
1

The Window Distribution of Multiple TCPs with
Random Loss Queues

Archan Misra Teunis Ott John Baras
archan@research.telcordia.com tjo@research.telcordia.com baras@isr.umd.edu

Abstract—Two approximate techniques for analyzing the window size
distribution of TCP flows sharing a RED-like bottleneck queue are pre-
sented. Both methods presented first use a fixed point algorithm to ob-
tain the mean window sizes of the flows, and the mean queue length in the
bottleneck buffer. The simpler of the two methods then uses the ‘square
root formula’ for TCP; the other method is more complicated. More of-
ten than not, the simpler method is slightly more accurate; this is proba-
bly due to the fact that window sizes of the different flows are negatively
correlated.
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I. INTRODUCTION

In this paper, we consider the case where multiple persis-
tent TCP flows, which are each performing idealized conges-
tion avoidance, interact with a buffer that implements ran-
domized packet drops as a queue management algorithm. Our
objective is to determine the stationary congestion window
distribution of each of the TCP flows when the router port
implements algorithms like RED (Random Early Detection)
or ERD (Early Random Drop). We first present an analyt-
ical technique, resulting in a fixed-point iteration scheme, to
obtain the ‘mean’ values of the queue occupancy and the indi-
vidual TCP windows. Armed with this estimate of the means,
we then evaluate two techniques to derive approximations to
the window distribution of each individual TCP connection.
In the simpler of the two approaches, we assume that the win-
dow evolution of a specific TCP flow is governed by a con-
stant loss probability; this probability is equal to the packet
dropping probability of the randomized dropping algorithm
when the queue occupancy remains at its ’mean’ value. The
individual distributions, in this case, is computed using the
analysis presented in [2]. In the other approach, we relate the
window size of the flow to the queue occupancy through a
simple linear relationship and hence, define a variable packet
loss probability that is a function of the connection’s window
size. The individual distributions, in this case, are derived
using a numerical technique presented in [3], which consid-
ers the case of a single TCP flow subject to variable state-
dependent packet loss.

We have conducted a wide range of simulation experiments
to verify the applicability of our approaches. One important
phenomenon we have observed is that, for queues performing
randomized drop without any memory, the window sizes of
connections are not truly independent (or uncorrelated), but
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are, in fact, negatively correlated. As a consequence of this
behavior, the queue size (and consequently the loss probabil-
ity) tends to stay relatively constant over a much wider range
of window size (of a particular connection) than would be
expected under a truly independent model. We have therefore
observed the simpler ‘square-root’-based approach (which as-
sumes a constant loss probability) to usually provide a rela-
tively better prediction of simulated distributions than the rel-
atively more complex ‘variable probability’ approach. Both
approaches, however, provide reasonably accurate estimates
of the simulated values, over the entire range of our simula-
tions; the estimates are more accurate at lower loss rates. In
a later paper, we propose to examine in greater detail how
the presence of memory in the random dropping function (as,
for example, in RED where an averaged queue occupancy
is used) or modifications that change the pattern of packet
drops (for example, making the inter-drop gap uniformly dis-
tributed, as in RED) affect the negative correlation and the
accuracy of our estimates.

A TCP flow implementing idealized congestion avoidance
[1] will increment its window by 1 segment every round trip
time and will instantaneously halve it on detecting conges-
tion (via packet losses). Such a model of TCP window evo-
lution ignores transient phenomena like fast recovery [9], fast
retransmit and slow start. Mathematically speaking, the win-
dow evolution of the ith TCP connection is approximated by
a stochastic process (Wn

i )
1
n=1, where Wn

i refers to the con-
gestion window of connection i just after the receipt of the
nth good acknowledgement packet (one that advances the left
marker of TCP’s sliding window). By disregarding timeouts
and fast recovery, we obtain a discrete-time Markovian pro-
cess such that

PfWn+1

i = w +
1

w
jWn

i = wg = 1� pi(w) (1.1)

PfWn+1

i =
w

2
jWn

i = wg = pi(w): (1.2)

where pi(w) is the packet loss probability when the conges-
tion window of connection i is w 1.

[2] calculates the stationary window distribution for a sin-
gle TCP flow subject to constant packet drop probability. [3]

1While cwnd in actual TCP implementations is expressed in bytes and is
consequently integer-valued, we assume that, in equations (1.1) and (1.2),W
is real-valued and is expressed in MSSs. The congestion window in the rest
of this paper is assumed to be real-valued. We will explicitly mention the
situations where the congestion window is expressed in bytes.
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extends the technique to compute the congestion window dis-
tribution for a single TCP flow when the packet loss proba-
bility is variable but depends only on the flow’s instantaneous
window size i.e., the model of equations (1.1) and (1.2); this
analysis was used to estimate the window distributionof a sin-
gle TCP flow interacting with a router port performing RED
[8] or ERD [12]. In this paper, when multiple TCP flows in-
teract with a single queue, the exact loss probability for a spe-
cific connection depends not just on the window size of that
connection, but also on the instantaneous window sizes of all
the other connections. Since an exact description of this pro-
cess involves a multi-dimensional Markovian model which
is analytically intractable 2, we approximate the problem by
first deriving the mean window sizes (of each TCP connec-
tion) and queue occupancy (for the random drop queue) using
a zero-drift condition derived from equations (1.1) and (1.2).
In the constant probability approach (which we shall call the
‘square-root technique’), we assume that the loss probability
for any packet is governed by a constant value determined
by the sum of the mean window sizes, and hence, obtain the
distribution using [2]. In the variable probability approach
(which we also call the ‘perturbation approach’), we assume
that the sum of the instantaneous window sizes of all the other
flows can be represented (with only moderate error) by the
sum of their means. This assumption reduces the queue oc-
cupancy (and hence, the loss probability function) to a simple
function of the flow’s window size, and can be analyzed as in
[3].

