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Abstract 

The principal contribution of this paper is the pre- 
sentation of the potentic1 theoretical resdts that are 
needed for an application of stochastic apprwzimation 
theory to the problem of demonstrating asymptotic sta- 
bility for combined estimation and control of a plant 
described by a hidden Markov model. We motivate the 
results by briefly describmg a combined estimation and 
control problem. We show how the problem translates 
to the stochastic approximation framework. We also 
show how the Markov chain that underlies the stochas- 
tic approximation problem can be decomposed into fac- 
tors with discrete and continuous range. Finally, we 
use this decompostition to develop the results that are 
needed for an application of the ODE method to the 
stochastic control problem. 

1 Introduction 

Problems of combined estimation and control have 
a long history, and the LQG case is standard mate- 
rial for stochastic control texts. Treatment of con- 
trolled hidden Markov models is more recent, the work 
of FernAndez-Gaucherand et al. [6, 71 treats a situa- 
tion similar to that treated here with different meth- 
ods. The methods that we use are based on existing 
work in stochastic approximation. In particular we use 
a recursive estimation scheme based on Krishnamurthy 
and Moore [8], and an approach from Benveniste et al. 
[3] to prove convergence of the estimation scheme. The 
difference between this work and the preceding work 
is that by considering randomized strategies we can 
show convergence of the model estimate and the con- 
trol without recourse to special reset conditions that 
are required in [7]. 

’ 

2 The PIant, Controller and Estimator 

The plant that we consider is a controlled hidden 
Markov model with N states, P input values, and M 
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outputs. It has an unlcnown state transition matrix 

&;ij = P(ZZ+I = e j  151 = ei,ul) (1) 
and an unknown output matrix 

Throughout the paper values of the state, input and 
output will be represented by canonical basis vectors in 
RN , Etp and RM , probability densities on finite spaces 
will be represented as vectors in the appropriate prob- 
ability simplex, functions of finite sets will be repre- 
sented as vectors in the appropriate Euclidean spece, 
expectations will be denoted by inner products, and 
probability kernels on finite spaces will be represented 
as matrices. 

We consider an output feedback control problem 
in which the feedback controller is recomputed from 
updated estimates of the plant. As the estimates of 
the plant converge, we wish the controller to converge 
to a moving horizon controller that minimizes a risk- 
sensitive cost functional. 

in which the incremental cost functions 4 and the fi- 
nal cost 4f are assumed given. Baras and James [a] 
show that the optimal output policy is equivalent to 
a feedback policy, computed on am information-state 
process 

ck = x ( u k - 1  I Y k ) c k - l ,  

UU, Y) = M diad(., W ) 4  diag(exp(l/y$(., U))). 

(4) 

with linear recursion operator given by 

The value function V(o,  I C ) ,  which is a function of time 
IC, is computed by backwards dyanmic programming 
each time the parameter estimates are updated. For 
small state-spaces and reasonable horizons this is a fea- 
sible computation especially when advantage is taken 
of structural properties of the value function [5]. 

The random choice of control is governed by the 
“Gibbs Distribution” 
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in which the energy 

H(flk,u) = E[V(x(% Y ) r k ,  k + 1) I g k ]  

is calculated using current estimates of the matrices A 
and B,  and Z(g) is a “partition function’’ that normal- 
izes the distribution. A randomized policy provides the 
regularity needed later for proof of convergence of the 
combined estimation and control problem. Continuing 
the statistical mechanics analogy, the parameter 7 is 
a temperature that controls how close the randomized 
policy is to the optimal (deterministic) policy. The cur- 
rent value of the information state ffk is computed from 
the recursion (4) and a buffer of the last A inputs and 
outputs. 

The estimator architecture is based on the work of 
Krishnamurthy and Moore [8]. A maximum likelihood 
estimator for a hidden Markov model with parameter- 
ization Xo minimizes the Kullback Leibler measure 

and 

J ( 0 )  = E[logf(Yo,k I 8) I eO1. 
Here f(yo,k I A) is used to denote the distribution func- 
tion induced by the parameter X on the sequence of 
random variables YO&. 

