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Abstract

We look at the problem of estimation for partially
observed, risk-sensitive control problems with finite
state, input and output sets, and receding horizon.
We describe architectures for risk sensitive controllers,
and estimation, and we state conditions under which
both the estimated model converges to the true model,
and the control policy will converge to the optimal
risk sensitive policy.

1 Introduction

Risk sensitive control of hidden Markov models has
become a topic of interest in the control community
largely in response to a paper by Baras and James
[2] which shows that, in the small noise limit, risk
sensitive control problems on hidden Markov models
become robust control problems for non-deterministic
finite state machines. This paper presents results that
are part of a program to extend the work of Baras
and James to cover situations where the plant is un-
known. We consider the combined estimation and
control problem for a class of controllers that imple-
ment randomized control strategies that approximate
optimal risk-sensitive control on a receding horizon.
Problems of combined estimation and control have
a long history, and the LQG case is standard mate-
rial for stochastic control texts. Treatment of con-
trolled hidden Markov models is more recent, the
work of Ferndndez-Gaucherand et al. [6] treats a situ-
ation similar to that treated here with different meth-
ods. The methods that we use are based on existing
work in stochastic approximation. In particular we
use a recursive estimation scheme based on Krishna-
murthy and Moore [7], and an approach from Ara-
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postathis and Marcus [1] along with theorems from
Benveniste et al. [4] to prove convergence of the es-
timation scheme. The difference between this work
and the preceding work is that by considering ran-
domized strategies we can show convergence of the
model estimate and the control without recourse to
special reset conditions that are required in [6].

This paper is divided into five sections: the remain-
der of this section introduces the notation that we
use, the second section describes the controller archi-
tecture, the third describes the estimator, the fourth
states and discusses the convergence results, and the
fifth presents some conclusions and directions for fu-
ture work.

The Markov chains that are used in this paper
are discrete-time finite-valued stochastic processes de-
fined on an abstract probability space (2, F, P). The
finite state space is represented by the unit vectors
{e1,... ,en} of RV and the finite input space, U, is
represented by the unit vectors in RF. If the input
at time [ has the value u;, then the state transition
matrix for the Markov chain has entries

Ayij = Plois1 = €5 |z = ej,wp)

The finite set of outputs Y is represented by the
unit vectors in RM, and the transition matrix from
state to output is given by

Bij = P(yk = €5 |£L’k :ei).

The combined state and output process {zy, yr} gen-
erates a filtration {G,} C F, and a second filtration
{O4} is defined as the filtration generated by the se-
quence of pairs (u;—1,y;), I < k. Oy can be inter-
preted as a specification of the information available
to an output feedback controller from the record of
past plant inputs and outputs. In general, probabil-
ity distributions on finite sets will be represented as
vectors, expectations as inner products in Euclidean
spaces of the appropriate dimensions, and probability



kernels on finite spaces will be represented as matri-
ces.

Let M denote the space of probability distributions
on the finite set U, and M,, 0 <n < 1/P denote the
compact subset of distributions that satisfy u{u} >n
for all uw € U. A receding horizon control policy with
horizon of length K is a specification of a sequence of
probability distributions on pg, 1, ---ppxk—1 € M. A
control policy is an output feedback policy if each dis-
tribution puy, is a measurable function on the o-algebra
O. Each control policy p = po, p1,--- 5 fb—1 in-
duces a probability distribution on Fx with density

PH(uo,ic—1,%0,K,Y0,K) = (T, Byx)(xo, o)
K-1
X H(wz,Au,ﬂ?zH)(l‘l,Byl)(“z;ﬂl)- (1)

=0

Where 7 is the probability distribution for the ran-
dom variable zg. It is convenient here to define an
additional probability measure on {2

P (uo i 1,%0,5,Y0,K) =
1 K-t

M@Coﬂfo) H M(l‘l:Aulfle)(U,m)-
=0

P is absolutely continuous with respect to P’ and
has Radon-Nykodym derivative

dp+

K
e :AK: M(:L’I,Byl>.
apt Gre H

=0

In addition, the output process y is i.i.d. with re-
spect to P' and has uniform marginal distributions
PT{yk =em}=1/M.

2 Controller Architecture

A risk sensitive control problem is defined on a hidden
Markov model by specifying a cost functional with
an exponential form. Given a running cost, ¢(z,u),
which is a function of both the state and the input,
and a final cost ¢ (), which is a function of the state
only, the finite horizon, risk sensitive cost, associated
with the control policy u, with risk v and horizon K
is the functional

1 K-1
exp <¢f($K) +> ¢($z,w)>l (-2)

J"(n) = E*

=0

Expressed in terms of expectations with respect to
the PT measure the cost is

1 K-1
Ak exp; (¢f(.751() + Z ¢(ml,ul)>] .

=0

J"(p) = Ef

Optimal output feedback controls are computed by
defining an information state that is a process adapted

to the filtration {O}, translating the cost to a func-
tional on the information state, and then using dy-
namic programming to compute the optimal control.
An appropriate choice of the information state at time
k is the expected value of the accrued cost at time k,
conditioned with respect to the og-algebra Oy, and
expressed as a distribution over the state set X.

k—1
exp (1 ) ¢<xl,ul>> | Ok] @
v =0

The information state process satisfies a linear recur-
. N
sion on R

ok = Z(Uk—1,Yk)0k—1, (4)
with

S(u,y) = M diag((-, By))A, diag(exp(1/7¢(-,u))).

