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Abstract

We consider nonlinear filtering problems, nonlinear robust control problems and the partial
differential equations that characterize their solutions. These include the Zakai equation, and
in the robust control case two coupled Dynamic Programming equations. We then characterize
equivalence between two such problems when we can compute the solution of one from the
solution of the other using change of dependent, independent variables and solving an ordinary
differential equation. We characterize the resulting transformation groups via their Lie Algebras.
We illustrate the relationship of these results to symmetries and invariances in physics, Noether’s
theorem, and calculus of variations. We show how using these techniques one can solve nonlinear
problems by reduction to linear ones.

1 Introduction

Symmetries have played an important role in mathematical physics as well as in systems and
control. Symmetries in mathematical physics [1] are essential. Essentially all physics theories
can be based in symmetries and symmetry properties. Some of the more celebrated results are:

(i) Conservation laws; various physics theories.
(ii) Quantum electrodynamics, elementary particles, quarks, strings.

(iii) Quantum field theory, reductions, symmetry braking.

Symmetries have been also fundamental in systems and control. Perhaps the most well known
principle has been the unifying role that equivalences of internal and external representations
and associated groups of transformations play in system theory. Some of the more celebrated
results are:

(a) Electrical networks and realization theory.



(b) Feedback invariants.

(¢) Nonlinear Filtering and Estimation Algebra.

(d) Parameterizations of Rational Transfer Functions.

(e) Canonical forms of linear analytic systems (linear in the controls).
(f) Feedback linearization.

(g) Symmetries in multibody mechanical systems and continuum mechanics

Given the rich interplay between mathematical physics and control systems, especially vari-
ational problems and optimal control, there remain many unexplored theoretical and applied
aspects of symmetries for systems and control. In this paper we describe our research in this
direction with focus on stochastic estimation and nonlinear control.

Both mathematical physics and systems and control deal with differential equations (DE).
Therefore, symmetry groups of differential equations and systems of differential equations pro-
vide a natural starting point for understanding the key methods and concepts. As a simple
example consider a scalar ordinary differential equation (ODE):

du du
F - - _ = . 1.1
(w,u, dx) I (z,u) =0 (1.1)

The left hand side of (1.1) can be viewed as defining a surface in IR? (three variables: z,u, %).
The middle term of (1.1) is the ODE and its solutions are scalar valued curves. A Symmetry
Group of an ODE [1] is a group of transformations on (z,u) (the independent and dependent
variables) which maps any solution of the DE to another solution of the DE. Similarly for
systems of DEs. Thus finding symmetry groups for (1.1) amounts to finding transformations
(diffeomorphisms)

H:R? - R? } (1.2)

(z,u) = ($(z,u),P(z,u))

which permute solution curves. Finding such groups is a celebrated old problem initiated by Lie
and later extended by Ovsjannikov and many others. Continuing with this simple example, if we
find such a transformation H, we can extend it to derivatives using the simple observation that
if a curve passes through (z,u) with slope du/dz, its image (under H) passes through (z',u’)
with slope du'/dx' where:

o = qﬁ(m,u)

u = ¢($au)
dl_ Go o djd) )
dr'  (¢g + ¢u du/dz) )

The map:
H :R’> - R’
du , , du

(w,u, E) —> (:v U, %> (1.4)



is an extension of H.

A key theorem in the investigation of symmetry groups for ODEs is the establishment of the
result that H permutes solutions of the ODE (1.1) iff H’ leaves the surface in IR?, defined by the
left-hand side of (1.1) invariant. This equivalence gives to the problem of constructing symmetry
groups of ODEs a very attractive geometric foundation. The so called Lie-Ovsjannikov method
[1] for constructing symmetry groups of ODEs is to find all H' that have the surface s = f(z,u)
as an invariant manifold.

This idea, as worked out in this simple example, can be extended directly to n'* order ODEs
and to systems of ODEs. For an n*" order ODE

F(.TI,’U,,’U/I,’U,Q,"',UTL,l) = Un _f(xaulau%"'aunfl) =0
d'u
A 1.5
Y dxt (1.5)
one extends a transformation H on (z,u), n-fold to a transformation H' on (z,u,u1,- -, uy)-

The Lie-Ovsjannikov method (1.1) extends as well.
More interesting are one-parameter Lie groups which leave the solutions of (1.5) invariant:

a:: = X(a:,u;e)} (1.6)

u' = Ulz,u;e)

The infinitesimal generator of this group

X = Eau) o +nleu) o (L.7)

plays a fundamental role. One extends the group n-fold to derivatives of all orders to get an
ntt order group and n' order infinitesimal generator X (™ [1]. Some of the basic results of the
theory are:

(i) The one-parameter Lie group leaves the ODE invariant iff its n'® order extension leaves
the surface F' = 0 invariant.

(ii) The family of all solution curves is invariant under the Lie group iff it is a symmetry group.

(iii) Theorem (Lie): The one-parameter Lie group is an invariance group of F' = 0, iff

XM = (up — f(z,u,u1, - ,up—1)) =0, when
Up = f(mauaula toc aun—l)
The consequences of these foundations were pursued by Lie who showed how to construct the

Lie group (of invariance), and that the Lie algebra of infinitesimal generators determine the local
Lie group.

The subject has attracted many researchers through the years. Some of the more interesting
results that have been obtained are:



e The reduction of the intractable nonlinear conditions of group invariance to linear homo-
geneous equations, which determine the infinitesimal generators.

e Invariance of an ODE under a one-parameter Lie group of point transformations leads to
reduction of the order of the ODE by one.

e Invariance of an n'" order ODE under an r-parameter Lie group with solvable Lie algebra
is reduced to an (n — 7)™ order ODE plus r quadratures (integrals).

e Invariance of a linear partial differential equation (PDE) under a Lie group leads to su-
perposition of solutions in terms of transforms.

We are more interested in symmetry and invarance groups of PDEs. These transformation
groups are local Lie groups. Point symmetries are point transformations on the space of inde-
pendent and dependent variables. Contact symmetries are contact transformations acting on the
space of independent, dependent variables and derivatives of dependent variables. Ovsjannikov
showed that if a system of PDEs is invariant under a Lie group, we can find special solutions of
the system, which are called similarity solutions.

A further generalization of these concepts with key significance for both systems and control
and mathematical physics are the Lie-Backlund symmetries (or transformations) [1]. In these
transformations the infinitesimal generators of the local Lie groups depend on derivaties of the
dependent variables up to any finite order:

(1.8)

!

z' = x+e§(m,u,u1,uQ,---,up) +O(62)
u = U‘|‘€’I’](.Z‘,U,U1,U2,"',Up)+O(€2)

It is a basic result in the theory of such transformations that the infinitesimal generators can
be computed by a simple extension of Lie’s aglorithm. Another key result is that invariance of
a PDE under a Lie-Backlund symmetry usually leads to invariance under an infinite number of
symmetries (connected by recursion operators) [1].