The central part of the estimator is a finite buffer 
containing the last A values of the input and output 
processes (the length is chosen to be the same as the 
length of the controller buffer in order to simplify the 
presentation). This buffer is used to update smoothed 
recursive estimates of the various densities required for 
the estimator. These densities are: a k  = f(Zk-A I 
y o , k - ~ ) ,  which is calculated with the recursion 

(ej, & / l - ~ ) & - ~ - , ; i j a k - ~  (i) 
a k ( j )  = Cj Ci(ej, ~ Y Z - A ) ~ u [ - ~ - l ; i ~ a k - l ( ~ )  ’ (5) 

,& = f(Yk-A+l,k I z ~ - A )  which is computed with the 
backwards recursion 

b(i) = &+I (j)&+l;ij(ei, &z-A+i), (6) 
i 

(k = f(Zk-A,Zk-A-l)’?lO,k) and Tk = f ( Z k - A  I YO,h) 
,Jhirh are given in terms of a and ,8 by 

a2 - A- 1 (i) AUL p-1 ;ij& A - 1 ( j  ) 
ci,j aZ-A- l (~ )Au~-p- i ; i j~Z-A- l ( j )  

CZ(i , j )  = 

Cj , & - A ( ~ A ~ [ - ~ , , ~  az-A (4 
n ( i )  = . .  Ci Cj a - ~ ( j ) A u [ _ , - ~ ; i j a ~ - ~ ( 2 )  

The empirical estimates of state frequency conditioned 
on output, and pair frequency conditioned on input are 
given by the recursions 

&+I (P, i ,  j )  = (1 - q L - ,  (ep))zL(u, i, j )  
+ qL-i (ep)CZ(i ,~)  (7) 

Where ep and e, are canonical basis vectors, and q is 
a discount factor 0 < q < 1. 

3 The stochastic approximation problem 

The result is a combined control and estimation 
algorithm that can be written in the form of a standard 
stochastic approximation problem [3] 

(9) 

model parameters A and B,  Xk - 

1 
dk+l  = 0 k  f ;H(Xk,  0,) 

where 8 represents the estimates of the 
- 

{ x k ,  Uk-A,k, Yk-A,k, ak ,k- l ,  zk, rk} is 2% Markov 
chain with a transition kernel &(X;dX) which is a 
function of the parameter 8, and the parts of H that 
correspond to the updates of A, and B are given by 

and 

respectively. 

Demonstrating asymptotic convergence for the re- 
cursion (9) in a neighborhood of the true parame- 
ter 8 is equivalent to establishing asymptotic stabil- 
ity of the combined control and estimation architec- 
ture. Following Benveniste e t  al. [3], asymptotic con- 
vergence of (9) is shown by the ODE method [lo] which 
views the iterates of equation (9) as approximiitions to 
points on stable trajectories of an appropriately chosen 
ODE. The generator for the ODE is the mean h(B) = 

is the invariant measure 
for the chain x k .  Benveniste e t  al. use regular solutions 
to the Poisson equation ;I - rI~)ve = H ( X , 8 )  - h(0) 
to bound the deviation of 8k from the trajectories of 
8 = h(6). The remainder of this paper deals with the 
problem of establishing the existence of the invariant 
mesure p, and the existence of regular solutions to the 
Poisson equation. 

H ( X ,  0) d p e ( X ) ,  where 

4 Characterizing t h e  Markov chain 

Let k E N be the instant in time after the controller 
has read the value of the k’th output Yk,  but before the 
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k'th input U k  is computed. The Markov chain X that 
underlies the stochastic approximation problem has the 
following structure. X k  = (xi, x:, xi, x:, x:, x,') 
where: 

Xz = 21, is the state of the controlled hidden Markov 
model defined by (1) and (2). 

X t  = U k - A , k - l  is a buffer containing the last A values 
for the control U .  

X:  = y k - A + l , k  is a buffer containing the last 4 values 
for the output (including the k'th value). 

Xt = a k - A - 1 , k - D .  is buffer of length two containing 
the values for the empirical density for the state 
calculated at times k and k - 1. Denote the prob- 
ability simplex over the state by R", then X" 
takes values in the Cartesian product R" x 0". 

X i  is the empirical density for the joint distribution, 
of successive states in the Markov Chain condi- 
tioned on the value of the input at the transitio?. 
Let f lc  denote the probability simplex in RN , 
then the densities of joint distributions of succes- 
sive states take values in flc, and X i  takes values 
in the Cartesian product of P copies of flc. 

X ;  is the empirical density for the distibution of the 
state of the Markov chain conditioned on the as- 
sociated output. X z  takes values in the Cartesian 
product of M copies of W. 