A. Related Work and Model Applicability

The behavior of the TCP congestion window in the conges-
tion avoidance regime has been extensively analyzed under
the assumption that the loss probability and round-trip times
are constant. Derivations of the ‘square-root formula’, which
states that the mean window of a TCP connection is inversely
proportional to the square-root of the loss probability, are pro-
vided in varying degrees of rigorousness in [6], [11] and [7].
A more elaborate analysis, which derives the detailed distri-
bution under the assumption of constant loss, is presented in
[2]. More elaborate models for TCP that incorporate the ef-
fect of timeouts and fast recovery transients are presented in
[5] and [4]; these essentially show that timeouts and fast re-
covery transients become important for current TCP versions
when the loss probability is relatively large and cause the
throughput to become proportional to 1

p
in this regime. [3]

derives the stationary distribution when the loss probability is
not constant but a function of the window size; the technique
is then applied to analyze the window distribution of a single
TCP flow interacting with a RED (Random Early Detection)
or ERD (Early Random Drop) queue.

2An accurate model of the window evolution process for N TCP connec-
tions would require an N � dimensional Markov model, where the state
space would be a N-dimensional vector consisting of the window sizes of
each individual connection. The transition probabilities between states would
depend on the state of the entire system (the instantaneous windows of each
connection), making the definition of useful scalings impossible.

As stated earlier, our model does not account for TCP tran-
sients like slow start, timeouts and fast recovery. We believe
that the disproportionate impact of these on current versions
of TCP (like Tahoe and Reno) at moderately high loss prob-
abilities is due largely to the coarse granularity of currently
implemented TCP timers and the the fact that loss recovery
mechanisms (like fast retransmits and timeouts) are combined
with congestion control. Accordingly, this analysis is accu-
rate for current TCP versions when the loss probabilities are
small and the delay-bandwidth product large enough (� 10

segments and above) to ensure that timeouts are relatively
rare events. As mechanisms to better separate loss recovery
from congestion avoidance (such as TCP SACK) or decrease
the frequency of timeouts (such as the improvements in TCP
New Reno) become commonplace and as finer-grained timers
are adopted, our analysis should hold over larger variations in
performance parameters.

II. MATHEMATICAL MODEL AND PROBLEM APPROACH

The TCP connections are persistent (sending infinite-sized
data files), with the congestion window acting as the only con-
straint on the injection of new packets by the sender. We
assume that the connection never times out, that the data is
always sent in equal-sized segments (although segment sizes
could vary between connections) and that acknowledgements
are never lost. For the purpose of presentation, we assume
that the receiver acknowledges every received packet sepa-
rately (delayed acknowledgements are not enabled); the cor-
rections for delayed acknowledgement are listed in Appendix
C. As described in [3], the stationary distribution of each con-
nection is computed in what we call ack time3, which is a pos-
itive integer valued variable that increments by 1 only when a
good acknowledgement arrives at the source.

Let N be the number of concurrent TCP connections under
consideration. The ith flow of the set, denoted by TCPi, has
a maximum segment size (MSS) of Mi bytes and a nominal
round trip time (excluding the queuing delay at the buffer) of
RTTi seconds. Let Wi denote the window size of the ith con-
nection; as different TCP flows have different packet sizes,
this is measured in bytes unless explicitly stated otherwise.
Note that while the process model (equations (1.1) and (1.2))
represents the window state in segments, the analysis here
represents the window sizes in bytes; once the stationary dis-
tribution (in segments) has been determined, expressing the
distribution in bytes is straight-forward.

The queue is assumed to perform random packet drops i.e.,
the loss probability of a packet is conditionally independent
of past and future losses. The loss probability is modeled
to be dependent on the instantaneous queue occupancy. We
let the service rate of the queue be C bytes/sec. In general,
let Q be the buffer occupancy of the random drop queue and
Qi (in bytes) be the amount of traffic from connection i that

3The ‘ack time’ is different from ‘clock time’ in that the ack time advances
only when a good acknowledgement arrives at the sender. This will be lin-
early related to the progress of clock time only if the window sizes and the
round trip times are both constant.
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is buffered in the queue (so that
PN

i=1
Qi = Q). The drop

function is denoted by p(Q). For the experimental results in
this paper, we used the linear drop model, so that p(Q) has
the following behavior:

p(Q) = 0 8 Q < minth

= pmax 8 Q > maxth

= pmax � Q�maxth

maxth �minth
8minth � Q � maxth

where, as per standard notation, maxth and minth are the
maximum and minimum drop thresholds (in bytes) and pmax
is the maximum packet drop probability. Other forms of the
drop function can also be used in the subsequent analysis; our
numerical technique for determining the ‘mean’ only requires
that p(Q) be non-decreasing in Q, which is true for all sensi-
ble drop functions.

Although our analysis is primarily focussed on algorithms
that do not maintain flow-specific state (and do not distinguish
between flows), a slight generalization, which allows the ac-
tual packet drop probability to be flow-dependent, is possi-
ble. To that extent, we suppose that the loss probability for
a packet of flow i, which arrives when the queue occupancy
is Q, is given by the function pi(Q). pi(Q) is related to our
afore-mentioned drop function p(Q) by the expression:

pi(Q) = c2ip(Q) (2.1)

where the ci are arbitrary non-zero constants. Our model thus
permits the loss function for different connections to be scalar
multiples of one another; the scalar values are represented as
c2i instead of ci for future notational convenience.