The risk sensitive cost is expressed as a functional on
the information state process by the formula

T (1) = E" [(ok () exp(ds (/)] - (5)

The value function associated with the finite-time,
state-feedback control problem on the information state
recursion (4) with cost function (5) is

S7(o,1) =
min Ef [(U}/{()) ¢f()> | Ulw = U] )

Hp- i —1 €M

The associated dynamic programming equation is

57(o,1) = min, E'[S7(27 (u, yr41)0, 1+ 1)]

870, K) = (a(-), 65 (-))- (7)

An induction argument along the lines of that used
by Baras and James [2] proves the following theorem.

Theorem 1. The value function S" defined by (6)
is the unique solution to the dynamic programming
equation (7). Conversely, assume that S7 is the so-
lution of the dynamic programming equation (7) and
suppose that p* is a policy such that for each | =
0,.... k=1, uf =y (0]) € M, where i (o) achieves
the minimum in (7). Then p* is an optimal out-
put feedback controller for the risk-sensitive stochastic
control problem with cost functional (2).

The following structural properties are analogous
to those proved by Fernandez-Gaucherand and Mar-
cus [5].



Theorem 2. At every timel the value function S7(o,1)

is convex and piecewise linear in the information state
N . . .
o € Rt . Furthermore, the information state is in-
) . . N
variant under homothetic transformations of Rt

The randomized policies taking values in M,, ap-
proximate deterministic policies in the following way.

Theorem 3. Let S, denote the value function for the
optimal control problem when the policy is restricted
so that p € My, for all0 <1 < K —1, then So = S
s a deterministic policy,

Sy(o,1) — So(o,1) R
1+ |o]

uniformly on RV T x {0,...,K}, and the optimal poli-
cies converge fu, — ju*.

The controller architecture that we propose is based
on a moving window. Theorem 2 is used with the
dynamic programming equation (7) to compute the
value function for the finite horizon problem with
horizon K. along with the values of the optimal out-
put feedback distributions p*(o). At each time k the
information state recursion (4) is used with a record
of the previous A observations and control values,
and a predetermined initial value o,_aA to compute
the current value of the information state. The op-
timal probability distribution p(oy) is selected, and
a random procedure governed by this distribution is
used to produce a control value uy.

3 Estimator Architecture

The estimator architecture is a maximum likelihood
estimator. The recursive algorithm is derived by fol-
lowing the formal derivation that Krishnamurthy and
Moore [7] give for a stochastic gradient scheme that
approximates a maximum likelihood estimator for a
hidden Markov model. The resulting algorithm is
well described as a recursive version of the expec-
tation maximization algorithm of Baum and Welch.
Let 0, denote an estimate for the parameters that
determine the probabilistic structure of the hidden
Markov chain. The components of #, which are the
entries of the transition matrices, are constrained to
lie in a linear submanifold © by the requirement that
the estimates flu and B be stochastic matrices. Gra-
dients and Hessians taken with respect to 8 will be
thought of as linear and bilinear forms on the tangent
space to ©.

A maximum likelihood estimator for a hidden Markov

model with parameterization A° minimizes the Kull-
back Leibler measure

J(6) = Ellog f(yo.x | 0) | 6°].

Here f(yo,x | A) is used to denote the distribution
function induced by the parameter A on the sequence

of random variables yo . It turns out that J(#) is not
an easy quantity to calculate, however an equivalent
condition can be stated in terms of the functions

Qk(elae) = E[lOg f(xo,kayo,k | 0) | yO,k:el] ( )
8
Qk(alae) = E[Qk(alaa) | 60]

_ Krishnamurthy and Moore show that Q(6',6) >
Qr(0',6") implies that J(#) > J('), and proceed to
write down the stochastic gradient algorithm!

- 0Qp+1(0k,0
Ors1 = Ok + I} (Ok) %

0=0;
Where I is the Fisher information matrix for the
combined state and output process

Ii(0k) = —0°Quiy1/06% 9=, ,

and Qp+1(0k,0) is the empirical estimate for Q (6, )
based on the first k£ observations.

