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REDUCED COMPLEXITY NONLINEAR H,, CONTROLLERS:
RELATION TO CERTAINTY EQUIVALENCE
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Department of Electrical Engineering and Institute for Systems Research
University of Maryland, College Park, MD 20742

Abstract. This paper considers the problem of constructing reduced complexity con-
trollers for output feedback nonlinear H,, control. Conditions are obtained under
which such controllers achieve the closed-loop performance requirements. These con-
trollers are non-optimal in general. However, in case optimality holds, they are in fact
the certainty equivalence controllers. Conditions under which certainty cquivalence
holds are simplified, and linked to the solvability of a functional equation.
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1. INTRODUCTION
Since, Whittle (Whittle, 1981) first postulated the min-
imum stress estimate for the solution of a risk-sensitive
stochastic optimal control problem, it has evolved into
the certainty equivalence principle. The latter states that
under appropriate conditions, an optimal output feed-
back controller can be obtained by inserting an esti-
mate of the state into the corresponding state feedback
law. The certainty equivalence property is known to
hold for linear systems with a quadratic cost (Basar
and Bernhard, 1991). The recent interest in nonlinear
Hy control has led researchers to examine whether,
certainty equivalence could be carried over to nonlinear
systems. If certainty equivalence were to hold, it would
result in a tremendous reduction in the complexity of
the problem. In a recent paper (James et al., 1994), suf-
ficient conditions were given for certainty equivalence
to hold in terms of a saddle point condition. Also, in
(James, 1994), a simple example is given to demonstrate
the non-optimal nature of the certainty equivalence con-

troller. An implementation of a certainty equivalence
controller can be found in (Teolis et al., 1993).

This paper, considers the infinite time case, and deals
with establishing sufficiency conditions for a reduced
complexity controller to exist. These conditions apply
for both optimal and non-optimal policies. In general,
obtaining an optimal solution to the output feedback
problem, involves solving an infinite dimensional dy-
namic programming equation (James and Baras, 1995).
Hence, one may be satisfied with a reduced complexity
non-optimal policy, which guarantees asymptotic sta-
bility of the nominal (no exogenous inputs) closed-loop
system, as well as achieves a pre-specified disturbance
attenuation level . In the special case, it is shown that
the policies so obtained are certainty equivalence poli-
cies. Furthermore, in doing so, one obtains an equiva-
lent sufficiency condition for certainty equivalence which
may be more tractable than the one given in (James et
al., 1994). The approach is based on establishing dissipa-
tivity results, since these guarantee under detectability
assumptions, asymptotic stability of the closed-loop sys-
tem when exogenous inputs are zero. Lastly, it is shown
that the condition for certainty equivalence to hold is



equivalent to the existence of a (unique) solution to a
functional equation.

2. PROBLEM STATEMENT

Consider the following system:

T4l = f(zk7 Uk, wk) » %o € R"
Z< v+ = g(Tn, uk, wr)
2kl = l(zk’uk,wk) 3 k=0,1,2,...

where, 7; € R™ are the states, yx € R’ are the measure-
ments, ux € U C R™ are the controls, z; € R? are the
regulated outputs, and w; € R" are the exogenous in-
puts. Furthermore, assume that 0 is an equilibrium point
of £, and U is compact. Denote the set of feasible poli-
cies as O, i.e. if u € O, then ux = u(y1 &, Uo,k-1), Where
8¢; denotes a sequence {3;,8i41,...,8;}. Also assume
that f, g, and [ are continuous. The output feedback
problem is, given v > 0, find a control policy u* € O,
0 as to ensure that there exists a finite g% (z) > 0,
B*°(0) = 0, such that

o0
sup  sup {po(=o) + ) |z |’ -
wel’([O.oo),R') GOGR‘ =0

7 |wi I’} < sup {m(x) +B* (2)}. (1)
zeR®

where, po € £, with £ defined as
£ 2 {pe C(R™) | p(z) < R for some finite R > 0}

Here, |- | denotes the Euclidean norm. Also assume that
for such u* € O, T* is z-detectable. Equation (1) is
based on the dynamic game interpretation of the non-
linear H,, control problem. It ensures that if £o = 0
then

lelle -

sup
“’el’(IO,OO),R'),w;éo "“}“‘a

Furthermore, define the following sup-pairing

(,9) & sup {p(z) +q(z)}
z€

and the function 6, € £, 6. : R" - R*

6;(6)2{ 0 if&=a

—o0 else

An information state based solution was recently ob-
tained in (James and Baras, 1995). The information
state is defined by the following recursion