A most celebrated results in variational problems with foundational consequences in mathe-
matical physics is E. Noether’s Theorem [1]. Euler-Lagrange equations are the governing equa-
tions of many physical systems; they are of fundamental importance in mathematical physics.
Euler-Lagrange equations provide the dynamics of systems from a variational formulation (typ-
ically energy-based variational formulation). These ideas from mathematical physics have in-
spired many research efforts in systems and control: from stability theory, to dissipative systems,
to communication network routing, to robot path planning (to mention just a few).

In this context a physical system has independent variables x in IR” and dependent variables
u in IR™. The system independent variables x can take values in a domain €2 of IR". A function
is given or constructed which depends on the independent variables z, the dependent variables
u, and derivatives of the dependent variables up to order k, ui,us,---,u;. The dynamics of the
system evolve so that the paths u(z) correspond to extremals of the integral

J(’U,) :/ L(-’E,U,’Ull,’u,g,' te ,’U,k) dz (19)
Q

The function L is called a Lagrangian and the integral J(u) an action integral. The path
u(z) = (u'(z),u*(z),---,u™(z)) describes the state evolution of the system and typically has to
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satisfy some boundary conditions on 9€2. Such formulations are well known and used by control
theorists and practitioners. Clearly, if u(z) is an extremum of (1.9), any infinitesimal change

u(z) — u(z) + ev(x) (1.10)

which also satisfies the boundary conditions, should leave J(u) unchanged to order O(e).

The most significant relationship of this formulation is with respect to conservation laws of
a system. A conservation low of a system, is an equation in divergence-free form

n
div f = ZDi filz,u,uy,ugy -+ ug) =0 (1.11)
i=1

Equation (1.11) must hold for any extremal function u(z) of (1.9). The vector f is called a
conserved fluz [1] since (1.11) implies that a net flow of f through any closed surface in the
space x is zero.

Euler-Lagrange equations are the (often dynamical) equations that need to be satisfied by
an extremum of (1.9). We refer to [1, pp. 254-257| for a concise and clear derivation. The Euler-
Lagrange equations can be ODEs or PDEs dependent on the problem. As such, we may ask the
question if they have symmetry groups (invariance groups). Noether’s key idea and result was
that in order to find conservation laws it is far more fruitful to investigate the invariance of the
action integral (1.9). Noether considered Lie-Backlund transformations that leave the action
integral invariant:

t' = x+ e&(x,u,ur,uz, -, up) + O(e?)

u = U+67}(.’L‘,U,U1,U2,"',Up) +O(62) (112)
Noether showed that the existence of such transformations lead constructively to conservation
laws of the corresponding Euler-Lagrange equations. She established the explicit relationship
between the infinitesimals &, 7 and the conserved flux f. For a concise proof of this celebrated

theorem we refer to [1, p. 257-260]. This celebrated theorem induced fundamental reformulations
of mathematical physics, bringing a certain degree of unification. They include:

e Invariance under time translation leads to energy conservation.

e Invariance under translation or rotation in space, leads to conservation of linear or angular
momentum.

e Relativity theory formulations.

The relationship with symmetry groups allows the determination of variational symmetries
using Lie’s algorithm. Noether’s theorem resulted in many specific applications (for specific
physical systems or phenomena) such as [1]:

e Conservation of the Runge-Lenz vector in Kepler’s problem.

e Existence of infinity of conservation laws for the Korteweg-deVries equation and other
soliton equations.



We close this brief review of the history of research on symmetry groups for ODEs, PDEs
and dynamical systems by listing some more recent results and activities. Symmetry groups
allow discovery of related DEs of simpler form. This for instance leads to transformations that
map a given equation to a target equation. Comparing the Lie groups of symmetries admitted
by each equation, actually allows the construction of the mapping. Such results have significant
implications in facilitating the solution of new ODEs and PDEs using solutions of other ODEs
and PDEs, known already.

For our subject, it is important to consider transformations beyond local symmetries. These
are transformations where the dependence on u and the derivatives of u is global (i.e. not just
through the instantaneous values u(z)). Gauge transformations in mathematical physics and
quantum field theory can be such global transformations. In the theory of symmetry groups
such transformations are called potentials.

Ideas, techniques and algorithms from symmetry groups have made fundamental contribu-
tions to mathematical physics. As it should be clear from this brief exposition there is great
potential for similar impact and fundamental new advances by the systematic explowhatitation
of symmetry groups in systems and control problems. Many of the advances in mathematical
physics came out of application of symmetry groups in fundamental PDEs of mathematical
physics. This inspires us to apply similar techniques in the fundamental PDEs of systems
and control: dynamic programming, Zakai equations for nonlinear filtering, information state
equations for robust control and others. In addition Noether’s theorem can lead to significant
advances in nonlinear optimization. The results described in the subsequent sections are but a
small set of what could be accomplished by such methods in systems and control

2 Constructive Use of Symmetry Groups of PDEs: A Simple
Example

An interesting, for systems and control (as we shall see) theory, application of ideas from sym-
metry groups is the following. Use the symmetry group of a PDE to compute easily solutions to
new PDEs. This is a non-conventional use of symmetry groups developed by Rosencrans [14].

To explain the idea clearly, we use the simple example of the heat equation.

ou(t,z)  0%u(t, =)

= . 2.1
ot 0z (2.1)
It is well known [7][12] that (2.1) is invariant under the variable transformation
z — ez
t — e2st.} (22)

That is to say if u(t,z) is a solution of (2.1), so is u(e?*t,e°z). Clearly the initial data should
be changed appropriately. So if ¢ is the initial data for u, the initial data for the transformed
(under 2.2)) solution are ¢(e®z). This elementary invariance can be written symbolically as

2542
etDzesch¢ _ estee StD . (23)



Here

0

82
D?. = —

Ox?

