gathered in JIG to come up with

U - [ V, lac (P[YIHl, II) 11-11
] (16))I - V, lac (P[YlfiO, II) 1'.10

which can be used for a Combined Signature and A nomaly-ba.sed detection. Some-
thing to be kept in mind is that the parameter vector (and hence the feature
vectors) defined by (14) will contain many useless entries (with values zero) be-
cause we do not uae the triangularity of the state-transition matrix for Hi or
any system dependent restrictiOD8 and becauae we artificially treat (in (14)) the
HMMa to be of equal size. Instead, we can define different(smaUer) parameter
vectors (J ItA and (J N for the malicious and normal HMMs respectively and con-
siderably shrink the feature vectors. Also for each feature vector in (15) and the
two 'halves' of the vector in (16), there is a constant scaling factor in the form
of the reciprocal of the likelihood of the trace given the HMM of interest(as
displayed in equation (6». This constant scaling tends to be large because of the
smallness of the concerned likelihoods. We can store this likelihood as a separate
entry in the feature vector without any loa of information. A similar issue crops
up in the implementation of the EM algorithm: the forward and backward pro~
abilities needed for the computatioD8 in (8), (9), (10) and (11), tend to become
very small for long observation sequences, making it important to have a high
amount of decimal precision

4 The gYM Algorithm and Numerical Experiments

Support Vector Machines (SVMs)[14) are DOn-parametric classifiers designed to
provide good generalization performance even on small training sets. A SVM
maps input (real-valued) feature vecton (x E X with labels 1/ E Y) into a
(much) higher dimensional feature space (z E Z) through some nonlinear map-
ping (something that captures the nonlinearity of the true decision boundary).
In a feature space, we can classify the labelled feature vecton (Zi,1/i) using
hyper-planes:

,,[< ~,w > +b] ~ 1 (11)

~
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and minimi?,e the functional.(w) = ! < w, w >. The 8O1ution to this quadratic
program can be obtained from the saddle point of the Lagrangian:

1L(w, b, a) == 2 < W,w > - L04 (u.« Zt,W > +bJ -1) (18)

to- - L y,a: %i. a: 2: OJ (19)

Those input feature vectors in the training set th~t have positive a: are called
Support Vecto,., S = {%ila: > O} and because of the Karusb-Kubn-Tucker opti-
mality conditions. the optimal weight can be expre8ed in terms of the Support
Vectors alone.

w' = L YiO:; Zit 0:; ~ OJ (20)

This determination of w fixes the optimal separating hyper-plane. The above
method has the daunting task of transforming all the input raw features %,
into the corresponding z, and carrying out the computations in the hig~er di-
mensional space Z. This can be avoided by finding a symmetric and positive
semi-definite function, called the Kernel function, between pairs of %i

K: X X X -+ R+ U {O}, K(o, 6) 0& K(6, 0) '9'0,6 eX (21)

Then, by a theorem of Mercer I a transformation f : X ~ Z is induced for which,

K(a, b) =< f(a), f(b) >. Va, be X (22)

Then the above Lagrangian optimization problem gets transformed to the max-
imization of the following function of Oi:

. 1
W(o) = LOt - 2 LOtOjYd/jK(%(,%j) (23)

w8 ". LYia;Zi, a; ~ 0; (24)
...-

the support vectors being the ones corresponding to the positive os. The set
of hyper-planes considered in the higher dimensional space Z have a small es-
timated VC dimension[!4]. That is the main reason for the good generalization
performance of SYMs.

Now that we have real vectors for each trace, we are at full liberty to use the
standard kernels of SVM classification. Let u1, u2 e an ,. We have the Gaussian
Kernel

the Polynomial Kernel
K(U1,U2) = (U~U2 +Cl).r + CoJ, Cl.Oj ~ 0, deN

or the Fuher Kernel

LYia:%it

L1Iia:ZiI
.s

E~~~.~~~ ~

K(u.,~) = exp ( ~ 2~2 (u, - u.)T(u, - u,»). (25)

(26)
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Having described the various componenta of our scheme for intrusion detec-
tion and classification, we provide below a description of the overall scheme and
experiments aimed to provide results on ita performance. The overall detection
8cheme executes the following steps:

1. For the given TI attack traces of system calls y" we estimate using the EM
algorithm a HMM model HI for an attack with "1 states.

2. For given To normal traces of system calli, y" we estimate a HMM model
~ for the normal situation with no states.

3. We compute the Fisher scores for either a signature-based intrusion detec-
tion or a combined signature and anomaly-based intrusion detection using
equations (15) and (16).

