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ABSTRACT 
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A high performance ASIC supporting multiple modulation, er- g,, (kT,  - ET) 

z(nT + E T )  ror correction, and frame formats is under development at Hughes 
e - J 2 x / r  

Network Systems, Inc. Powerful and generic data-aided (DA) 
estimators are needed to accommodate operation in the required 
modes. In this paper, a simplified DA maximum likelihood 
(ML) joint estimator for carrier phase and symbol timing offset 
for QPSUOQPSK burst modems and a sample systolic VLSI 
implementation for the estimator are presented. Furthermore, 
the Cramer-Rao lower bound (CUB) for DA case is inves- 
tigated. The performance of the estimator is shown through 
simulation to meet the C U B  even at low signal-to-noise ratios 
(SNR). Compared with theoretical solutions, the proposed es- 
timator is less computationally intensive and is therefore easier 
to implement using current VLSI technology. 

Figure 1: Matched Filter of Optimal Receiver 

(for DA case) which provides insight on data pattern selection 
for faster timing reCOvery iS investigated further in this paper. 

In Section 2 a derivation Of the estimation algorithm iS pre- 
sented. Section 3 presents an efficient VLSI impkmentation Of 
the estimator. In the last section the CRLB for the non-DA case 
and the CRLBDA are investigated, and the Performance of the 
new estimator is shown through computer simulation and com- 
pared with CRLBDA. 

1. INTRODUCTION 

A high performance ASIC supporting Hughes Network Sys- 
tem’s Universal Modem product line is under development. 
This ASIC will support a variety of bit rates, modulations (BPSK, 
QPSK, SPSK, OQPSK). forward error correction, and frame 
formats. The ASIC will use several burst parameter estimation 
algorithms, these algorithms are generic enough to be applica- 
ble in all of the various modes and can be readily implemented 
in hardware. 

An expression for the DA ML joint carrier phase and tim- 
ing offsets estimator in time-domain was derived in [ 11 (p.296). 
Implementing the estimator is however, somewhat hardware in- 
tensive. Based on the work in [l], a new algorithm has been 
derived that can be also extended to the OQPSK case. This 
algorithm is relatively simple and is suitable for systolic VLSI 
implementation. The performance lower bound for ML estima- 
tion is the CRLB. An expression for the CRLB for timing re- 
covery in the non-DA case is given in [3]. Jiang has derived an 
expression for an ML joint phase and timing offset estimator, 
and the CRLB for the DA timing recovery case based on a fre- 
quency domain approach in [2]. In the DA case, the CRLBDA 

2. ESTIMATION ALGORITHM 

The baseband received signal is modeled as: 

N - 1  

y(t) = d E  [ ( a f n g ( t  - nT) f jaQng(t - nT 
n=O 

-TT)) explj(2xft + e) ] ]  + n(t) (1) 

whereg(t) = gT(t) @c( t )@f ( t ) ,  g T ( t )  is the transmitter shap- 
ing function, c( t )  is the channel response, f ( t )  is the prefilter, 
n(t)  is the additive white Gaussian noise (AWGN) with two- 
sided power spectral density N0/2, and a, = afn + ~ U Q ,  is 
the data symbol from complex plane (a, = f i / 2 ( f l  f j )  for 
QPSWOQPSK signaling). T is the symbol interval, f is the 
carrier frequency offset, and T is the delay factor that is 0 for 
QPSK and 0.5 for OQPSK. The estimation algorithm for the 
QPSK case is as follows. The matched filter for an optimal re- 
ceiver can be modeled as [l] shown in Figure 1. y ( t )  is down 
converted by carrier frequency offset estimate f, and then sam- 
pled at rate of l/T,, typically T = LT,, with L an integer. 
The sampled signal is filtered by a matched shaping filter with 
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response g(-t) and timing offset ET. The output is then deci- 
mated down to a rate of 1/T to obtain a one sample per symbol 
signal z(nT + ET). The demodulator corrects the phase offset 
B and timing offset E of z(nT+&T) prior to making symbol de- 
cisions and recovering the transmitted symbol &. z(nT + ET) 
is given by: 

00 

a(nT + ET) = y(kTs),-j(2nfkT.)gMF(71T + 
k = - w  

ET - IC",) (2) 
Assuming zero frequency offset estimation error; there are K 
( K  = L N )  observations of z(kT3 + ET) ( I C  = 0,. . . , K - 1) 
available for estimating E and 8, E E [-0.5,0.5). According to 
the work done in [ 11, the maximization object function of ML 
joint phase and timing offsets estimation in AWGN channel is 

L(g,e,B) = Cexp aiz(nT+ET)e-js  (3) 11 
where C is a positive constant and a = [ao,. . . , U N - ~ ]  which 
is the data pattern and is known to the estimator. Let us define 
p ( ~ )  as: 