This scalar model permits us, for example, to capture the
byte-mode of operation of RED where the probability of a
packet drop is proportional to the size of the packet (by set-
ting c2i = Mi)4. Also, for convenience, we shall use �pi(W )

to represent the (as yet unknown) relationship between the
packet drop probability of TCPi and its window size W . The
reader may note that packet drops in RED, unlike our refer-
ence model, are not truly conditionally independent; a simple
correction for our model in such a situation is discussed in
Appendix B.

We first use a drift-based argument to determine the cen-
ter of the queue occupancy, denoted by Q�, and the cen-
ters of the cwnd-s of the individual connections, denoted by
W �
i ; i = f1; : : : ; Ng. After obtaining the center of the queue

occupancy, we focus on the distribution of the individual con-
nections and evaluate the relative merits of two different tech-
niques. Under both approaches, when considering the dis-
tribution of the ith connection, we assume that the window

4Our ‘scalar-multiple’ model of flow-dependentdrop probabilities can cap-
ture a much richer set of random drop settings than apparent at first glance.
For example, it can represent a setting of Weighted RED where the differ-
ent classes have the same minth and maxth thresholds but only different
maxps. We do not explore the validation of such settings further in this
paper.

sizes of all the other connections are constant and equal to
their ‘mean’ value. For the perturbation approach, we then
relate the queue occupancy to the instantaneous window Wi

and thus define a packet loss probability that is a function of
Wi alone. The resulting variable-loss model is then solved
using the analysis in [3]. For the constant-loss/square-root
approach, we assume that all packets encounter a packet loss
probability given by pi(Q

�). The window distribution for
a process subject to this constant packet loss probability is
derived using the analysis in [2]. Since the two approaches
employed in this paper require the use of mathematical tech-
niques and expressions presented in ([2]) and ([3]), we briefly
discuss the principal contributions of each to make this article
largely self-contained. For details, refer to the papers them-
selves.

The first paper [2] considers the stationary window dis-
tribution of a single persistent TCP flow (W n)1n=1

(imple-
menting idealized congestion avoidance) when each TCP seg-
ment is subject to a constant loss probability p. The deriva-
tion consists of first defining an associated process W (t),
such that, W (t) =

p
pWb n

p
c (uniform scaling in both the

time and space axes). As p # 0, the process W (t) be-
comes a continuous-time, fluid-flow process with the follow-
ing description: There is a Poisson process with intensity
1, whose realizations represent the packet loss events. In
between the points of the Poisson process,W evolves ac-
cording to the differential equation

dW

dt
=

1

W
: (2.2)

At a point � of the Poisson process, the windowW of the
fluid process behaves as

W (�+) =
1

2
W (��) (2.3)

The paper then defines an associated process Z(t), given by

Z(t) =
W (t)2

2
. It is then shown that the process Z(t) also

can be defined in terms of an associated constant-rate Poisson
process: in between the points of this Poisson process, Z(t)
has a constant rate of evolution ( dZ

dt
= 1), and at a point of

the Poisson process, Z(t+) = 1

4
Z(t�). The random variable

corresponding to the stationary distribution of Z(t) can then
be shown to have the form Z =

P1
k=0

(1
4
)kEk where (Ek)10

are iid and are exponentially distributed with mean 1. Using
this analysis and the relation between W (t) and Z(t), we can
then show that the stationary distribution of W (t) is given by

PfW > wg =
1X
k=0

Rk(
1

4
)e�

4kw2

2 (2.4)

where Rk(x) =
(�1)

kx
1
2
k(k+1)

L(x)(1�x)(1�x2):::(1�ck) and L(x) =Q1
k=1

(1 � xk). The distribution of the TCP process is then
obtained by correcting for the space rescaling (using the rela-
tion FTCP (x) = FW (

p
px)). The above infinite series con-

verge very rapidly and enable us to very efficiently determine
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the distribution for the process W . The constant loss-based
approach presented in this paper assumes that each packet of
every TCP flow observes a constant packet drop probability
pi(Q

�). Under this assumption, once the mean occupancy,
Q�, in the presence of multiple TCP flows is determined, we
can use the above expressions to compute the distribution of
each TCP flow separately.

The second paper ([3]) computes the window distribution
of a single persistent TCP flow when the packet drop proba-
bility is not constant, but is rather a function of the instanta-
neous window size. In this case, the TCP process (Wn)1n=1

is
subject to packet losses that can be represented as p(W ) (as
opposed to a constant value p). As with [2], a re-scaled pro-
cess W (t) is derived by scaling both the time and space axes
of the process Wn. If we proceed as in the constant loss case
and perform a uniform scaling of the time axis, we will see
that the rate of the associated Poisson process, in this case,
will not be constant but will become state-dependent, making
the analysis much more difficult. Accordingly, we had to re-
sort to a time-dependent rescaling of the time axis, such that
the associated Poisson process would again have a constant
rate. The time axis t (which we call subjective time in this
case) is obtained through an invertible (but state-dependent)
mapping,

�t = p(Wn)�n (2.5)

such that subjective time increases at a state-dependent rate:
an increase of 1 in the ack time index (�n = 1) corre-
sponds to an increase in p(Wn) in the subjective time in-
dex. The space scaling is as before and is given by W (t) =p
pmaxW

n. We can then prove, as in [3], that as pmax # 0,
the limiting process W (t) becomes one that can be charac-
terized by a differential equation-based evolution (in W ) be-
tween the instants of realization of a Poisson process of inten-
sity 1. Unlike the case of a constant loss model, the differen-
tial equation has a slightly more complex denominator,

dW

dt
=

pmax

p( Wp
pmax

)W
: (2.6)

As before, at the instants of events of the Poisson process,
W (t+) =

W (t�)