4. Using the Fisher scores we train a SYM employing either one of the kernels
(Gaussian, Polynomial, Fisher).

5. Given a test trace of 8)'Item calls y, we let the SYM classifier decide as to
whether the decision should be 1 (attack) or 0 (normal). The Fisher scores
of y are computed and entered in the SYM classifier.

We performed numerical experiments on a subset of the data-let for host baaed
intrusion detection from the University of New Mexico [13][3]. We need to dis-
tinguish between normal and compromised execution on the Linux Operating
system of the lpr program which are vulnerable becauae they run as a privi-
leged processes. In the experiments, we tried various kernels in the SVMs. The
performance evaluation is based on the computation of several points of the re-
ceiver operating characteristic (ROC) curve of the overall classifier; i.e. the plot
of the curve for the values of the probabilities of correct classification (detection)
PD VB the false alarm probability PF A .

In our experiments with HMMa (both attack and normal), we encountered
two difficulties due to the finite precision of computer arithmetic (the long
double data type of ctC.. for instance is not adequate):

The larger the assumed number of states for the HMM, the smaller the
values of the probabilities {qi~}. For a fixed set of traces, like in our case,
increuing the number of states from say, 5 to 10 or any higher value, did not
affect the EM estimation (or the computation of the Fisher score) because,
despite the attacks and normal executions being carried out in more than 5
(or n) stages, the smaller values of {qii} make the EM algorithm stagnate
immedeately at a local optimum.
Having long traces (200 is a nominal value for the length in our case) means
that values of the forward and bcackw4rd probabilities [10] Qt(j), {3t(j) become
negligible in the EM algorithm as well as in the computation of the Fisher
score. For the EM algorithm, this means being stagnant at a local optimum
and for the computation of the Fisher score, it means obtaining score vectors
all of whoee entries are zero.

1.

2.

K(up~) = u: r1~; 1- Ey[Uyl41 (27)
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3. While computing the Fisher scores (15,16), if any element of fJ is very small
at the point of evaluation, the increased length of the overall Fisher score has
a distorting effect on the SYM learning algorithm. For instance, while using
linear kernels, the set of candidate separating hyper-planes in the feature
space is directly constrained by this. This problem is actually the result of
including the statistics of non-specific characteristics (background-noise, so
to speak) like the transition and conditional output probabilities related to
the basic system calls like break. 8xi t. uname etc.

To combat these problems of numerical precision, one can go for an enhanced
representation of small ftoating point numbers by careful book-keeping. But this
comes at the cost of a steep increase in the complexity of the overall detection
system and the time taken for computations.

We propose a solution that simplifies the observations and segments each
trace into small chunks with the idea of viewing the trace as a (short) string of
these chunks. This solution removes the ftoating point precision problems.

SVM Classification Using Reduced..1
We describe a technique for deriving a reduced order Attack HMM (or a nor-
mal HMM) from the traces in the training set. We choose a small number of
states to account for the most characteristic behavior of attacks (or of Normal
program execution). We also use the observation t~~t system-calls that consti-
tute intrusions ~ attack system calls from the set OJI'} are not exactly used for
padding (i.e. OJI nay<!J ~ 0). For every trace Y, we can compute the ratio of the
number of occurrences of a system-call s and the length of that trace. Call this
number P.(Y). We can also compute the ratio of the position of first occurrence
of a system-call s and the length of the trace (same as the ratio of the length of
the longest prefix of Y not containing s and the length of Y). Call this number
6.(Y). Calculate these ratios p.(y),6.(Y) for all system calls " E ~I and for all

T1 malicious traces in '!f.
For every " E OJI, find the median of P.(Y) over all Tl malicious traces in '!f.

Call it p~. Similarly, compute the medians S~ VS E ~. We prefer the median over
the mean or the mode because we want to avoid being swayed by outliers. We now
propose a scheme for identifying attack states {11}. Choose '11, 'Y~ : 0 < '11, 'Y~ < 1.
Find subsets {S1IS~,... 1 SA:} of ay such that

Ip~, -p~/1 <11,11:, -1:11 <1".1, "Ii,j e {1,2j... ,t}

Increase or decrease "'fl, 'Y2 so that we are left with a number of subsets equal
to the desired number of states nl. In practice, most, if not all, of these subsets
are disjoint. These subsets form the attack states. However, the alphabet is
no longer ~ but OY'. Thus, for the state xi = {8t. 82,." ,8t}, all strings of
the form 'Wt.81f(l)1,W2,81f(2),W3,'" ,WA:, 81f(A:), WA:+l' are treated as the same
symbol corresponding to it (with WI, W2, W3,'" ,WII, WA:+I E ~. and with 1r a

HMMs

(28)
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Fig. 2. Plota of the values of p~ and S~ over Donnal (dashed linea) and attack (8Otid
Unes) sequences used in obtaining reduced HMMa for the lpr (nonnal) and lprcp
(attack) programs (the system call index baa been renamed to ilnore thoee system
calla Dever used).