In addition, let +%k = (X , " ,X : ,X i )  denote the prod- 
uct of the finite valued factors in X. The range spaces 
for the random variables will be denoted by the cor- 
responding script symbols, so, for example, 2 de- 
notes the finite set of values taken by the process X k ,  

Xa = Ra x Ra is the continuous range space for the 
random variable Xz, and X, the range space for the 
complete process X k ,  is a complicated space formed 

. from a finite number of disconnected continuous com- 
ponents. 

Proof: The proof proceeds by using the formu- 
lae from Section 2 to write explicit expressions for the 
Markov transistion kernels IT(%; de) and n ( X ;  dX). 

From the formulae for the plant, and controller it 
is clear that when the value of thc estimate 9 is fixed, 
the distribution of the finite valued random variable 

Propositim 1 T h e  r a n d o m  process {Xh} is Markov, 
the  chain { x k }  is a Markov sub-chain, and f o r  all 
1, the  r a n d o m  varaible XI, together with the chain 
{J?-k,  IC 2 I >  f o r m  a se t  o f  sufficient statistics f o r  the  
process { x k ,  k 2 I } .  
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x k  depends only on the finite valued random variable 
2 k - 1 .  Consequently the transition kernel 110(2,;  d x b )  

can be represented by a stochastic matrix 

The evolution of the processes X p ,  X i  and X,' 
captures the dyamics of the estimation algorithm pre- 
sented in section 2. This dynamics is described by 
random sequences of transformations on the probabil- 
ity simplices that compose the ranges of X t ,  Xi and 
Xz in a way that is analogous to the way that ran- 
dom walks are constructed. Write X" = ( X a J ,  X @ ) ,  
X c  = ( X c x l , .  . . ,XCip) and X7 = (Xyll,. . . , X y l M )  so 
Xaii  and X7im take values in the probability simplex 
Cl" and XcJ' takes values in the probability simplex Qc. 
For s2 E {Q",QC} let 6 ( R )  denote the semigroup of 
(not necessarily invertible) affine transformations of fl 
into itself. Equations (5), (7) and (8) determine maps 
maps gQ : x + 6(Q"), gc : 2 x Xa -+ 6(f lc)  and 
g y  : 2 x X" -+ 6(Ry) from the state +% to apropriate 
transformation semigroups. The evolution of the ran- 
dom processes X", Xc and X y  are described by the 
equations 

and the proof of the claim in the proposition about 
sufficient statistics follovs from the foim of these eqra- 
tions. 

The mappings g", gc and g7 push forward mea- 
sures defined on their domains to measures on the 
semigroups that comprise their ranges. Writing 
&g(II (x , ;  d+%b)) for the push-forward of the transition 
Kernel through g ,  the transition kernels for the contin- 
uous factors have the explicit formulae as convolutiona. 
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5 Potential  theory  for the underlying chain 

An ergodic theory of the chain XI, is established by 
considering first the discrete sub-chain 2 using meth- 
ods developed by Arapostathis and Marcus [l] and 
Le Gland and Mevel [9]. The difference between the 
problems treated in these two papers and the problem 
treated here is that here the transition kernels IT0 de- 
pend on the parameter 0 through the control algorithm. 
Consequently, regularity properties of the kernels with 
respect to the parameter 0 are needed along with geo- 
metric ergodic properties in order to apply the poten- 
tial theory in the stochastic approximation analysis. 

Lemma 2 Suppose tha t  for some b > 0 the  entries 
of t he  state transit ion m a t r i x  A,  t he  output  transit ion 
ma t r i x  B and the  control policies pk evaluated o n  the  
singleton subsets o f  U sat is fy  

Au;ij  > 6 Bi, > 6 pk('ll) > b 

then the  transit ion ma t r i x  M associated wi th  the  chain 
{ X n }  is pr imi t ive  wi th  index  of pr imi t iv i ty  A + 1, and 
the  chain  itself i s  irreducible and  acyclic. 

Proof: Define a directed graph with nodes la- 
beled by the states 2 and directed links defined by the 
positive elements of the transition matrix M .  Primi- 
tivity of the kernel can then be established by showing 
that any two points on the graph are connected, and 
that the connection is composed of a bounded number 
of links. 