2
. Due to this relatively complex nature, we

are unable to derive an analytical expression for the stationary
distribution of this limiting continuous-time process W (t),
and hence, need to solve it using numerical techniques. As a
first step, we show, by relating the possible ways in which the
process state can evolve over infinitesimal time intervals, that
the stationary cumulative distribution (in subjective time), Fs,
satisfies the differential equation:

dFs(x)

dx
= q(x)fFs(2x)� Fs(x)g (2.7)

where q(x) =
p( xp

pmax
)x

pmax
. We first transform equation (2.7)

into an equivalent equation for the function H(x), defined by

H(x) = (1� Fs(x))e
�
R
x

0
q(x)dx. The resulting equation for

H(x) is then numerically solved by an iterative technique that
we prove to be stable and rapidly convergent. Once H(x)

and, subsequently, Fs(x) have been computed, the distribu-
tion for (W n) is obtained by essentially reversing the space
and time scalings employed. Of course, in this case, we have
to be careful to account for the state-dependent nature of the
time-scaling used. This technique permits us to evaluate the
window distribution of any TCP process whose packet loss
rate can be shown to be a function only of its instantaneous
window size. We shall later see how our perturbation-based
approach results in precisely such a loss model: by essen-
tially treating the window sizes of the other connections as
constants, we can relate the buffer occupancy (and hence the
loss probability) directly to the window size of a specified
individual flow. The scaling techniques and numerical proce-
dure outlined here can then be applied to obtain the window
distribution for each connection individually.

III. ESTIMATING THE MEAN QUEUE OCCUPANCY

To estimate the center of the queue occupancy, we use a
set of fixed point mappings. The basic idea is to find val-
ues for the average window sizes, such that the average queue
size given by those set of values is consistent with the av-
erage loss probability that is implied by the window sizes.
The derivation of the ‘square-root’ formula via the drift-based
technique is borrowed from [2]. As noted earlier, let Q� be
this mean or center value of the queue occupancy and let
W �
i ; i� f1; 2; : : :; Ng be the center of the ith TCP flow.

A. Formulating the Fixed Point Equations

Define the drift of the congestion window of a TCP flow
by the expected change, �W , in its window size. Since, for
a window size of w, the window size (in packets) increases
by 1

w
with probability 1 � �p(w) and decreases by w

2
with

probability �p(w), we have:

�W = (1� �p(w))
1

w
� �p(w)

w

2
: (3.1)

From the above equation, the center or ‘0-drift’ value of W ,
called W �, is seen to be

W � �
s
2

1

�p(W �)
(3.2)

where the approximation is quite accurate as �p is usually quite
small 5 (for current TCP versions, if the drop probability ex-
ceeds 0.05, timeouts and slow start phenomena begin to dom-
inate TCP behavior.)

For the case of multiple TCPs, the zero-drift analysis gives
the window size (in packets) for flow i, as

W 0
i (packets) =

s
2

pi(Q�)
(3.3)

5A more accurate analysis [2] reveals that the mean window occupancy, in
ack time, is given by W � � 1:5269p

p
. It is this value that we used in all our

experimental results ; for notational ease, however, we shall continue using
the
p
2 approximation in our exposition.
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By incorporating expression (2.1) in the above equation and
noting that each packet is of size Mi bytes, we get the mean
window size (in bytes) as

W �
i =

Mi

ci

s
2

p(Q�)
(3.4)

Now, let Ci be the bandwidth obtained by TCP i. Assum-
ing that there is no significant buffer underflow and that the
link is fully utilized, we get the relation

PN

i=1
Ci = C. Ci

can also be computed by a different method: by noting that a
TCP connection sends one window worth of data in one effec-
tive round trip time. Since a queue of size Q will contribute a
buffering delay of Q

C
, the effective round trip time of connec-

tion i is RTTi +
Q

C
; whence, we can related Ci to Wi by the

expression

Ci =
Wi

RTTi +
Q

C

(3.5)

On summing the Cis from the above equation and equating
them to C, we get

C = W

NX
i=1

Mi

ci

RTTi +
Q

C

(3.6)

or, upon simplification,

W =
1PN

i=1

M
i

c
i

Q+C:RTTi

(3.7)

where W =
q

2

p(Q)
. For notational convenience, let the RHS

of equation (3.7) be denoted by the function g(Q) so that

g(Q) = (
PN

i=1

M
i

c
i

Q+C:RTTi
)�1.

The fixed point solutions for the ‘average’ TCP window
sizes and the queue occupancy is then given by the set of
values that provide a solution to the following simultaneous
equations:

W =

s
2

p(Q)
(3.8)

W = (

NX
i=1

Mi

ci

Q+ C:RTTi
)�1 = g(Q) (3.9)

The individual ‘average’ TCP windows are then computed
from W � by the relationship

W �
i =

Mi

ci
W � (3.10)

B. Existence and Solution of Fixed Point

We now prove the existence of a unique solution to the
above simultaneous equations and also provide a numerical
technique for its rapid computation.