Fig. 3. Plot of ROC (for different number of hidden states) using SVMs and reduced
HMMs uaing the computation of the medians P~.I: ,S~ and so.. We uaed the trace datuet
of lpr (normal) and lprcp (attack) progr8IIUI.

~rmuta~io~ .o~ {1,2",: ,k} such th~t 6~,,(/) is non-decreasing with i). We call
this symbol (aJ80 a regular expression) 11;'

Now, we can assign numerical values for {q;i} and for {rjl}' The transition
probability matrix will be given a special structure. Its diagonal has entries of
the form : 'Ti and the first super-diagonal has its entries equal to 1 - '1', and all

other entries of the matrix are equal to O. This is the same as using a jfoJ or
left-right HMM [101. We set the conditional output probability of ob8erving the
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Fig. 4. Plots of the values of p~ and ~ over normal (dashed lines) and attack (solid
lines) sequences used in obtaining reduced HMMs for the lpr (normal) and lprep
(attack) programs (For the Ejee1: program: sys-CalL12 = pipe, sys..calL13 = fork For
the Ps program: sys-ealLIO = fork, sys-ealLll = fent!)

compound output Yj corresponding to state Xj to be JJ.j : 0 < JJ.j < 1. We treat all
other outputs at this state as the same and this wild-card symbol (representing
OY* - {Yj} ) gets the probability 1- JJ.j' We can make the values JJ.j all the same or
different but parameterized in some way, along with the TiS by a single variable
so that we. can easily experiment with detection performance as a function of
the JJ.j, Ti. A point to be kept in mind all along is that we need to parse any
given trace Y into nl (or more) contiguous segments. When there are different
segmentations possible, all of them can be constructed and the corresponding
feature vectors tested by the classifier.

The above steps can be duplicated for constructing the normal HMM also.
A sharper and more compact representation is obtained if the. Attack tree and
the Normal tree do not share common subsets as states. In particular, consider a
subset (of OY) x::: {st. S2,'" ,St} that meets condition (28) for both the normal
and attack traces:

AL AL L A L ALL
!p" - P'j I < "11 ' 16" - 6'j I < '12 ,

Vi,j e {1,2,... ,k}, O<'Yt.~ < I. Le {O,l} (29)

Then, x should clearly not be a state in either the Attack HMM or the Normal
HMM. The signature based detection scheme would as usual use only the reduced
attack HMM. The combined signature and anomaly-based approach would use
both the attack and normal HMMS. .

Now the overall detection scheme executes the following steps:

1. For the given Tl attack traces of system calls y" we parse the y, into nl
blocks and estimate using the reduced HMM model HI for an attack with
nl states.

43Machines and Generative Models
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2. For given To normal traces of system cal1a, Y., we p8l'8e the Y. into R2 blocka
and estimate a reduced HMM model IfO for the normal situation with no
states.

3. We compute the Fisher scores for either a signature-baaed intrusion detec-
tion or a combined signature and anomaly-baaed intrusion detection using
equations (15) and (16).

4. Using the Fisher scores we train a SVM employing either one of the kernels
(Gauasian, Polynomial, Fisher).

5. Given a test trace of system ca1la y, we let the SVM cl~fier decide as to
whether the decision should be 1 (attack) or 0 (normal). The Fisher scores
of Y are computed and entered in the SVM classifier.

. We performed numerical experiments on live Lpr and Lprcp (the attacked
version of Lpr) traces in the data-set for host based intrusion detection [13][3]. We
found that the quadratic programming step of the SYM learning algorithm did
not converge when we used linear and polynomial kernels (because of very long
feature vectors). On the other hand, SYM learning was instantaneous when we
used the Gaussian kernel on the same set of traces. The value of the parameter tT
in equation (25) made no significant difference. We used the Gaussian kernel (25)
We selected a small training set (about one percent of the whole set of traces
with the same ratio of intrusions as in the whole set). We trained the SYM
with different trade-offs between the training-error and the margin (through the
parameter c in [7]) and different number of hidden states for the Attack and
Normal HMMs. We averaged the resulting PD, PFA. (on the whole set) over
different random choices of the training set ~.