The central part of the estimator is a finite buffer
containing the last A values of the input and out-
put processes (the length is chosen to be the same
as the length of the controller buffer in order to sim-
plify the presentation). This buffer is used to update
smoothed recursive estimates of the various densities
from which the function () and its derivatives are cal-
culated. These densities are ar = f(Zr—A | Yo,k-A)
which is calculated with the recursion

e By a)Au_a_yijon-1(9)
35 iles By a) Aua_sijan-1() ()

ar(j)

Bk = f(Yk—a+1,k | Tk—a) is computed with the back-
wards recursion

Bi(i) = Z Bi+1 (j)AuH_l;ij (e, Byi_at1).
J

G = f(@e-n,Tr-n-1lyor) and v = f(zr-a | yo,r)
are given in terms of « and 3 by

R (i) = a1 () Ay a_1:iiBi—a—1(j)
AR T > —a-1(0)Au_s_y;ijBi-a-1(J)
N Zjﬁl*A(j)Aul—A;ijal*A(i)
A () = S () Au g A )

and the empirical estimates of state frequency and
pair frequency are given by the random variables Z;, =
1/(/47 — A) E Qéul and Fk = 1/(/47 — A) Ewdyl.

The result of the formal derivation is an algorithm
that can be written in the standard form

1
0k+1 =0, + EH(Xk,Gk) (10)

IThe 6} are actually constrained to lie on ©




where X = {:L’k, Uk—AksYke—A ks Ok, k—1, Zk, Fk} is
a Markov chain, and the parts of H that correspond
to the updates of A, and B are given by

A2 EN A2, (Ck|K,Ak (.4) Ck|K,Ak(iy7“))
Z(i,5) r=1 Z,(i,r)) Aujij Ausin
N AL
Er:l Zl(z:,r) (11)
and

B2 (ZN B2, (’Yk\K,Ak(i)(s(yk:fM)_’Yk\K,Ak(i)(S(yk:fr)

Ty (i,m) r=1 T(i,r) Bim Bi,,

N B
Er:l i (i,r)

respectively.

4 Convergence of Estimates

Let Pz, denote the distribution of (X, yg,8n+k)
when X,, = z, and 0,, = a then the convergence of
the estimation algorithm (10) is governed by the fol-
lowing theorem.

Theorem 4. If the matrices A and B are primitive,
and the policies p satisfy

P(Yr—Ak Uk—A—1,k—1){u} >0 forallueU
(13)

Then, there exists a neighborhood system N of 6°
such that for any F € N, and for any compact set
Q@ C O there exists a constants B > 0 and X\ € [1/2,1]
such that for all a € Q and oll X € X

o0
Py x o {0k converges to F} >1— B Z 1/kM
k=n+1 (14)

where 0y, is the sequence that is computed by the re-
cursion (10)

The proof of the theorem is a non-trivial applica-
tion of the results from part II, chapters 1 and 2 of
Benveniste et al. [4]. Similar results are proved for
a related problem by Arapostathis and Marcus in [1]
who use Stochastic Approximation results of Kush-
ner, and then, in greater generality, by Le Gland and
Mevel [8] who also use the theory from [4]. The major
difference between the problems treated in the works
cited and the problem treated here is the introduc-
tion of control to give a combined control-estimation
problem. From the point of view of the stochastic
approximation analysis the control policy affects the
transition kernels of the underlying Markov chain, by
introducing a dependency on the current estimates.
The restriction made in the premise of the theorem
on the space of randomized control policies ensures

that conditional expectations associated with the evo-
lution of the Markov chain are Lipschitz continuous
with respect to the parameter estimates.

The central feature of the theory in [4] is the Pois-
son equation associated with the chain X},

(I —Mg)vg = H(-,0) — hg

The function hy is the generator for the ODE that
governs the asymptotic behavior, and regularity of
the solutions vy ensures that the sequence 6 con-
verges to a trajectory of the ODE. When applying
the theory, vy does not have to be calculated explic-
itly, its existence and regularity can be inferred from
ergodic properties of the transition kernel ITy for chain
X. The first major task in proving Theorem 4 is to
establish that bounds of the form

TG g(X1) — M g(X2)| < Ky Lyp"
15 g(X) — 11§ g(X)| < K2 Ly|6 — 6]

hold for any Lipschitz function g and for all 8, ', X;
and X5, where K; and K, are constants, and 0 < p <
1. The condition on the admissible control strategies
in the premise of Theorem 4 is key to establishing the
second bound.

The second major task is establishing that the ODE
converges asymptotically to the maximum likelihood
estimate. To accomplish this a Lyapunov function
type argument is used. An appropriate choice of Lya-
punov function in this case is the function U(#) =
Q(6°,6). Arguments similar to those used by Baum
and Petrie [3] to show prove regularity properties of
J(0) are used to establish the required local proper-
ties for U(#).

5 Conclusions and Future Work

This paper presents a combined control-estimation al-
gorithm for a hidden Markov model plant. It follows
from the structural properties of the value function
that the value function is a continuous function of
the plant parameters A, and B. Consequently con-
vergence of the parameter estimates ensures conver-
gence of the value function and convergence of the
control policy to the optimal policy within the pre-
scribed set.

We see the results that we present here as prelimi-
nary. Maximum likelihood techniques do not perform
well when the number of parameters being estimated
increases and the domains of attraction shrink. We
are looking at approaches that bypass the model es-
timation stage and work directly with the estimation
of the information state recursion for the separated
controller.
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