Often in this paper we shall give double meaning to exponentials of partial differential operators.
Thus while ezp(tD?) in (2.3) denotes the semigroups generated by D? [13], ezp(szD) is viewed
as an element of the Lie group of transformations generated by zD. It is easy to verify that

p(e*z) = [exp(szD)d](z) , (2.5)
where we view exp(szD) as such a transformation, with parameter s. Now the association
(t,s) —> etD? gszD (2.6)
defines a two parameter semigroup with product rule
(t,s) - (t1,51) := (trexp(—2s) + t,s + s1) (2.7)

because of the invariance (2.3). A one parameter subgroup is

—Cr

t = a(ezp(2er) — 1) } (2.8)

where a,c are positive constants and r > 0 is the group parameter. To this subgroup (2.6)
associates the one parameter semigroup of operators

H(r): _ el_pa(eccp(ch)fl)D2fcrzD (2.9)
_ 6cr$Dea(1—ezp(—20r))D2

It is straightforward to compute the infinitesimal generator of H

H(r)¢ — ¢

r

M¢ == limy_0 = 2acD?*p — cxD¢ . (2.10)

But in view of (2.9) and (2.10) we have the operator identity

eMt — e—crtDea(l—ewp(—2ct))D2 . (2_11)

To understand the meaning of (2.11) recall that for appropriate functions ¢, exp(Mt)¢ is the
solution to the initial value problem

0 0* 0
aw(t,x) = [Muw|(z) = 2ac@w(t,w) - cac%x(t,x) (2.12)

w(0,z) = ¢(z)

Then (2.11) suggests the following indirect procedure for solving (2.12):



Step 1: Solve the simpler initial value problem

0 0?
au(t,w) = wu(t,m) (2.13)
u(0,z) = ¢(x)

Step 2: Change independent variables in u to obtain w via

w(t,xz) = u(a(l — exp(—2ct)), exp(—ct)x) . (2.14)

Here we have interpreted the exponential in (2.11) as a transformation of variables.

This simple example illustrates the main point of this particular application of symmetry
groups: knowing that a certain partial differential equation (such as (2.1)) is invariant under
a group of local transformations (such as (2.8)) can be used to solve a more difficult equation
(such as (2.12)) by first solving the simpler equation (such as (2.1)) and then changing variables.

This idea has been developed by S.I. Rosencrans in [8] [14]. It is appropriate to emphasize
at this point that this use of a group of invariance of a certain PDE is not traditional. The more
traditional use of group invariance is discussed at length in [7] [12], and is to reduce the number
of independent variables involved in the PDE. Thus the traditional use of group invariance, is
just a manifestation and mathematical development of the classical similarity methods in ODE.

The point of the simple example above is to illustrate a different use of group invariance
which goes roughly as follows: given a parabolic PDE

us = Lu (2.15)

and a group of local transformations that leave the solution set of (2.15) invariant, use this group
to solve a “perturbed” parabolic PDE

wy = (L + P)w (2.16)

by a process of variable changes and the possible solution of an ordinary (not partial) differential
equation. The operator P will be referred to as the “perturbation”.

One of the contributions in this paper can be viewed as an extension of the results of Rosen-
crans to the stochastic partial differential equations that play a fundamental role in nonlinear
filtering theory.

3 The Invariance Group of a Linear Parabolic PDE.

Consider the general, linear, nondegenerate elliptic partial differential operator

and assume that the coefficients a;;, b;, ¢ are smooth enough, so that £ generates an analytic
group [13], denoted by exp(tL), for at least small ¢ > 0, on some locally convex space X of
initial functions ¢ and appropriate domain Dom/(L).



Let V be the set of solutions to

ou
i Lu (3.2)
u(0,z) = ¢(x)

in X, as we vary ¢. The aim is to find a local Lie transformation group G which transforms
every element of V' into another element of V, that is an invariance group of (3.2) or of L.
Note that @ induces a group G acting on the space of functions on M with values in IR?, denoted
by F(M;IRP). The element § corresponding to a g in G will map the function A into A, i.e.

A'=g(A) . (3.3)

It is easy to show [14] that G and G are isomorphic as groups. We are interested in groups G
acting linearly. For that we need:

Definition: G is linear if there exists a Lie group of transformations ¥ : M — M such that
for each geG, there exists a oeX, a p X p matrix “multiplier” v = v(z,§) and a solution ¢ of
(3.2) such that

§(A)(z) = v(z,9)A(o(x)) + p(x) - (3.4)

The meaning of (3.4) is rather obvious. The way G acts on functions is basically via the
“coordinate change” group ¥ of M. The main result of Rosencrans [14], concerns the case of a
single parabolic equation (3.2), i.e..

Theorem 3.1 [14]: Every transformation § in the invariance group G of a linear parabolic
equation is of the form

u(t, z) — v(p(t, z))u(p(t, =) + ¢ (z) (3-5)

where p is a transformation acting on the variables (¢,z), ¥ a fixed solution of the parabolic
equation.

Clearly for linear parabolic equations G is always infinite dimensional since it always includes
the infinite dimensional subgroup H consisting of transformations of the form

A—cA+¢ (3.6)

where AeF(M:TR), c a scalar # 0, ¢ a fixed solution of (3.2). Because of (3.8) one says that G
acts as a multiplier representation of ¥ upon the space of solutions of (3.2).

We consider now one-parameter subgroups of the invariance group G of a given partial differ-
ential equation. That is we consider subgroups of G of the form { X} where s “parametrizes” the
elements. According to standard Lie theory the infinitesimal generators of these one-parameter
subgroups form the Lie algebra A(G) of the local Lie group G [7]. We shall, using standard
Lie theory notation, denote X by exp(sX) where X is the infinitesimal generator of the one
parameter group {Xs}. Thus XeA(G). Clearly the elements of A[G] can be considered as first
order partial differential operators in IR"*!

0 " 0

X =9(,u)5- ~ Zﬂi(w,u)a—xi- (3.7)



Indeed this follows from an expansion of exp(sX)(z,u) for small s. Now {X} induces a one-
parameter subgroup {X } in G, acting on functions. Let X be the infinitesimal generator of
{X,}. Given a function AeF(R";IR) let

A(s,z) == X5(A)(x). (3.8)

If z;,u are transformed to z},u' by a specific one-parameter subgroup ezp(sX) of G we can
expand

u = A(z) + sy(z, A(z) + 0(s?)

z; = z; — sBi(z, Alz) + 0(s?). (3.9)
Thus
Az') = —sZﬂz z, Az a‘giz) +0(s?)
or

X(A)(e) = tim 26 ~40.2)

s—0 S
_ i Als) — Al2)
s—0 S
~ lim A(s,z) — A(z)
s—0 S
_ i Y AE)
s—0 S
” 0A(x
= y(z, A(z)) + Z Bi(z, A(x)) ( ) . (3.10)
i=1 Oz;
In view of (3.5) the condition for G to be linear is that [14]
/Bi,u =Yuu =0 . (3.11)

The best way to characterize G (or G) is by computing its Lie algebra A(G) (or A(@)). A direct
way of doing this is the following. By definition XeA(G) if

D(A) =0 = D(e*XA) =0 for small s. (3.12)
When D is linear this reduces to
D(A) =0 = D(X(4)) =0, (3.13)

since

implies (3.12) if we set s = 0. It is not difficult to show that (3.12) leads to a system of partial
differential equations for v and S;.
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We shall consider further the determination of A(G) in the case when G is linear, since it is
the only case of importance to our interests in the present paper. Then in view of (3.11)