The existence of a unique solution can be demonstrated
graphically (as in figure 1) by plotting each equation as a line

on the (Q;W ) axes. Since p(Q) is assumed non-decreasing
in Q, we have W in equation (3.8) to be a non-increasing
function of Q, while in equation (3.9), g(Q) can be seen to
an increasing function of Q. The two plots will therefore in-
tersect at a single point, which is our ‘zero-drift’ solution for
W � and Q�.

min
th max

th

Q
*

*

Q

W

W g(Q): concave function

p(Q)

2

Figure 1: Typical Relationship between W and Q
for Random Drop Queues

In Appendix A, we prove that the functiong(Q) is concave;
accordingly we can see that the function f(Q), defined by the
difference between the RHS of equations (3.8) and (3.9), is
convex in Q.

f(Q) =

s
2

p(Q)
� 1PN

i=1

Mi=ci
Q+C:RTTi

(3.11)

Hence, we use the Newton gradient technique, which is guar-
anteed to converge and provide a solution to the equation
f(Q) = 0, to solve for the fixed point. We start with an
initial estimate of Q0 = minth+ � (an initial value to the left
of Q�) and proceed with repeated iteration. In this particular
setting, the derivative f 0(Qj) at the jth iteration is given by

p0(Qj)p
2p(Qj)

3
2

�
PN

i=1

M
i

c
i

(Qj+C:RTTi)2

(
PN

i=1

M
i

c
i

Qj+C:RTTi
)2

(3.12)

C. Insights from Above Analysis

The drift analysis technique provides some insights for pre-
dicting or controlling the stationary behavior of persistent
TCP connections and for understanding the accuracy of our
approximation technique. For example, our analysis shows
that:

� TCP connections with the same round trip time but dif-
ferent packet sizes will see the same ‘average’ window
size (in bytes) if ci = �Mi 8i, where � is an arbi-
trary constant. In other words, to ensure fair sharing
of throughput among TCP connections with different
packet sizes, the packet dropping probability should be
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proportional to the square of the packet size. Contrast
this with current byte-mode drop schemes where the
packet drop probability is normally proportional to the
packet size.

� TCP connections which are identical, except for different
round trip times, will observe relative throughput that
is inversely proportional to the round trip times. This
unfairness towards TCP connections with larger round-
trip times is well known.

� Since W � (the ‘fixed point’ that satisfies both equations
(3.8) and (3.9)) is identical for all flows, it should be
clear from equation (3.10) that the mean value of the
window size (in packets) for all TCP flows, which have
the same drop function (same pis), will be the same, ir-
respective of their round-trip times and segment sizes.
The point is more subtle than apparent at first glance: the
means are identical only when expressed in MSSs and
when the distribution is taken with respect to ack time.
When sampled in clock time, the distribution of the win-
dow size and even the mean value of each TCP connec-
tion will indeed depend on its round-trip delay (which
influences the rate of progress of the connection). We
can, however, easily compute the distribution in clock
time from that in ack time, if the round-trip delay for
a specific connection is non-varying (through the rela-
tion dFack(x) =

xdFclock(x)R1
0

ydFclocky
). As the number of flows

increases, we shall later see that the buffer occupancy
(and hence, the queuing delay) shows relatively smaller
variation; estimates of clock-time distributions from our
ack-time calculations can then be expected to be more
accurate.

� Since the mean analysis technique is based upon an ideal
model where each TCP window stays around its ‘av-
erage’ value and the loss rate is constant, the accuracy
of our predictions should be higher when the buffer
occupancy (and hence the loss probability) does not
change appreciably. We shall later see that the TCP win-
dow sizes, when interacting with an ERD-based queue,
are not independent but reveal negative correlation; ac-
cordingly, the queue occupancy shows less variance
fmathematically speaking, the coefficient of variation,
Std:Dev(Q)

Mean(Q)
, decreases gwith an increase inN , the num-

ber of connections. Accordingly, the queue occupancy
shows less variation with increasing N , making the esti-
mates via the mean value approximation technique pro-
gressively more accurate. This explanation and predic-
tion is corroborated by results presented later, in figures
4 and 5. Furthermore, we also note in passing, that for
our model of a TCP flow subject to packet drops with a
constant drop probability, Std:Dev(W ) = 0:38E[W ],
i.e., the coefficient of variation is around :4.

D. Simulation Results for The Mean Window Sizes

A wide variety of simulation experiments, with various
combinations of segment sizes and round trip times, were per-

formed to verify the accuracy of our fixed point-based predic-
tion technique. All simulations are carried out on the ns [10]
simulator with sources implementing the New Reno version
of TCP. The queue service rate equals 1:5 Mbps throughout
the results in this paper. While the numerical analysis (in-
cluding the estimation of the distributions of the individual
congestion windows) takes less than 1-2 mins on a conven-
tional workstation, the simulations would require 20 mins
(and higher, depending on the number of connections) be-
fore results with an acceptable degree of statistical confidence
could be obtained. To study the accuracy of our drift analy-
sis, we simulated both RED (Random Early Detection) and
ERD (Early Random Drop) queues. The differences between
these algorithms and the necessary corrections to our model
(for RED) are presented in Appendix B.
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Figure 2: Mean Behavior with 2 Identical Connections

A set of illustrative examples are presented in figures 2 and
3. In these simulations, we had two concurrent TCP connec-
tions, with 512 byte packets, interacting with a single bot-
tleneck queue. The queue parameters were kept as follows:
minth = 10240 bytes, maxth = 102400 bytes and the buffer
size was kept at 256000 bytes. pmax was varied between the
values outlined in the plots. Figure 2 considers two TCP con-
nections with identical parameters while in Figure 3, we have
two connections with the nominal RTT of the second con-
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nection double that of the first connection’s RTT (called the
BaseRTT in the figure). By varying pmax, we change the
slope of the drop function and hence, the ‘zero-drift’ point of
the queue occupancy. In general, the accuracy of our predic-
tions would slightly degrade for larger RTT values, although
in all cases the agreement was within 10 � 15% of the pre-
dicted values. This is expected because a larger RTT essen-
tially increases the chance of buffer underflow (which invali-
dates our model) by increasing the feedback time of the TCP
control loop. Since our model does not account for phenom-
ena like fast recovery (during which the queue size reduces),
we tend to predict larger queue occupancies than those ob-
tained via simulation. Also, as expected, the quality of the
prediction increases with the number of flows N (as long as
p(Q�) did not become large enough to cause timeouts).
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Figure 3: Mean Behavior with 2 Dissimilar Connections

Our simulations hence support our analysis, which states
that the means of the TCP windows (in segments) should
be identical (in ack time), even though the round-trip times
of the various flows and the segment sizes are different. It
should also be noted that the negative correlation among win-
dow sizes (discussed a little later) helps to reduce the varia-
tion in packet loss probability and improves the accuracy of
our technique.