Pe+1 = H(pr, uk,yr41), kK=0,1,...
p €&

where

H(pr, ua, yir1 )(2) B
sup {pa(€) + sup (| /(€ uk, w) |* —7* | w |?|
teR” weR™
zT= f(e»uk’w)’yk-i-l = 9(61 uk’w))}'

The problem is solved via dynamic programming, where
the upper value function M satisfies

M(p) = inf sup {M(H(p,u,y))} ®3)
uelU ,eR'

for all p € £, with M(p) > (»,0), and M(~B%) =0, for
some 8%(z) > 0, 8*(0) = 0. In particular, M (p) is the
least possible worst case cost to go, given pp = p. Now,
supposing such a solution M exists to equation (3), one
has the following result.

Theorem 1. ((James and Baras, 1995)). Let u* € O, be
such that u} = ii(py), where 4(ps) achieves the mini-
mum in (3) for p = pi. Then u* € O solves the output
feedback problem. Here, p; is the information state tra-
jectory initialized by po = —*, and is such that M (py)
is finite for all k.

Such a policy, obtained via the dynamic programming
equation (3) is called an optimal policy. Now, assume
u(p) is a non-optimal policy, then there exists a function
W:€ > R, W(p) 2 (p,0), and W(-8*) =0 (8%(z) >
0, 8“(0) = 0), and W satisfies for all p€ £

W(p) > sup W(H(p,u(p),v))
veR'

Such a W is called a storage function for the output
feedback policy u. Conversely, if such a function exists,
then the corresponding control policy ti(p) solves the
output feedback problem.

In the well known, state feedback case, denote by V
the upper value function of the state feedback problem.
Furthermore, V > 0, V(0) = 0, and V satisfies

V(z)= inf sup {| Uz u,w) > ~v* |w|?®+
"GUweR"

V(f(z,u,w))}

for all z € R™. The policy up, such that up(z) =
u", where u* € U achieves the infimum in the above
equation is called an optimal state feedback policy. For
non-optimal state feedback policies u, there exists a U :
R™ - R, with U > 0, U(0) == 0, and satisfies



U(z) 2 sup {|U(z,u(z),w) Py w)+

we€
U(f(z,u(z),w))}

for all z € R". Such a U is called a storage function for
the state feedback policy u.

From now on, define Z C O, to be the set of output
feedback policies which have the separated structure,
i.e. depend only on the information state p;. Such poli-
cies are called information state feedback policies. The
control policy generated by the dynamic programming
equation (3) is of this type.

3. REDUCED COMPLEXITY CONTROLLERS

The dynamic programming equation (3), is infinite di-
mensional in general. Hence, this motivates the search
for reduced complexity control policies, which preserve
the stability properties, as well as the attenuation level
# of the closed-loop system (equation (2)).

For a given z,£ € R", and u € U, define

Uz, u,€) £ {w e R |z = f(£u,w)).

Then, one has the following result.

Lemma 1. For any £ € R", u € U, and a given function
h:R"xR" xR" - R,

h(z,w,§) < sup h(f(§,u,w),w,{)

wE

sup  sup
ze R" wel(z,wf)

Proof: For any € > 0, there exists z° € R", and w* €
Q(€,u,z¢) (i.e. with z¢ = f(£,u,w)) such that

sup sup h(z,w,§) <h(zf,w', &) +e

zeR" (€.u.2)
= h(f(§, u,w°),w,§) +¢

< sup h(f(§,u,w),w,£)+¢
weRR"

Since, ¢ > 0 is arbitrary, the result follows.
Define, Jj, : R* xU - R as

mmwé@m+£%ﬂwmmW—

7 1w |* +U(f(z,u,w))}

The following result is needed to establish conditions
for the existence of reduced complexity policies which
achieve the desired closed-loop performance.