Bi(z,u) = Bi(z)
Y(z,u) = ud(z) + ¢(x) (3.14)
for some f;, 6, . Let us denote by 3 the vector [B1, B2, -+, Ba]?- Then if A is a solution of (3.2),

another solution is

A(s,z) = exp(sX)A,
which satisfies
2 A(s,) = 5@ + 3 40 25 + o(0)

A(0,z) = A(x) (3.15)

in view of (3.10) and due to the linearity assumption (3.14). The crucial point is that (3.15) is
a first order hyperbolic PDE and thus it can be solved by the method of characteristics. The
latter, very briefly, entails the following. Let €(¢) be the flow of the vector field > ;" ; ﬁia%i , i.€.
the solution of the ODE

d
& elt,2) = Blelt, )
€(0,z) = z. (3.16)

Then from (3.15)

D Als—t,e(tz)) = —0(e(t, 5))A(s — , e(t, z)

dt
+ ¢(e(t, z))
and therefore
A(s,z) = e:ch(/os 0(e(r,z))dr)A(e(s, x))
+ /0 " ®(t, z)dt (3.17)
where
t
O(t,z) = ewp(/o 0(e(r, z))dr)p(e(t, x)). (3.18)

By comparison with (3.5) one can view exp(f; d(e(r,z))dr) as the “multiplier” v. (3.17) clearly
displays the linearity of G near the identity.

The most widely known example, for which A(G) has been computed explicitly is the heat
equation (2.1). The infinitesimal generators in this case are six, as follows

0 0 o 0

o "ot T or ba
9 , 0 o
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Let us apply these general results to a linear parabolic equation, like (3.2). From Theorem 3.1,
then G is linear. The infinitesimal generators of G are given in view of (3.10) (3.14) (note that
x1 =t here) by

0 & 0 ,
7 = a(t,w)& + izzlﬁi(t, x)a—a:Z +v(t,z)id (3.20)
for some functions «, 3;,y of t and z. If u solves (3.2) so does

v(s) = exp(sZ)u, for small s. (3.21)

However v is also the solution of

0 0 =

v(0) = u, (3.22)

a first order hyperbolic PDE (solvable by the method of characteristics). Clearly since % —Lis
linear (3.12) applies and therefore

ZueV if ueV. (3.23)

The converse is also true: if (3.23) holds for some first order partial differential operator, Z is a
generator of G.

Now (3.23) indicates how to compute «, 3,7. Namely
0

= _Lu= .24
(5~ =0 (3.24)
implies
0 “.  Ou
71 Rl — 0. .
(i = Dem + 57 ) =0 (3.25)
For ueV the second reads
n n
our + Z Bituz; + yeu + auy + Z Bitiz; , + yur = LZu, (3.26)
i=1 i=1
or
d
ZZu=(LZ—ZL)u , (3.27)
or
d
=7 =[L,Z on V. (3.28)
dt
In (3.28) [ , | denotes commutator and %Z is symbolic of

2_}_%/3 i+ d
at(?t 2 Z’td:vi Vet
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Thus the elements of A(G) in this case satisfy a Lax equation. It is immediate from (3.28)
that Z form a Lie algebra. Furthermore it can be shown [14] that « is independent of z, i.e.
a(t,z) = a(t) and that every Z satisfies an ODE

d'Z d-1z

War T g

ot deZ=0 (3.29)

where ¢ < dimG.

4 Using the Invariance Group of a Parabolic PDE in Solving
New PDEs.

In this section we use the results of the previous section, to generalize the ideas presented via
the example of section 2. We follow Rosencrans [8][14].

Thus we consider a linear parabolic equation like (3.2) and we assume we know the infinites-
imal generators Z of the nontrivial part of G. Thus if u solves (3.2), so does v(s) = exp(sZ)u
but with some new initial data, say R(s)¢. That is

eZetl = ' R(s) on X. (4.1)
Now R(:) has the following properties. First
lim R(s)¢ = o. (4.2)

s—0

Furthermore from (4.1)

etLR(r)R(s)gb — 'I‘Z tLR( )¢ — e’r'ZeSZetL¢

T+ Zeth gy — etV R(r + 5)¢. (4.3)
Or
R(r)R(s) = R(r+s) for r,s>0 (4.4)
From (4.3), (4.4), R(") is a semigroup. Let M be its generator:
M¢ = Sli_n}o w, ¢ € Dom(M). (4.5)

It is straightforward to compute M, given Z as in (3.20). Thus

M¢ = a0 L¢+Zﬂ,0m 99

0,x)o. 4.6
> i0,0) g+ (026 (46)

Note that M is uniquely determined by the Z used in (4.1). The most important observation
of Rosencrans [8] was that the limit as ¢ — 0 of the transformed solution v(s) = ezp(sZ)u, call
it w, solves the new initial value problem

ow
s = Mw
w(0) = ¢. (4.7)
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That is
esZetl = etles™ on X (4.8)
or
Zett = et M on Dom(L).

This leads immediately to the following generalization of discussions in section 2: To solve the
initial value problem

ow
s = Mw
w(0) = ¢ (4.9)
where
M = a(0)L + Y Ai0.2) 0 +4(0,)id (4.10)
i=1 ?

follow the steps given below.

Step 1: Solve uy = Lu,u(0) = ¢.

Step 2: Find generator Z of G corresponding to M and solve

Zv=a(t)gv+ T, Bi(t,z) 520 +y(t, z)v }
v(0) =u

via the method of characteristics. Note this step requires the solution of ordinary differ-
ential equations only.

Step 3: Set t =0 to v(s,t, ).

This procedure allows easy computation of the solution to the “perturbed” problem (4.9)-
(4.10) if we know the solution to the “unperturbed” problem (3.2). The “perturbation” which
is of degree < 1%, is given by the part of M:

pP= iﬁi(o,x)% + (0, ). id. (4.11)
i=1 ?

We shall denote by A(P) the set of all perturbations like (4.11), that permit solutions of u; =
(L 4+ P)u to be computed from solutions of u; = Lu, by integrating only an additional ordinary
differential equation. We would like to show that A(P) is a Lie algebra strongly related to the
Lie algebra A(G) of the invariance group of L.