IV. COMPUTATION AND ACCURACY OF INDIVIDUAL

DISTRIBUTIONS

A. Computation of Individual Distributions

Having seen how to compute the ‘mean’ of the individual
distributions and the queue occupancy, we now proceed to
determine the detailed distribution of the individual connec-
tions. Since the approach is identical for all the connections,
we consider, in general, the ith connection with a calculated
mean of W�

i , a segment size of Mi, a drop function pi(Q); as
before, the computed mean of the queue occupancy is Q�.

We use our independence assumption to postulate that the
other connections always have their window size equal to
their computed means 6. For the square-root approximation,
we assume that the loss probability of a packet for the flow
is constant and does not change with the window size. This
constant packet loss probability is given by the value of p(Q)
when Q = Q�. The window distribution (in ack time) is then
computed using the rescalings and the analytical formula pre-
sented earlier and in [2].

For the perturbation-based analysis, if Wi is the window
size (in packets) of the connection under consideration, the
buffer occupancy, Q, corresponding to this window size is
given (in bytes) by the relation

Q = [Q� +
(Wi �Mi �W �

i ) �Q�

Q� +C �RTTi ]+ (4.1)

where the [ ]+ reflects the fact that the queue occupancy can-
not be negative. Accordingly, we now have a state-dependent
loss probability for the TCP connection where the packet loss
probability is a function of the window size W and is given
by

�pi(W ) = p(Q) = p([Q�+
(Wi �Mi �W �

i ) �Q�

Q� +C �RTTi ]+) (4.2)

We can then use the technique outlined in this paper earlier
(and detailed in [3]) to determine the window distribution.

B. Simulation Results for ‘Distribution’ of TCP Windows

We now present the result of comparing the distributions
predicted by our analytical techniques with that obtained via
simulation. As before, the simulations were carried out on the
ns simulator with the TCP New Reno model. Several sets of
experiments were carried out with the number of connections

6A few words are in order about our assumption that the queue occupancy
of the other connections can be represented by their mean. In general, the
loss probability, for a particular value of Wi, is a random variable, say X,
whose value will depend on the instantaneous values of the other windows;
let us denote this dependence by X = p(

P
j 6=i

Wj + Wi). Now the ex-
pected value of X , conditioned only on the window W i of the flow under
consideration, is denoted byE[X ] and equalsE[p(

P
j 6=i

Wj +Wi)]. This

conditional expectation equals p(
P

j 6=i
E[Wj]+Wi) only if the loss func-

tion p is linear. Accordingly, for linear loss functions, our formulation is
equivalent to assuming that the loss probability for a given window size is
replaced by the expected loss probability for that size; this explanation does
not hold when the loss function is non-linear.
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varying from 2 � 20 and with wide variations in the round
trip times and segment sizes. For all the plots presented here,
minth = 10240 bytes, maxth = 102400 bytes and pmax =

0:05.

B.1 Negative Window-size Correlation and its Consequences

Before presenting the simulation results themselves, we
discuss an important relationship that we have observed be-
tween the window sizes of multiple TCP connections. We
noticed this relationship only when trying to analyze the sim-
ulation results; for lucidity of presentation, we present this
empirical result upfront.

The perturbation-based approach assumes that the window
sizes of the other flows are uncorrelated to the window size
of the flow under consideration; the queue occupancy con-
sequently increases and decreases in tandem with the win-
dow size of the flow. If this were true (the windows were
truly uncorrelated), the window size probability distribution
would indeed have less spread (be more concentrated around
the mean): any increase beyond the mean would result in a
larger drop probability (and more aggressive drops) while any
decrease below the mean would be immediately compensated
for by a less aggressive drop probability. Consider now what
would happen if the flows were negatively correlated; we use
the case of 2 flows for the ease of presentation. A negative
correlation implies that when the window size of one flow is
large, the other one has a smaller window size, and vice versa;
the queue occupancy thus exhibits lower variability and tends
to be less dependent on the variations in the window size of a
single flow. In such a negatively correlated environment, the
square-root technique would perform better than the pertur-
bation technique, since it (correctly) assumes that the queue
size (and the loss probability) is largely independent of the
flow’s window size. On the other hand, if the flows were pos-
itively correlated (flows tended to increase and decrease in
tandem), the perturbation technique should provide a better
fit than the square-root model, although both models could
indeed exhibit lower accuracy.

The experiments and results reported here use the ERD al-
gorithm where the drop behavior is memoryless and is based
on the instantaneous queue occupancy. To investigate the cor-
relation for two flows (N = 2), we sampledin clock time the
window size of each flow and determined the individual and
joint moments of their distributions. The resulting correlation
coefficient turned out to be �:4, indicating a not insignifi-
cant degree of negative correlation. For the general case of
N flows, where individual correlation indices are somewhat
harder to comprehend, we use the sampling technique to plot
the variance of the sum of the window sizes V ar(

PN

i=1
Wi)

against the sum of the individual variances
PN

i=1
V ar(Wi).