Lemma 2. Foranyu € U,U:R" > R,and py € £,

385

sup

JE (z,u) > sup (H(pe,u,y),U).
zeR” ¢

U3

Proof:
sup (px+41,U)
veR'
= sup sup sup {Pe(€) + sup (| 1(¢,u,w) | -
yeR' zeR*¢eR weR™
7w Pz = f(§ u.w),y = g(€ u,w))+
U(z)}
< sup sup {Pe(§) + sup () 1€, u,w) |? -
R {E wER
7w |z = f(€u.w) + U(z)}
—5:‘?1)" ,3%' v g&pu z,{p"(f)+ [ 1€ u,w) |2 -
7 |w)? +U(z)}
< sup sup {pe(&)+ ) U(¢,u,w) |* -
eeR" veR"
7 | w? +U(f(¢,u,w))}, via lemma 1

sup Ji (&,
a4 (6w

The following theorem, gives a sufficient condition for
the existence of dissipative reduced complexity policies.

Theorem 2. Given U : R -+ R, U > 0, and U(0) =
Ifforall p. € &

(P, U) 2 inf sup JB*(z,u)
uwelU

zeR"

then 4(p;) € argmin gy sup,. g~ J5*(z,u), solves the
output feedback problem, and the associated storage
function is W(pe) = (pe, U).

Proof:
yU)2 inf_ s JP* "y
(Pk )_ IUJUP“ u(“ “)

Jf (2, 8(pe))
z€

> sup (H(px,d(pe),y),U), via lemma 2
veR'

Furthermore, (p, U) > (p&,0), and (=U,U) = 0. Hence,
(px,U) is a storage function, and 4 is a (non-optimal)
solution to the output feedback problem, with the infor-
mation state trajectory initialized via pg = -U.

Remark: One could have considered any 4, such that

sup
z€

U (z,u(z)) > sup JE (z, ).
zeR"

Corollary 1. (Certainty Equivalence). Given U = V,
the upper value function of the state feedback prob-



lem, and the optimal state feedback policy up. If for
allpe €&

(o0, V) = inf, sup T (a,0) )

€U ;¢
then u(pe) = ur(2), where £ € argmax,  p {ps(z) +

V(x)}, is an optimal control policy for the output feed-
back problem.

Proof: Clearly (4) implies that

]

sup JP (z,ur(z)) = sup inlf] JP (2, u)

z€ zeR" v€
= inf sup JP'(z,u)
uelU ;e R

Hence, a saddle point exists, and so for any

£ € arg max (pe(z) + V(z)), and 4 = up(2),
e R®

(or, V) = JP*(%,4) = sup J{*(z,4)
zeR"
2 sup (H(Pk, ﬁ’y)r V)
veR'

Hence, W(p) = (pr, V) is a storage function, and W(4,)
= V(z), the optimal cost of the state feedback problem.
Hence, the policy is optimal for the output feedback
problem.

Remark: It is sufficient that the conditions in theorem 2
and corollary 1 hold only for all pg, k =0,1,.... If this
is the case, then U need not be a storage function for
the state feedback problem. It is only when one needs
the conditions to hold for p, € {J; | z € R"} that U is
forced to be a storage function.

In general, conditions for the optimal policy maybe diffi-
cult to establish. However, there may exist non-optimal
state feedback policies such that their storage functions
satisfy the conditions of theorem 2. In that case, us-
ing such reduced complexity policies based on the non-
optimal state feedback policies will guarantee that the
system is asymptotically stable whenever the exogenous
inputs are zero. Moreover, such policies will also en-
sure that the closed-loop system satisfies the attenuation
level v (equation (2)).

Now consider the condition that characterizes certainty
equivalence in terms of the upper value function of the
output feedback problem. In (James et al., 1994),(James,
1994) it is shown that certainty equivalence holds if, for
allk>0

M(pe) = (px, V) (5)
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In general, since the trajectory p; is not known a priori,
one needs to check for all p, € £. In fact one can show
that if this were the case, then V is in fact the only
function which will satisfy (5). To do so, one requires
the following inequality.

Lemma 3. Let 4 € I, with W its storage function. Then
w > inf_ sup JP*(z,u), k.=0,1,...
(pk) uEU;eRp" U (.’t u’) 0) ’
vy O
where, U(z) = W(6,).