Definition: The Lie algebra A(P) will be called the perturbation algebra of the elliptic
operator L.
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To see the relation between A(G) and A(P), observe first that each generator Z in A(G)
uniquely specifies an M, via (3.20), (4.6). Conversely suppose M is given. From the Lax
equation (3.28) we find that

dZ " 0 )
7 li=o= [L, Z] |t=0= [L, M] = a4(0) L + Zﬂi,t(oax)g + (0, z)id. (4.12)
i=1 t

Note that the right hand side of (4.12) is another perturbed operator M’. Thus given an M,
by repeated bracketting with L all initial derivatives of Z can be obtained. Since from (3.29) Z
satisfies a linear ordinary differential equation, Z can be determined from M. So there exists
a 1-1 correspondence between A(G) and the set of perturbed operators M, which we denote by

A(M). It is easy to see that A(M) is a Lie algebra isomorphic to A(G). Indeed let Z; correspond
to M;, i = 1,2. Then from (4.8) we have

el [My, My)p = et My Myp — et My My ¢
= Z1e'P Myp — Zoet* My ¢
= 7120l — ZoZh el = [ 71, Zo)etl . (4.13)

This establishes the claim. Since each perturbation P is obtained from an M by omitting
the component of M that involves the unperturbed operator L, it is clear that A(P) is a Lie
subalgebra of A(M). Moreover the dimension of A(P) is one less than that of A(M). In view of

the isomorphism of A(M) and A(G) we have established [8]:
Theorem 4.1: The perturbation algebra A(P) of an elliptic operator L, is isomorphic to

a Lie subalgebra of A(G) (i.e. of the Lie algebra of the invariance group of L). Moreover
dimA(P)) = dim(A(G)) — 1.

One significant question is: can we find the perturbation algebra A(P) without first comput-
ing A(G), the invariance Lie algebra? The answer is affirmative and is given by the following
result [8].

Theorem 4.2: Assume L has analytic coefficients. An operator Py of order one or less (i.e.
of the form (4.12)) is in the perturbation algebra A(P) of L if there exist a sequence of scalars
A1, A9, --- and a sequence of operators P, Py, - - of order less than or equal to one such that

[LaPn]:/\nL+Pn+1 , n>0

and Y \pt*/k! S Ppt* /k! converge at least for small ¢.

It is an easy application of this result to compute the perturbation algebra of the heat
equation in one dimension or equivalently of L = %g. It turns out that A(P) is 5-dimensional
and spanned by

0

A(P) = Span(1, z, 22, 3 x%) (4.14)
So the general perturbation for the heat equation looks like
0 2 .
P = (ax + b)% + (cz® + dz + e)id (4.15)
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where a, b, ¢, d, e are arbitrary constants. Note that the invariance group of the heat equation is
6-dimensional (3.19). It is straightforward to rework the example of section 2, along the lines
suggested here.

The implications of these results are rather significant. Indeed consider the class of linear
parabolic equations u; = Lu, where L is of the form (3.1). We can define an equivalence
relationship on this class by: “L; is equivalent to Ls if Ly = L1 + P where P is an element of
the perturbation algebra A'(P) of L;”. Thus elliptic operators of the form (3.1), or equivalently
linear parabolic equations are divided into equivalent classes (orbits); within each class (orbit)
{L(k)} (k indexes elements in the class) solutions to the initial value problem wu(k); = L(k)u(k)
with fixed data ¢ (independent of k) can be obtained by quadrature (i.e. an ODE integration)
from any one solution u (k).

We close this section by a list of perturbation algebras for certain L, from [8].

Elliptic operator | Generators of perturbation
L algebra A(P)
D? 1,z,22,D,zD
zD? 1,z,2D
z2D? zlogzD,zD,logz, (logz)?,1
z3D? 1,z ', zD
e*D? l,e7%, D

Table 4.1: Examples of perturbation algebras.

5 Strong Equivalence of Nonlinear Filtering Problems

In this section we will apply the methods described in sections 2-4 for parabolic equations to the
fundamental PDEs governing nonlinear filtering problems. As with all symmetry group methods
these techniques have a strong geometric flavor.

We will only briefly discuss the focal points of our current understanding of the nonlinear
filtering problem and we will refer the reader to [9] or the references [2]-[6] for details. Thus the
“nonlinear filtering problem for diffusion processes” consists of a model for a “signal process”
z(t) via a stochastic differential equation

dz(t) = f(z(t))dt + g(x(t))dw(t) (5.1)

which is assumed to have unique solutions in an appropriate sense (strong or weak, see [9]). In
addition we are given “noisy” observations of the process z(t) described by

dy(t) = h(z(t))dt + dv(t). (5.2)

Here w(t),v(t) are independent standard Wiener processes and h is such that y is a semimartin-
gale. The problem is to compute conditional statistics of functions of the signal process ¢(x(t))
at time ¢ given the data observed up to time %, i.e. the o-algebra

F =o{y(s),0 <s <t} (5.3)
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Clearly the maximum information about conditional statistics is obtained once we find ways to
compute the conditional probability density of z(t) given F}. Let us denote this conditional
density by p(t,z). It is more convenient to use a different function, so called unnormalized
conditional density, u(¢,z) which produces p after normalization

u(t, x)

Ju(t,z)dz (54)

p(t,z) =

The reason for the emphasis put on u is that it satisfies a linear stochastic PDE driven directly
by the observations. This is the so called Mortensen-Zakai stochastic PDE, which in Ité’s form
is

du(t, z) = Lu(t,z)dt + h' (z)u(t, z)dy(t) (5.5)

Here L is the adjoint of the infinitesimal generator of the diffusion process z(-)

n

L) = 5 Y sos (@]~ Y o [filx)(x) (56)
ij=1 UL g 1

=1

which is also called the Fokker-Planck operator associated with z(-). In (5.6) the matrix o is
given by

, (5.7)

and we shall assume that o is positive definite, i.e. the elliptic operator £ is nondegenerate.
When applying geometric ideas to (5.5) it is more convenient to consider the Stratonovich version

Ou(t,z) 1 dy(t)

5 = (L 2h(ac) h(z))u(t,z) + h* (z)u(t, z) T (5.8)
We shall primarily work with (5.8) in the present paper. Letting
A: =L~ %hTh (5.9)
B;: = Mult. by hj(j™ comp. of h) (5.10)
we can rewrite (5.8) as an infinite dimensional bilinear equation
du(t) 4 .
)~ (44 Y Biis0)uo) (5.11)

J=1

We shall assume that every equation of the form (5.8) considered has a complete existence and
uniqueness theory established on a space X. Furthermore we shall assume that continuous
dependence of solutions on y(-) has been established.

The estimation Lie algebra introduced by Brockett [2] and analyzed in [2]-[6] is the Lie
algebra,

A(FE) = Lie algebra generated by A and B;, j =1,---p. (5.12)
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Again we shall assume that for problems considered the operators A, B; have a common, dense
invariant set of analytic vectors in X [10] and that the mathematical relationship between A(E)
and the existence-uniqueness theory of (5.8) is well understood.

We develop a methodology for recognizing mathematically “equivalent” problems. Equiva-
lence here carries the following meaning: two nonlinear filtering problems should be equivalent
when knowing the solution of one, the solution of the other can be obtained by relatively simple
additional computations. Examples discovered by Benes [11], created certain excitement for the
possibility of a complete classification theory. We shall see how transparent Bene3’ examples
become from the point of view developed in this paper.