Primitivity of the discrete kernel implies that the 
kernel is recurrent with a single recurrence class, and is 
a sufficient condition for the Perron-Frobenius theorem 
to apply. Specifically, the following proposition lists 
well known facts about primitive kernels. [13, 12, 91 

Proposit ion 3 L e t  II(x; d 2 )  be a pr imi t ive  kernel o n  
a f in i te  discrete space 2. T h e  following are true:  

(i) T h e  unique left eigenvector 1-1 is the  invariant 
c e a s u r e  f o r  the  kernel. 

(ii) T:;e kernel is ergodic. There exists c E ( 0 , l )  such  
tha t  for a n y  probability measure m o n  2, lmIln - 

(iii) If f : 2 + R is a bounded func t ion  o n  if (in 
fac t ,  a bounded vector in Rn) t hen  the  Poisson 
equativn 

PI < cn 

has  a solution 
00 

The following lemma provides a basis for regularity 
results for the discrete kernel 

Lemma 4 T h e  eigenvector corresponding t o  the  
Perron-Frobenius eigenvalue of a pr imi t ive  stochastic 
ma t r i x  A is a continuous func t ion  of t he  ma t r i x  pa- 
rameters.  

Proof: Let A be a primitive stochastic matrix, and v 
the corresponding left eigenvector. Let A- be a matrix 
zero row sums that satisfies the condition that A - A 
is positive, and, for E E (0,1] let U ,  be the invariant 
measure corresponding to the matrix A+ EA. Let U ,  = 
(vs - (v,,v)v), then U ,  I U and the Perron-Fkobenius 
theorem gives 

1% - %A12 > (1 - p)lu,la (14) 

also, an expansion of the eigenvector equation for v, 
gives 

U ,  - u,A = -cv,A 

which, upon substitution into the right hand side of 
(14) gives 

E2(v,A/(l - P ) I 2  > IuEl; 
= (1 - (va,v))(l+2(vElv)). 

Now, since U ,  and v both have positive entries, 0 < 
(v,,v) < 1, and consequently 

Proposition 1 characterizes the transition kernel 
for the continuous part of the chain xk. The explicit 
expressions in (13) have forms that are similar to the 
form of the kernel of a random walk on a semigroup 
6 which can be expressed as a convolution l-I(g; clg) = 
6, * m where x E G and m is a measure on the semi- 
group B. In this case the measure m rather than being 
constant is a function of a Markov process 2. In the 
case where the underlying Markov chain is ergodic, the 
asymptotic properties of the random walk associated 
with the invariant distribution of the underlying chain 
determines the asymptotic properties for the Mnrko-J 
modulated random walk. So the existence of a regular 
potential kernel for the random walk 6, * p where the 
measure p i:. the push-forward of the invariant measure 
of the ch,m is sufficient to ensilre a potential theory 
for the processes in Proposition 1. 

A metric p on the probability simp,;x R induces a 
metric on the semigroup of affine transformations B(R) 
as follows. For any two elements g1 , 9 2  E G define the 
distance between gl and g:! by 

P(S1,92) = SUP 1Sla: - 92x1 (15) 
X E n  
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The semigroup (5 is contractive with respect to the 
metric p if the function c takes values in the interval 
[0, 11. A random walk with measure m is strictly con- 
tractive when there exists a constant % < 1 such that 
c(g) 5 CO for all g in the support of m. An element 
X E 6 has zero rank if the mapping of left multiplica- 
tion by X on ($5 is a constant map. 

The key to the problem of defining a suitable n u  
tion of recurrence lies in the selection of the right topol- 
ogy for the convergence of measures I In (X;  dx). An 
appropriate topology is the topology of weak conver- 
gence (of probability measures). When the underlying 
space (in this case the semigroup 6) is Polish', the 
restriction of the weak topology to the probability sim- 
plex is metrizable, and, in fact, is the topology induced 
by the LBvy metric 

d ( p , p ' )  = m p  p ( F )  < p'(F') + 6 { 
1 and p ' ( F )  < p(F') + 6dF closed subset of R 

Where F' denotes a 6 neighborhood about the closed 
set F defined in the metric on B [4, p. 651 The prop- 
erties of the weak topology on the space of probability 
distributions is standard Probability Theory and can 
be found in LoBve [ll] 

Proposition 5 L e t  X k  be a contractive random walk 
o n  a semigroup 6 w i t h  Markov transi t ion kernel 
n ( X ;  d Y )  = Sx * d p ( Y )  for some measure p with f in i te  
support contained in 6 .  T h e n ,  there exists a probability 
measure m w i t h  support  contained in BO, the  elements  
of zero rank, such  tha t  m is  invariant  wi th  respect t o  
the transi t ion kernel  for X k ,  and f o r  any  positive con- 
t inuous  func t ion  f with  m ( f )  > 0 ,  

independent  of the  choice of Xo. 