We know that the two should be equal if the flows are ideally
uncorrelated; for negative correlation, the sum should exhibit
lower variance ( V ar(

PN

i=1
Wi) <

PN

i=1
V ar(Wi)), while

for positive correlation, the sum should exhibit larger vari-
ance (V ar(

PN

i=1
Wi) >

PN

i=1
V ar(Wi)). (This follows

from the general relationship

V ar(

NX
i=1

Wi) =

NX
i=1

V ar(Wi) +
X
i 6=j

Cov(Wi;Wj) (4.3)

Hence, if the covariance terms are negative, then the LHS of
equation (4.3) is less than the RHS.)

A graph showing the observed behavior for N identical
flows (flows with identical operating parameters), for differ-
ent values of N , is shown in figure 4. The figure shows
thatV ar(

PN

i=1
Wi) is always less than

PN

i=1
V ar(Wi) (and,

in fact, V ar(Q) is even lower than V ar(
PN

i=1
Wi)). This

indicates the presence of ‘negative correlation’ among the
TCP flows. This observation will help explain our later re-
sults which show that, for a majority of the simulated cases,
the square-root approach provides a better estimate than the
variable-probability perturbation technique.

Another interesting observation can be made by observ-
ing the graphs in figure 5, where we plot the coefficient of
variation (Std:Dev

Mean
) of the queue size, the coefficient of vari-

ation of the sum of the window sizes (

q
V ar(
P

N

i=1
Wi)

Mean(
P

N

i=1
Wi

) and

the mean of the coefficient of variation of the N TCP flows

(
P

N

i=1
CoeffV ar(TCPi)

N
). As the figure shows, the coefficient

of variation of the queue (as well as the sum of the window
sizes) decreases with increasing N , indicating that the queue
becomes smoother (the variance of the queue occupancy in-
creases more slowly than the average queue occupancy). This
corroborates our observation in section III.C, which predicted
a decrease in the coefficient of variation for the queue with
increasing N and used this to explain why our ‘mean-value
analysis’ gets progressively more accurate with increasingN .
Also, note that the mean of the coefficient of variation of the
TCP flows stays around :4, indicating a reasonable validation
of our constant drop probability assumption.
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B.2 Illustrative Results

We performed an extensive set of simulations to understand
the behavior and accuracy of our estimates. The results seem
to indicate that, across a wide range of operating conditions,
the analytical techniques offer a reasonably accurate estimate
of the distributions of the different flows. In particular, it
comes as no surprise to observe that the predictions improve
in accuracy when the number of flows increases (until the
loss probabilities become large and transient TCP phenom-
ena like timeouts become significant): as the number of flows
increases, the dependency of the queue occupancy on a single
connection, as well as the coefficient of variation of the queue
occupancy, decreases; consequently, the assumptions behind
both the perturbation approach and the square-root technique
become progressively more accurate. It should also be noted
that, not only is the square-root approach usually more accu-
rate than the perturbation approach, it is always computation-
ally cheaper and simpler than the perturbation technique.

The simulations in figure 6 compare the results when 2 or 5
concurrent TCP connections, all having the same parameters,
share the ERD queue. The packet sizes are 512 bytes and the
round trip times are 25ms. As we can see, the agreement is
fairly close; the square-root approximation, in fact, gives a
very good fit.

In figure 7, we present results for simulations involving 2

or 5 flows, all of which have the same packet size (512 bytes)
but different round trip times (the distributions should be the
same). The RTT of the first flow is 25ms while each sub-
sequent connection has a RTT double that of the previous
flow. For conciseness and clarity, in each case, we present the
comparison of the results for 2 flows, those with the smallest
and largest RTT respectively; the agreement is observed to be
fairly good; the square-root approach again proves superior to
the perturbation approach.

Figure 8 shows the result of experiments similar to those
of figure 7, except that now we keep the round trip time con-
stant at 25ms but vary the segment sizes; each flow should
now have a different distribution. As before, the segment
size of a connection is twice that of the previous connection.

The smallest segment size is mentioned in the plots which,
as before, are shown only for the flows with the smallest
and largest segment sizes. Fairly good agreement is observed
again. In this case, the square-root approach gives an identi-
cal distribution for all the connections, while the perturbation
approach gives different estimates for each flow. We can see
that, for the flow with the largest segment size, the perturba-
tion technique provides a better estimate than the square-root
technique; this is because the square-root technique is unable
to capture the fact that the queue occupancy changes with a
change in the window size (which is more acute for flows with
larger MSS).
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To further illustrate the effect of negative window correla-
tion and the consequent accuracy of the simpler square-root
approach, we carried out a series of experiments where we
simply varied the number of concurrent flows. Each TCP
flow had identical parameters like segment sizes and round
trip times and the drop function was constant across all simu-
lations. The results for 2, 5, 10 and 15 flows are presented in
figure 9. The graphs with the ‘Theoretical Distn.’ label refer
to the plots for the perturbation-based predictions. As we can
see from the graphs, the square root-based predictions out-
perform the perturbation-based predictions, with increasing
accuracy at larger N .
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V. CONCLUSIONS

In this paper, we have demonstrated an analytical and nu-
merical technique to obtain the centers of the TCP window
sizes and the associated queue occupancy when multiple per-
sistent TCP flows share a bottleneck buffer performing ran-
dom packet drops. We then evaluated two competing tech-
niques to determine the window distribution of each of the
individual TCP flows. One technique derives the distribu-
tion assuming a constant loss probability whose value is de-
termined by the center of the queue occupancy. The other
technique assumes a variable loss probability model and uses
a perturbation-type approximation to relate the packet loss
probability for a given connection to the window size of that
connection alone. Simulation experiments indicate that both
techniques are fairly robust (accurate to within � 10%); the
numerical predictions are much more accurate at lower val-
ues of the average drop probability. For ERD queues, the ob-
served negative correlation between the window sizes of dif-
ferent flows causes the predictions of the constant loss model
to outperform the predictions of the variable loss model, in a
majority of the experiments.