To make things precise consider two nonlinear filtering problems (vector)

da:f(t) = i (t)dt + ¢* (= (t))dw' ()

dy'(t) = hi(z(t))dt + dv'(t) ; i=1,2 (5.13)
and the corresponding Mortensen-Zakai equations in Stratonovich form

Ou;(t, )
ot

(€~ 3 K@) |Pustt,z) + BT @2 0); i=12 (5.14)

Definition: The two nonlinear filtering problems above are strongly equivalent if uy can
be computed from u;, and vice versa, via the following types of operations:

Type 1: (t,7?) = a(t,z'), where « is a diffeomorphism.
Type 2: us(t,z) = ¢(t, z)uy(t, ), where (¢, ) > 0 and ¥~ (¢,z) > 0.

Type 3: Solving a set of ordinary (finite dimensional) differential equations (i.e. quadrature).

Brockett [2], has analyzed the effects of diffeomorphisms in z-space and he and Mitter [4] the
effects of so called “gauge” transformations (a special case of our type 2 operations) on (5.8).
Type 3 operations are introduced here for the first time, and will be seen to be the key in linking
this problem with mathematical work on group invariance methods in ODE and PDE’s.

Our approach starts from the abstract version of (5.14)(i.e. (5.11)):

P
it L RVOPEREEE (5.15)
j=

where A’ B]i- are given by (5.9)-(5.10). We are thus dealing with two parabolic equations. We
will first examine whether the evolutions of the time invariant parts can be computed from one
another. This is a classical problem and the methods of section 3, 4 apply. In this section we
give an extension to the full equation (5.15) under certain conditions on B; We shall then apply
this result to the examples studied by Benes and recover the Riccati equations as a consequence
of strong equivalence.

Our main result concerning equivalence (in a computational sense) of two nonlinear filtering
problems is the following.
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Theorem 5.1: Given two nonlinear filtering problems (see (5.13)), such that the corre-
sponding Mortensen-Zakai equations (see (5.14)) have unique solutions, continuously dependent
on y(-). Assume that using operations of type 1 and 2 (see definition just above) these stochastic
PDEs can be transformed in bilinear form

8’!111' i P Qi .
Fre (A" + > Bi&(t))ui; i=1,2
j=1

such that:

(i) A%, i = 1,2, are nondegenerate elliptic, belonging to the same equivalence class (see end of
section 4)

(ii) B;-, j=1,---p, i =1,2 belong to the perturbation algebra A(P) of (i).

Then the two filtering problems are strongly equivalent.

Proof: Only a sketch will be given here. One first establishes that is enough to show com-
putability of solutions for piecewise constant £, from one another, by the additional computation
of solutions of an ODE. For piecewise constant ¢ the solution to any one of the PDEs in bilinear
form is given by

i = A FB € ) b —tmr)  JAHE 6 tmoa—tn) | J(ABLE ) 9 (5.16)

Since A!, A%, belong to the same equivalence class there exist Z'2eA(G), (where A(G) is the Lie
algebra of the invariance group for the class) and P2¢A(P) (where A(P) is the perturbation
algebra of the class) such that (see (4.8)):

A? = A' 4 P (5.17)
et = et s 1 s >0, (5.18)
That is consider A? as a “perturbation” of A'. We know by now what (5.17) means: to compute

the semigroup generated by A?, we first compute the semigroup generated by A', we then solve
the ODE associated with the characteristics of the hyperbolic PDE

G}
a—: = 7% (5.19)
and we have
2 = [e57" ],y (5.20)

More generally since A' + Bj, A?+ B belong to the same class there exist Z },feA(G), le,? eA(P)
such that

A’ + B} = A' + B} + Py
ik HATTB)) — AN B]) s(A%+BY), (5.21)
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It is now apparent that if we know (5.16) explicitly for i = 1, we obtain uy from (5.21) with the
only additional computations being the integration of the ODEs associated with the character-
istics of the hyperbolic PDEs

ov

5 Zigv, k,j =1,..,p. (5.22)

This completes the proof.

Let us apply this result to the Benes case. We consider the linear filtering problem (scalar
z,y)

dz(t) = dw(t)
dy(t) = z(t)dt + dv(t).

and the nonlinear filtering problem (scalar z,y)

f(z(t))dt + dw(t) }

.
8
~~
=
I

dy(t) = z(t)dt + dv(t).
The corresponding Mortensen-Zakai equations in Stratonovich form are: for the linear

Oui(t,z) 1, 8°

5 = (g — 7t z) + eyt t2); (5-23)
for the nonlinear
Oug 1 o2 9 0 .
ot E(@ -z )ug(t, z) — %(fm) + zgy(t)ua(t, T). (5.24)

We wish to show that (5.23)(5.24) are strongly equivalent only if f (the drift) is a global solution
of the Riccati equation

fet+fP=az® +br+ec (5.25)

First let us apply to (5.23)(5.24) an operation of type 2. That is let (defines vs)

ug(t,z) = vg(t,x)ea:p(/oz fu)du). (5.26)

The transformation (5.26) is global, and is an example of such more general transformations
needed for systems and control problems and discussed at the end of section 1. This is like a
gauge transformation from mathematical physics, or a potential transformation in symmetry
group theory [1].

Then the new function v, satisfies

(Y x 2
0 2é7;a ) _ %(% _ 1-2 — V(x))vz(t,x) + .T’g(t)’l)g(t,m), (527)

where

V(z) = fo+ f>. (5.28)

20



Existence, uniqueness and continuous dependence on y(-) for (5.23)(5.24) have been established
using classical p.d.e. results. We apply Theorem 5.1 to (5.23) (5.27). So

1, 6

Al _ (2 _ 2
2(6$2 =)
1, 9

2 _ X 2
A2 = (g =2 =) (5.29)
while
B! = B? = Mult. by z. (5.30)

From the results of section 4, the only possible equivalence class is that of the heat equation.
Clearly from (4.15) or Table 4.1, A!, B!, B2¢A(P) for this class. For A? to belong to A(P) it is
necessary that V' be quadratic, which is the same as f satisfying the Riccati equation (5.25), in
view of (5.28).

Recall that the solution of (5.23) is

T — 2
iy (1, 7) = eap(— ZU‘ZS)) ) (5.31)
where
du(t) = o(t)(dy(t) — p(t)dt); p(0) =¢
do(t) = 1—0%(t); ¢(0)=0 (5.32)

Benes [11], using a path integral computation showed that the solution of (5.27), when (5.25)
is satisfied is given by

o 2
vo(t,z) = exp(—( 20’285)) ) (5.33)
where
du(t) = —(a+ V)o()u(t)dt — %a(t)bdt +o(t)dy(?)
do(t) = 1— (a+1)a%(t). (5.34)

What we have shown here is a converse, from the point of view that strong equivalence of the
linear and nonlinear filtering examples implies the Riccati equation. We also maintain that
knowledge of group invariance theory makes the result immediate at the level of comparing
(5.23) with (5.27).