We also performed experiments on the eject and p. attacks in the1999 MIT-
LL-DARPA data set [8]. We used traces from the first three weeks of training.
In the case of thee j ect program attack, we had a total of 8 normal traces and
3 attack traces in the BSM audit records for the first three weeks. Need1eaa to
say, the SYM cIN8\fier made no errors at any size of the reduced HMMs. The
interesting fact to observe was that the single compound symbol (28) (for the
most reduced HMM) 'pip.*fork' was enough to classify correctly, thus learning
the Buffer-overflow step from only the names of the system calls in the traces.
The p8 trace-set can be said to have more statistical significance. We had 168
normal and 3 attack instances. However, for all sizes of reduced HMMs, all of
the Fisher scores for the Attack traces were the same as for the Normal ones.
Here, too, at all resolutions, the buffer-overflow step was learnt cleanly: All the
reduced HMMs picked the symbol 'f ork*fnctl , to be part of their symbol set

(28). Here too, the SYM made no errors at all. The plots of p~ and ~ in Fig.3
complete the picture. This data-set make us beleive that tlUs approach learns
efficiently buffer-overflow type of attacks. It alSo highlights the problem of a lack
of varied training instances.

We used the SYMu,Iat[7] program for Support Vector Learning authored by
Thorsten Joachims.
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5 SVM Classification Using Gappy-Bigram Count
Feature Vectors

Here, we present an algorithm that uses a simpler feature that avoids the esti-
mation of the gradient of the likelihoods. For any trace Y E ~', we can write
down a vector of the number of occurrences of the so-called gappll-bigrams in it.
A bigram is a string (for our purposes, over the alphabet OY) of length two that is
specified by its two elements in order. A gappy-bigram 'rAB' is any finite-length
string (over the set OY) that begins with the alphabet B and terminates with the
alphabet S. Let

#d(Y) = the number of occurences of the gappy - bigram' BAs' in Y (30)

where

s,SEOY, AEOY.U{f}, fbeingthenullstring. (31)

We write down the T2-long vector of counts #d(Y) for all (s,s) E OY x ~.

#.1.1
#.1.2C(Y) = (32)

We call the feature vector C(y), the count score of Y and use this to modify the
earlier scheme using the Fisher score.

The new overall detection scheme executes the following steps:

1. We compute the count scores using equation (32).
2. Using the count scores we train a SVM employing either one of the kernels

(Gaussian, Polynomial, Fisher).
3. Given a test trace of system calls y, we let the SVM classifier decide 88 to

whether the decision should be 1 (attack) or 0 (normal). The count scores
of y, are computed and entered in the SVM cl88Sifier.

We performed numerical experiments on live Lpr and Lprcp (the attacked version
of Lpr) traces in the data-set for host based intrusion detection [13][3]. We found
that the quadratic programming step of the SVM learning algorithm did not
converge when we used linear and polynomial kernels (because of very long
feature vectors). On the other hand, SVM learning was instantaneous when we
used the Gaussian kernel on the same set of traces. The value of the parameter
(7 in equation (25) made no significant difference. Our experiments were of the
following two types:
1. We selected a small training set (about one percent of the whole set of traces

with the same ratio of intrusions as in the whole set). We trained the SYM
with different trade-offs between the training-error and the margin (through
the parameter c in [7)). We averaged the resulting PD, PFA (on the whole
set) over different random choices of the training set 5'. Our average (as well
as the median) values of PD, PFA. were 0.95 and 0.0.

[ *..J
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2.2. We used the whole set of traces available for training the SYM with different
tradeoffs (again, the parameter c in [7]) and used the leave-one-out cross-
validation ~Q ([7]) estimate of PD, PFA. We obtained the following values
for PD,PFA : 0.992,0.0.

We have only one meuured point on the ROC curve. We also note that this
detection system behaves like an anomaly-b88ed intrusion detection system.detection system behaves like

6 Conclusions

We bave described a metbod for incorporating tbe structured nature of attacks,
as well as any specific system-dependent or otber 'expert-backer' information,
in tbe HMM generative model for malicious programs. Using tbe generative
model, we have captured tbe variability of attacks and compresaed into a vector
of real values, tbe set of variables to be t"YAmined for flagging off attacks. We
use tbese derived feature vectors in place of variable-Iengtb strings, as inputs
to the Support Vector Machine learning classifier which is designed to work
well witb small training sets. We bave presented a metbod for deriving reduced
HMMs using tbe temporal correlations (28, 29) between system calls in traces.
An alternative large-scale HMM classifier would need to use techniques from the
area of large vocabulary speech recognition [6] to grapple with the numerical
problems associated witb full-scale generative models for attacks and normal
program execution. We also presented tbe gappy-bigram count feature vector
for SYM based classification. We need to develop versions of the above intrusion
detection systems that work in real-time, and thoee that work on distributed
programs like a network transaction.
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