N-1 

p ( ~ )  = c ukx(nT + ET) (4) 
n=O 

The ML joint phase and timing estimator is given by [l]: 

t =  lP(E>I ( 5 )  

ê  = arg[p(t)] (6) 
According to the Equivalence Theorem [ 11, and assuming that 
c ( t )  and f(t)  are all-pass filters, a(nT + ET) is equivalent to 
the following: 

N-1 

*z(nT +ET)  = akr(nT +ET - ICT)e-je + Nn(7) 
k=O 

where r ( t )  = gT(t) ~9 gT( - t )  
- sin(nt/T) cos(ant/T) - 

nt/T 1 - 4a2t2/T2 
The above expression also assumes that raised cosine shaping 
is adopted with a denoting the rolloff factor. Nn is the sampled 
version of n(t), Gaussian noise, after being filtered by g M F ( t ) .  

Arriving at a solution to eq. (5) is a difficult task and the 
resulting hardware structure presented in [ 13 is quite compli- 
cated. It is well known that a quadratic form can be used to 
approximate the central segment of a convex function around 
its peak. The expression for ,U(&) can be approximated by a 
quadratic equation as shown below. If E + 0, the inter-symbol- 
interference (ISI) and noise Nn can be ignored and we can sim- 
plify IP(E)I as 

N-1 

IP(E)I = E3 lan12r(ET) = NEST(ET) (8) 
n=O 
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5 

Figure 2: Correlation Magnitude Ip(&)I vs. Timing Offset E 

where 1unI2 = 1 (n = 0,. . . , Ar - 1). Furthermore by letting 
t = ET and using Taylor serie8s approximations for sine and 
cosine functions and after some simplification, we arrive at 

(9) 

Figure 2 shows the result of numerical evaluation of l p ( ~ ) l  
which follows a quadratic form. From eq. (9) we can use a sec- 
ond order polynomial to approximate the relationship between 
sampling time and the magnitude of correlation Ip(t)l given 
that these sampling points are close enough to the ideal sam- 
pling point (i.e. t is close enough to 0). Using a general form 
of the second order polynomial 

(10) 

suggests that a joint phase and timing estimator can be derived 
based on three adjacent samples of Jp(t)l. These samples are 
the closest ones to the ideal sampling point as shown in Figure 
3. In order to meet the condition that t is close enough to 0, two 

Ip(t)l = &t2 + b l t  + bo 

. 
- T, 0 T, r 

Figure 3: Three Sampling Points Model 

measures are adopted: one is that the sampling rate L (sam- 
ples per symbol) is large enough (simulation shows that L = 4 
can achieve good performance); second is locating the largest 
available magnitude z1 through peak search. Let us define the 
sampling time of z1 as nominal 0 on time axis. Therefore the 
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sampling times of xo and x2 are -T, and T,, respectively. A 
LaGrange interpolating polynomial can be adopted based on 
the values of X k  (k = 0 , 1 , 2 ) :  

4 ( ? r . - 4 x , + ? . r 2 )  

= b2t2 + bl t + bo Figure 4: Joint Carrier Phase and Timing Offsets Estimator 

where 

(14) 

Using the fact that to = -T,, t l  = 0, tz = T,, we can get 

bo = 2 1  

The ML timing offset estimator ( 5 )  is the 2 which maximizes 
Ip(&)I. It is easy to compute the sampling time of the peak of 
Ip(t)( from a second order polynomial, i.e. 

where 

N - 1  

an1 + j  aQkr((n - k - 1/2)T)  
k=O 

N-1 

an2 = aIkr((n - k + 1/2)T) + jaQn 
k=O 

a,l and an2 are defined to combine the effect of inter-channel 
and inter-symbol interferences. The above however requires 
more computational power since multipliers are needed instead 
of just adders for the QPSK case. We can get a simplified ver- 
sion by letting a , ~  = urn and an2 = ~uQ,. 

Computer simulations show that the performance degrada- 
tion is small and we can conserve hardware and make the im- 
plementation compatible with QPSK. After redefining p(&), we 
just need to follow the same procedure derived for QPSK for 
estimating timing and phase offsets. 

3. VLSI IMPLEMENTATION 
bl - ( 2 0  - x2)Ts - tpeak = -- 2b2 2x0 - 421 + 2x2 (15’ The hardware block diagram for the estimator is shown in Fig- 

ure 4. The multi-sample correlator generates outputs at a higher 
rate than one sample per symbol. Let us define the following therefore, the ML estimate of E is 

The phase estimator is shown in eq. (6). Interpolation tech- 
niques can be applied to correct the timing offset before phaqe 
estimation. This however, introduces an additional delay in the 
demodulation process. Simulations show that using the time 
for the non-ideal sample of 21 is sufficient for meeting the 
CRLB (sampling time of x 1  is t l ) .  This leads to 

In order to locate the largest available value 21 easily, a highly 
correlated data pattern a is selected. [2] discusses this problem 
in depth. Here unique word (UW) and alternating (one zero) 
data patterns are investigated. 