6 Reduction of Nonlinear Output Robust Control Problems

In this section we will apply methods from symmetry groups to a problem of recent interest in
nonlinear control: output robust control. As has been developed fully in [24 |, the nonlinear out-
put robust control problem (in an H® sense) is equivalent to a risk-sensitive partially observed
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stochastic control problem and to a dynamic partially observed game [20][26]. A key result in
establishing these equivalences was the introduction of the information state and the nonlinear
PDE that it satisfies. In this section we apply systematic methods from symmetry groups to
this fundamental PDE of nonlinear robust control.

The dynamic game representation of the equivalent nonlinear robust control problem is as
follows. Given the dynamical system

= (a:(t),u(t)) +’w(t), ZE(O) =X
y(t) = Cz(t) + v(t) 0} (6.1)

where w, v are L?-type disturbances. We want to find a control u(-), which is a non-anticipating
functional of y(-), to minimize (p > 0)

T(w = sup sup sup (o) + / [La(s),uls) — ae wls) P+ | o) [)]ds
()} (6:2)

One of the questions we want to answer, is when can we reduce this nonlinear problem to
a linear one? Group invariance methods can be applied to this problem. Let us make the
following structural assumptions:

b(z,u) ( ) + A(u)z + B(u)

f(=z) = DF(z) for some F

51 7@ P+ fle)-(A ( )$+B( ) = 327 Y (u)z + A(u)z + 5T (u) (6.3)
(z) = %(az (:1:—:1:)4—(]5—1-%}7 T

L(z,u) = 1R(u) + LzTQu)x

Let us next consider the information state PDE for (6.1)-(6.2):

Op _ [ 2 1 )
o = DPpble,w) +5 [ Dp " +L{w,u) — 50 (y(t) — Cx) (6.4)
The optimal control is a memoryless function of the information state since the cost (6.2), can
be expressed using the information state as follows [23][24]:

J(u) = sup{(Pr,®) : po = p}; (p,q) = sup{p(z) +4q(z)} . (6.5)

yeL? TeR™

That is why the information state PDE (6.4) is so fundamental. Under the structural assump-
tions (6.3), it is not hard to show [21][27][28] that the PDE (6.4) has a finitely parameterizable
solution

pi(2) = —o—(z - 2(1))" Y ()7 (z — (1) + $(t) + %F(w) (6.6)
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£(t) = (A(u(?) + pY ($)Q(u(t)) — Y (t) Xo(u(t)))£(t) + B(u(t)) )
o) =Y (t)A(u(t) + Y (t)CT (y(t) — Ci(t))
z(0 T
Y(t) = Y()A(u(t))T + A(u(®)Y (t) = Y ()(CTC — nQ(ul(t)) + T (u(t))Y (t) + I [ (6.7)
Y(O) =Y )

$(0) = ¢ J

A consequence of this is that the robust output control for the nonlinear system (6.1) is fi-
nite dimensional and easily implementable. The explanation for these specific results becomes
clear from an invariance group perspective. Under an appropriate transformation the dynamic
game (6.1)-(6.2) becomes linear, quadratic (and therefore has a well known finite dimensional
controller) with state

p(t) = (2(¢),Y (1), 6(t)) (6.8)
and cost
J(u) = SuLg{@(p(T)); p(0) = p} (6.9)
where

d(p) = (py, @) } (6.10)

pp = =g —2)"Y Nz —2)+ ¢+ L F(z)

Similar reductions can be obtained, under similar assumptions, for the associated partially ob-
served, risk sensitive stochastic control problem. These results can be obtained, understood
and generalized by studying the group invariance of the information state PDE, and in partic-
ular using the methods of sections 3 and 4. Specifically the structural assumptions (6.3) are
completely analogous to the Benes structural assumptions. Requiring problem (6.1)-(6.2) to be
the nonlinear equivalent to a linear quadratic problem (from the perspective of equivalence of
the corresponding information state PDEs, as in sections 3, 4,) implies the structural assump-
tions (6.3). Thus it is important to study the symmetry groups (invariance properties) of the
information state PDE for the linear control problem.

We shall omit the control parameter u from the notation, since it plays no part in the
following calculations; in other words, instead of writing A(u(t)), we abbreviate to A(t). The
information state p(t,x) = p(t,z1,- - -, zy) for the linear control problem satisfies the scalar PDE

Vo224 2TGz/2+h-z+1=0, (6.11)
where G = G(t) is a symmetric matrix, A = A(t) is a square matrix, b = b(¢t) and h = h(t)

are n-vectors, and [ = [(t) is a scalar function. James and Yuliar [21] point out that there is a
solution of the form

pt,z) = —(z —r(®)TW(t)(z — (1)) /2 + $(t), (6.12)
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with W symmetric. Taking the gradient of (6.12), substituting in (6.11) and equating coefficients
of terms quadratic, linear, and constant in  we obtain the ODEs

W=-WA-AT"W-W?+G,
=W Y(~Wr+Wb— ATWr - W?r —h) ,
b= rT(Wr+Wr/2—Wb+W?r/2)—1. (6.13)
The last two equations can be rewritten as

= Ar+b—W Gr+h), (6.14)
d=rTWA-—A"W —G)r/2—rTh—1. (6.15)
We now turn to the Lie transformation theory for the Information state PDE. We consider the

invariance of (6.11) under an infinitesimal transformation given by a vector field of the form
(note that we are not including a 9/0t term)

X = g 3 (t’x)a_x,- +77(t7$7p)a_p . (6.16)

According to Bluman and Kumei [1], Theorem 4.1.1-1, the criterion for invariance is that

XWF(t,z,p,, Vp) = 0 whenever
F(t,z,p:, Vp) =0, (6.17)

where X (1) is the first extended infinitesimal generator, namely

"0 0
(1) — i 9 o (1 9 (1)
X _ggaxi J”’a + 1y +; 8pz
where
0
pi = 9z (6.18)
0 (t,2,p, 0, VD) = Din— Y (Di€)pj (6.19)
j=1
0t 20,0, VD) = Din— Y (Di€%)p;,
j=1
i=1,...,7n, (6.20)
D — 2 + 2 8 + . 3
t=t TP ey T B T P gy
i=1,...n. (6.21)

Evaluating the entries of (6.16) term by term,

ZgZ am = (AT(Vp)+ Gz +h)-€,
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oF

= =0
nap 7

7o e =0t +pimp — (Vp-&) ,

> a2y (Dm— )3 (Difj)pj>

7j=1
(Az + b — Vp)'
= (Az+b—Vp)- (Vn+n,Vp — (Vp-V)E) .