Proof: Given a point xo E 6 0  define a sequence of 
measures m x o , k  = dz0IIk. From the contractive prop- 
erty of t h  walk it fllows tLat if "6 and 20 are distinct 
initial points then the measure m x o , k  copverges weakly 
to mxb, and d(mxo,k,mxo,k+l) -+ 0 as IC -+ ca. Com- 
pactness of the underyling semigroup B implies that 
the set of measures mso,k are tight, and thereke  rel- 
atively compact in the space of probability measures 
.- 

]A complete separable metric space 

with the topology of weak convergence and it follows 
that m , , , k  converges weakly to a unique invariant mea- 
sure m with supported on the elements of ($5 with zero 
rank. 

Suppose that m ( f )  > 0, then then there exists 
E > 0 and positive integer IC0 such that for all IC > kO, 
6xonk(f)  2 E .  Let M be an upper bound on f, then it 
follows that P [ f ( Z k )  < €/a] < 6/2M,  and that for any 
positive integers no > p 

00 ko(no+p) 

PZ, [E f(%> < P 4 1  < PX, [ f (2,) < n o 4 4  
n=l n=l 

The bound on the right can be made arbitrarily small 
by fixing p and letting no o. Choosing 20 = Xo the 
result 

pX0  i g f ( x k )  = -1 = 1 

follows. 

Proposition 5 demonstrates a condition that is simi- 
lar to Harris recurrence and provides the basis for a 
potential theory for random walks on semigroups that 
mirrors the analogous theory for Harris recurrent ran- 
dom walks on groups. 

The following corollary is a summary of the con- 
sequences of Proposition 6. 

Corollary 6 X I ,  hcs the following properties: 

( i )  x k  is m-irreducible. 

(ai) x k  i s  aperiodic and f ini te  

(iii) L e t  h(6) = m H ( X ,  e), t h e n  the  Poisson  equation 
has  a solution 

n 

vs = lim n x ( I I " H ( X ,  0 6)  - h(8)) 

For proofs of these facts see Revuz [12]. (iii) is a conse- 
quence of the random v 4 k  x k  satisfymg the conditions 
for a normal chain. 

The final two results establish regularity of the in- 
variant measures with respect to variations in the pa- 
rameter 6. The first is a technical lemma. 

Lemma 7 L e t  ,U and p' be two measures supported o n  
S ,  a compact subset of a f in i te  dimensional manifold,  

2258 



and separated in the Levy metric b y  d(p,p’) < 6.  Then 
there exists a decomposition 

a a 

such that po(S),pb(S) < 6,  pa(S) = p;(S) for all (U, 

and if g1 E supp pa and g z  E supp pk then p ( g I , g 2 )  < 
66. If gi E suppp, and gf E suppp;. 

Proof: The proof requires a decomposition of the 
set S into a number of groups of well-spaced, uniformly 
small subsets of S. Careful use of the definition of the 
Lkvy metric permits the decomposition of p and p‘ into 
measures supported on the small subsets sets in the 
partition, and a ‘surplus’ measure with large support 
that is small in size. 

Let pe and p p  be two measures on 6, and let II,g 
,and IIp be the transition kernels for the random walks 
generated by pe and pel. 

Proposit ion 8 Let p,q and pp be two measures on 6 
with associated transition kernels IIs and IIei with in- 
variant measures me and mp and let D be a bound 
on the diameter of the set  R, then for any Lipschitz 
function f : R + R with Lipshitz constant Lf, 

Proof: Let p = pe and p‘ = pel, and let m z o , k  be the 
sequences of measures defined in the proof of Proposis- 
tion 5, and m&k be a second sequence of measures 
defined in the same way except using pI in place of p. 

Ime,k(f> -mej,lt(f>l 

Iz=1 

The proof proceeds by using the lemma, and the con- 
tractive propery of the semigroup to give exponential 
bounds for the terms in the summation. Summing, and 
letting k + 03 then gives the result. 
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