The same algorithms can be applied to OQPSK modulation 
with minor modifications. p ( ~ )  is slightly modified from eq. 
(4) as: 

p(&) = 
N-1 

[&z(nT + E T )  + u : ~ . z ( ~ T  + T / 2  + ET)]  (18) 
n=O 

complex correlation computation: 

N - 1  

P ( E )  = (a i ,  - ja~n)(z~(n> + j z ~ ( n > )  
n=O 
N-1 

= 

= CII + CQQ + ~ ( C I Q  - CQZ) (19) 

(arnzr(n) + ~ Q ~ z Q ( ~ )  + j(ai,z~(n) - 
n=O 

a ~ n z ~ ( n > > >  

A systolic [4] VLSI implementation of the correlator is shown 
in Figure 5 for both QPSK and OQPSK cases, where xij  de- 
notes the ith symbol (i = 0,. . . , N - l), j t h  sample ( j  = 
0, . . . ,3) of the output from the matched shaping filter. In 
QPSWOQPSK case, a ~ j  = fl,  U Q ~  = f l ,  only adders are 
necessary therefore the computational complexity is relatively 
small especially when using the correlator as soft-decision UW 
detector. Through peak search module, we can locate zo, X I  

and 2 2 .  An Arcran Lookup table (LUT) is used when estimat- 
ing the phase offset. 
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4. PERFORMANCE BOUNDS AND SIMULATION 
RESULTS 

The performance lower bound for unbiased ML estimation is 
the Cramer-Rao lower bound (CRLB). We first address the CRLB 
for the QPSK case analytically. Then the performance of QPSK 
and OQPSK is shown through simulations. The CRLBDA for 
phase estimation is given by [ 13 as follows: 

(20) 

Moeneclaey proposed the CRLB for i.i.d. random data pattern 
(i.e., no information about a available) in [3]. The bound for the 
ca5e where the sampling rate l/Ts 2 2B ( B  is the bandwidth 
of r ( t ) )  and N large enough is given by 

E[(T - +)2] 2 T2 Lo S N  I 47r2f2R(j)df}-' (21) 

with R( f )  the Fourier transform of r(t) .  Jiang has proposed 
the following expression for CRLBDA in [21: 

where d[k] is the lcth element of N-point discrete Fourier trans- 
form (DFT) of a, i.e. d[k]  = Crzt ane- j (2Tnk/N) .  Accord- 
ing to eq. (22), CRLBDA has different values for different data 
patterns. Two data patterns have been investigated: alternating 
one-zero pattern (i.e. ai = (-1)%h/2(1 + j ) ) ,  and a unique 
word pattern. A 48-symbol UW was selected. According to eq. 
(22) for the alternating one-zero data pattern 

i 1 

Figure 5: Multi-Sample Correlator for QPSWOQPSK 
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Figure 6: The CRLBDA for Timing Estimation with UW Pat- 
tern 

and thus the performance is independent of rolloff factor a 
given that o > 0. For the UW pattern, the timing estimation 
CRLBDA is closely related to the rolloff factor. It follows from 
eq. (22) that the larger the rolloff Ifactor, the smaller CRLBDA. 
Figure 6 shows eq. (22) plotted as a function of SNR for three 
different values of rolloff factor. 

The parameters for the computer simulations for QPSK and 
OQPSK signaling were N = 48 and L = 4 in an AWGN chan- 
nel. Figure 7 shows the saw tooth characteristics of eq. (16) 
under no noise conditions with random phase. From simula- 
tions we can see that (16) is an unbiased estimate of E. Peak 
search (i.e. locating zl) resolves ihe m/4 (m = &l, f 2 )  am- 
biguity. 

Different rolloff factors for the raised cosine shaping func- 
tion were also tested. Simulation shows that the root mean 
squared (RMS) timing estimation error of QPSK meets the 
CRLBDA for all as and data patterns. Simulations also support 
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Figure 7: Timing Offset Estimate t vs. Timing Offset E 
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Figure 8: Timing Offset Estimation Performance of 
QPSWOQPSK (one zero pattern vs. UW pattern, a = 0.5) 

that for the one-zero pattern the RMS timing error is indepen- 
dent of a, while for the UW pattern it decreases as a increases. 
This is in agreement with the evaluation of the CRLBDA. For 

Figure 9: Phase Offset Estimation Performance of 
QPSWOQPSK (UW pattern, a = 0.5) 

5. CONCLUSION 

In this paper an ML joint phase and timing offsets estimator for 
QPSWOQPSK burst modems along with a systolic VLSI im- 
plementation has been presented. The performance of timing 
recovery meets the CRLB for the DA case at low SNR, there- 
fore it verifies the correctness of this CRLBDA [2]. The joint 
estimator is relatively simple to realize. 
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