Adding up all these terms shows that (6.16) gives

(AT(Vp) + Gz +h) - &+ +pemp — (V- &)
= —(Az +b—Vp) - (Vn+n,Vp— (Vp-V)E) .
Grouping terms, we obtain:

Theorem 6.1 (Fundamental Transformation Relation): The vector fields £ and 7 of
the infinitesimal generator of a symmetry group of (6.11) must satisfy:

e+ (Az +b—Vp) - Vn+ (pr + (Az +b— Vp) - Vp)np
=Vp-&— (ATVp+Gr +h)- £+
(Az +b—Vp) - (Vp-V)¢, (6.22)
where p is given by (6.12).

Note that only linear differential operators acting on £ and 7 are involved, and Vp and p;
are quadratic in z. Hence for any choice of £ we may solve for n by the method of characteristics.
That is given &, solving for n involves only the solution of an ODE.

We describe next how to use the fundamental transformation relation. Let

ple;t, ,p)) = (4,7(e, 8, ), ple, 1, 2, p))

denote the flow of the vector field
"o 0
X = Z E'(tz) m— +n 4 (6.23)

where Z(e,t,z) are the transformed state space coordinates and p(e,t,z,p) = p(t, %) is the
information state for the transformed problem. By definition of ¢,

L (©) = Xe(t,.5), 9(0; (t,5,9)) = (t.5,9) (6:29)

This breaks down into the system of ODEs

0z

% = E(ta i')a j(O’tPT) =, (625)
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together with the scalar ODE
p
Oe

Therefore we have established the following:

= n(t,Z,p), p(0,t,z,p) =p . (6.26)

Theorem 6.2: Assume p satisfies (6.11). Suppose ¢ — z (e,t,x) is a one-parameter family of
transformations of the space variable x satisfying the system of ODEs (6.25), for some choice of
& =¢(t,x), and that n = n(t,z,p) is chosen to satisfy the Fundamental Transformation Relation
(6.22) in terms of &. Then the solution € — p(e,t,z,p) to the ODE (6.26), if unique, is a one-
parameter family of transformations of the information state variable p, so that (6.11) holds
with (z,p) replaced by (z,p).

7 A Case Explicitly Computable

The drawback of Theorem 6.2 is that it is too abstract to be of immediate practical use. Therefore
we consider a more specialized situation admitting explicit computations. We shall constrain
the choice of 77 so as to satisfy

n=—zTWE. (7.1)

This implies
m = _:L'TWS - xTWé-t’ Np = 07
Vn=-Wz-V)E-WE. (7.2)
Now (6.24)implies

—zTWe —2TWe — (Az+b— Vp) - (Wz - V)E + WE)
:Vp-ft—(ATVp+Gx+h)-f
+(Az+b—Vp)- (Vp-V)E.

Rearranging terms gives

(ATVp+ Gz +h— Wz —W(Az +b—Vp)) - £
—(Vp+Wz)-&

=(Az+b—Vp)-((Vp+Wz)- V)¢,

(~ATW(z — 1)+ Gz +h— Wz —
WAz +b+W(x —r1)))-&— (Wr) - &

=(Az+b+W(z—1))-(Wr) - V)E.
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The coefficient of z in the first bracket is —ATW + G — W — W)(A+ W) = 0, by (6.13). Define
the following vector functions in terms of quantities determined above:

Bty =Wr,T(t) =A+W,y(t) =b—0, (7.3)

at) = AT +WYWr+h—-Wb= -3, , (7.4)
where the last identity follows from (6.13) and (6.14)-(6.15), since

Wi+ Wr = WAr + Wb— Gr — h +
(-WA—ATW — W2 +G)r
= —(ATW)r —W?r —h+ Wb

Now the linear PDE which £(t, z) must satisfy is:
Pr-&=B-&—Tz+7)-(B-V)E=0. (7.5)

This can be put in an even more concise form:

Theorem 7.1: If we assume 5 = —z? W¢, then ((t,z) = B-& = rTWE = Vp- & —n must
satisfy the linear first order PDE

G+ ((Tz+7)-V)(=0. (7.6)

Suppose ( is a polynomial of order N in z, i.e.

N
()= Y 2R @) (a®F) (7.7)
k=0

where 2% = 2 ® - -- ® z (k factors), and £¥)(¢) is a symmetric (0, k)-tensor. Then

N
Vet z) = Y kEW()(- @ 2@k D)
k=1

Now (7.6) becomes

N N
3 e+ S kEW (T + ) @ 22kD) =0
0 1

Equating coefficients for each power of = forces the {E£(F)(#)} to satisfy the following system of
ODEs:

=M 4 NEMT(O)®)=0; (7.8)

=P L) @) = —(k+ 1)EFD (v @)
fork=1,2,..., N—1; (7.9)
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20 == (y) . (7.10)

have been chosen.

Notice the structure of this system of ODEs. Suppose Z(9)(0), - N)(0)
(7.9); solve (7.9) for

First we solve (7.8) for Z(N)(¢); insert this solution in the rlght s1de of
2(V-1D(¢); and so on, down to Z() (). Thus we have established.

Theorem 7.2: In the case when n = —z” W¢& = Vp - € — (, let us assume that

N

(o) =r"we= Y BB () (a®F) . (7.11)

k=0

Then ((t,z) is completely determined by the initial conditions Z(®(0),---,E")(0) and ODEs
(7.8)-(7.10). In particular, when n = 1 and Wr is never zero, (¢, ) is uniquely determined by
£(0,x), assuming &(, x) is a polynomial of arbitrary degree in z with coefficients depending on
t.

Finally we describe the procedure for computation of the transformed information state.
The starting-point is the solution p given by (6.12) to the linear control problem. Pick an initial
condition E©(0),---2M)(0), and solve for ((t,z) using (7.8)-(7.10) by solving for each of the
{2®)(£)}. Now pick

) = Z oMt (7.12)

so that T W¢ = ¢, in other words so that

oW () =w(t)r(t)-2W () - (7.13)

[I]

Now we repeat the steps described at the end of section 6, (6.23)-(6.26), under the assumption

n=—2IW§¢=Vp-&— (. As before, we solve the system of ODEs
0z N
E :f(tax)a IL'(O,t,.’E) =; (714)

(derived from (6.25)) to determine Z(e,t,z,p). Thus £(¢,Z) and ((¢,Z) are now explicitly com-
putable. Finally we determine p(e, t, z,p) by solving the following first order PDE (derived from
(6.25)-(6.26)) by the method of characteristics (see Abraham et al. [18], p. 287):

op

which can be written out in full as
o
o =Y (Vi 0W(r) ~ 50 @) E) . (7.16)

k=0

Additional examples-cases with explicit computations can be found in [29].
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