Proof:

W(pe) 2 sup {m(z) +
zeR"

(o o]
sup | zig1 | -
wel3([0,00),R") Z’E ’

7wy [P} e == )
sl;l; {Pe(z) + Sll%'(l Uz, a(pe), we) |® -

zeR" wy €

0
2 - o
Pl P+ 3 |z P =7 |wi P
f=k+1

Tr41 = f(I,ﬂ(pk),‘IDk))}
{p(z) + 811};'0 U=z, a(pr),w) |* -
we

1\

sup
zeR"

7 | w P +U(f(z, 3(m),w)))}
> inf sup {pe(z) — sup (| I(z,u,w)|® -
U.er® eR"

uel z¢ w
7w P +U(f (z,%,w)))}

inf sup JT*(z,u)
vwel e R

Theorem 3. (Unicity). Let M be the upper value func-
tion of the output feedback problem. If there exists a
function U : R™ — R, such that M(p) = (px,U), for
all px € £, then U =V, the upper value function of the
state feedback problem.

Proof: It follows from lemma 3, that

Pk, U) = M(ps) > inf sup JF*(z,u).
uEU,eR"

Let ii(pe) € argmin, g7 sup, . g~ J5 (2, u). Then

(pe, U) 2 Sl}xz:_ JE (z,6(pe))
z€

> sup'(H(pk.ﬁ(m),y),U)
y€

sup M(H (pe,i(ps),y))
veR'



Hence, 4 is an optimal policy since (po,U) = M(py),
VY po € €. Thus,

M(ps) = sup M(H(pk,8(m),0)
vE

which implies that
,U)= inf sup JP*(z,u).
(or,U) uUzep" v (z,u)

Setting, pr = 4., one obtains

U(z) = inf_ sup {|l(z,u,w)|> - |w >+
vel weR™

U(f(z,u,w))}.

with U(z) = M(8,) > (0,6;) = 0, and U(0) = M(bo) =
0. Hence, U = V.

Corollary 2. If there exists a py such that M(ps) #
(pe,V), then there exists no function Y : R* - R,
such that M(p) = (p,Y) forall pe £.

Corollary 3. Let W be a storage function for a (non-
optimal) information state feedback policy % € Z, and
let W(pe) = (px,U), k 2 0. Then i(ps) € argmin gy
sup,c g~ Ji' (%, u) solves the output feedback problem
with the storage function W (p). Furthermore, if one in-
sists that W(4,) = (8:,U), YV z € R", then U is a stor-
age function for a (non-optimal) state feedback policy.
Also, if W = M, the upper value function of the out-
put feedback problem, then the controller is a certainty
equivalence controller.

Remark: It is clear from the proof of theorem 3, that
if (5) holds, then so does (4). However, (4) is a more
tractable condition, since it does not involve the upper
value function M, which is what one is trying to avoid
having to compute in the first place.

The following alternate condition is a direct consequence
of theorem 3.

Corollary 4. (Certainty Equivalence). The certainty eq-
uivalence controller is optimal, if there exists a solution
U : R" = R to the functional equation

M(p)=(p,U), Vpe&

4. CONCLUSION

This paper has identified a strategy for generating re-
duced complexity output feedback policies. Sufficiency

conditions have been stated, which guarantee asymp-
totic stability of the closed-loop system, in the absence
of any exogenous inputs (w = 0), as well as achieve the
pre-specified attenuation level . In the optimal case, it
is observed that the controller generated by such strate-
gies reduces to the certainty equivalence controller. In
doing so, one was able to obtain a more tractable version
of the certainty equivalence condition stated in (James,
1994),(James et al., 1994). Also, the certainty equiva-
lence condition is shown to be equivalent to the existence
of a solution to a functional equation.

Future research in this area pertains to showing whether
(if at all) solvability of the output feedback problem im-
plies existence of such reduced complexity controllers.
Also, a more constructive approach to the problem needs
to be developed. Finally, one can view the approach as
trying to reduce complexity by considering storage func-
tions that are evaluated by interpolation through the
sup-pairing. Further investigation into alternate meth-
ods of interpolation may also prove fruitful.
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