Several interesting questions remain to be answered in the
future. It is not immediately clear how various techniques,
such as basing the drop probability on a subset of the past his-
tory of packet drops (as in RED’s use of ‘average queue occu-
pancy’) or controlling the distribution of the drop pattern (as
in RED’s ‘drop-biasing’ technique), affect the negative cor-
relation observed here and alter the variability of the queue
occupancy. Preliminary results (which we hope to report in
later publications) suggest that regulating the pattern of ran-
dom loss behavior can appreciably alter the buffer occupancy
dynamics. Modifications to the TCP algorithm that reduce its
window variance can also improve the stability of the queue
occupancy and lead to better prediction of the window distri-
butions. Accordingly, we propose to investigate TCP mod-
ifications (such as a better response to Explicit Congestion
Notification) that reduce this variance. We also hope to study
the applicability of this model to cases where different flows
have different cis (different drop probabilities), which would
be the case in settings similar to those proposed in Weighted
RED.

VI. APPENDIX

A. Proof that f(Q) is convex

We prove here that the function f(Q) defined in equation
(3.11) is convex. First, some notation: let Mi

ci
be denoted

by bi and C:RTTi be denoted by di. The function g(Q) is
then given by g(Q) = (

P
i

bi
Q+di

)�1. On differentiating this
function we obtain

g0(Q) = g(Q)2
X
i

bi

(Q+ di)2
(6.1)

Since from above, g0(Q) > 0 8Q, g(Q) is an increasing func-
tion of Q. Differentiating again, we have the second deriva-

tive given by

g00(Q) = 2g(Q)g0(Q)
X
i

bi

(Q+ di)2

�2(g(Q))2
X
i

bi

(Q+ di)3

or on rearranging

g00(Q) = 2(g(Q))3f(
X
i

bi

(Q+ di)2
)2

�(
X
i

bi

(Q + di)3
)(
X
i

bi

Q + di
)g (6.2)

We now prove that the term in the curly braces in equation
(6.2) is negative. To see this, let � =

P
i bi and let ai =

(Q+ di) 8 i � f1; 2; : : : ; Ng (note that ai is always positive).
Consider a random variable A which takes on the value ai
with probability �i = bi

�
. Then, the second derivative can

also be written (with E[ ] denoting the expectation operation)
as

g00(Q) = 2�2(g(Q))3fE2[A2] �E[A3]E[A]g (6.3)

Now, we know if A is a random variable that has Prob(A >

0) = 1, then logE[Am] is convex in m 8m � 0. Thus,

we have logE[A2] � logE[A]+logE[A
3
]

2
, so that E2[A2] �

E[A3]E[A] � 0. Applying this result to expression (6.3),
we see that g00(Q) is negative and hence, g(Q) is a concave
function of Q.

As the term
q

2

p(Q)
is easily seen to be convex (its second

derivative is positive), we can conclude that f(Q) is a convex
function of Q.

B. Modeling RED behavior

In this appendix, we discuss differences between Early
Random Drop (ERD) and the Random Early Detection (RED)
that affect the applicability of our model. The important
points of difference are:

� RED operates on the average (and not the instantaneous)
queue length. The drop probability, p,is thus a func-
tion of the weighted average Qavg of the queue oc-
cupancy i.e., p is a function not just of Qn but of
(Qn; Qn�1; Qn�2; : : :) with an exponential decay.

� To avoid unbounded inter-drop gaps, RED increases the
drop probability for every accepted packet. (This prop-
erty, which we call drop biasing, is achieved by using a
variable, cnt, which increments with every successive
accepted packet; the true dropping probability is then
given by p(Q)

1� cnt:p(Q)
. This results in a inter-drop period

that is uniformly distributed between (1; : : : ; b 1

p(Q)
c) as

opposed to the geometrically distributed inter-drop gap
caused by an independent packet drop model.
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� RED has a sharp discontinuity in drop probability: when
Qavg exceeds maxth, p(Q) = 1 so that all incoming
packets are dropped. This contrasts with our assumption
of random drop throughout the entire range of the buffer
occupancy. This is however not a problem as long as the
queue occupancy almost never exceeds maxth.

While the effects of averaging cannot be incorporated in
our model, a simple change works quite well in capturing the
effect of drop biasing. We essentially change p(Q) in our
random drop model such that the average inter-drop gap 1

p

becomes equal to the average inter-drop gap 1

2p
of RED. All

we have to do is to make our model pmax double that of the
pmax used in the actual RED queue. It is interesting to specu-
late that the averaging of the queue occupancy in RED could
have one interesting effect: depending on the memory of the
averaging process, the correlations between the window sizes
of different flows could change appreciably. We hope to in-
vestigate this possibility in greater detail in the future.

C. Correction for Delayed Acknowledgements

Delayed acknowledgements essentially imply that the TCP
process increments its window only once for every K ( K is
usually 2) acknowledgements. A simple way to capture this
effect is to alter equation (1.1) to

PfWn+1

i = w +
1

K:w
jWn

i = wg = 1� pi(w) (6.4)

i.e., approximate it by a process that increments its window
by 1

K
for every acknowledgement.

We point out the main changes to our technique for the case
K = 2 (for other values, refer to the concerned publications):

� The square-root relationship now becomes W � =q
1

p(W� )
instead of equation (3.2). This affects the first

equation (3.8) in the set of simultaneous quations that
define the fixed point.

� During the time re-scaling required to obtain the individ-
ual distributions, the function q(X) mentioned in equa-
tion (2.2) is modified slightly (see [3] for details).
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