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Abstract

This paper deals with the output feedback robust con-
trol of discrete time systems modelled as dynamic in-
clusions. This formulation allows for the more typi-
cal in practice situation of non-additive distrubances.
The control problem is solved via dynamic program-
~ ming. Separation between estimation and control is
" achieved by using the concept of an information state.
The nature of the information state is investigated.

1. Introduction

In this paper, we deal with the robust control of sys-
tems modelled as dynamic inclusions. Systems of
this type occur, for example in the following cases.
(i) When we have real parametric uncertainty. In
. the linear context, the stability analysis of these sys-
tems can be carried out by techniques evolving from
Kharitonov's theorem, or the zero exclusion princi-
ple [5]. (ii) In the case of hybrid systems, where an
upper logical level switches between different plant
models, depending on observed events [8]. (iii) When
the system is discontinuous in the states, e.g. systems
subject to friction. (iv) When the information avail-
able about the system is insufficient to enable one to
generate a reliable nominal model. In this case, one
must then deal with the entire set of viable models.

Our work is motivated by recent results obtained in
. the nonlinear H context in [10]. We will use the
dynamic game framework developed in [6],{10]. Fur-
thermore, to establish the ultimate boundedness of
trajectories, we employ the theory of dissipative sys-
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tems [13} to write down a version of the bounded
real lemma. We employ the concept of an informa-
tion state to obtain a separation between estimation
and control. The exact form of the information state
recursion was derived from an analogous set-valued
stochastic control problem in {3]. This paper is a sum-
mary version of [4], and we present only the major
results here.

Formally, the system under consideration () is ex-
pressed as

Tr4+1 € ]’(zk,uk) , To € Xo
¢ yke1 € G(zh,uk) (1)
zeyr = HTwsr,uk), k=0,1,...

Here, zx € R"™ are the states, uy € U C R™ are
the control inputs, yx € R® are the measured vari-
ables, and z; € RY are the regulated outputs. The
following assumptions are made on the system X:

1. 0 € Xo.

2. F(z,u), G(z,u) are compact for all z € R"
andu e U.

3. The origin is an equilibrium point for F, G and
l.ie.

- F(0,0)30; G(O,IO)BO; 1(0,0) =0

4. There exists an € > 0, such that for all z €
R* u e U, Br)(NF(z,u) # ¢foralr e
F(z,u), € > € > 0. Here B,(r) is the open
ball of radius € centered at r.

5. I(-,u) € C}(R"™) for all ¥ € U and is such
that, 3 Ymin > 0, such that the set

o)

is bounded and contains the origin V¥ > Ymin-

{s € R*"3ueUs.t.

7]
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6. U C R™ is compact.

Some of the notation employed in the paper will be as
follows: | - | denotes the Euclidean norm, |- || denotes
the 12 norm, I'(zo) denotes the forward cone of the
point 2o € R" [1]. In particular

r“(:l.'o) é {z]x,-+1 € f(xj,uj),j =0,.. }

and I'},(z) with j < k refers to the section of
the forward cone of the point z, between time in-
stances j and k. Similarly, A%(zg), denotes the for-
ward cone of the measured variable (y), provided
that the initial state is zg. Finally, we denote the
set of control policies as 0. Hence, if u € O, then
U = h(yl,ky Uo,k—l)-

The robust control problem can now be stated as:
Given 7 2> Ymin, find a controller 4 € O, such that
the closed loop system L% satisfies the following three
conditions:

1. " is weakly asymptotically stable, in the sense
- that for each k, there exists an o € F(z4, ug)
such that, the sequence ay — 0 as k — oco.

2. XY is ultimately bounded.

3. There exists a finite 8%(z), with 8“(0) = 0
such that

o0
Sup E“ Uripr, ) = U(si41,u:) |2
r,8€0Y (zg),r#s i=0
=7 | riz1 = 841 [} < B%(z0),

Vzo € Xo. In particular, if 2o = 0, and
7,8 are such that 7 — s € {2, then the above
guarantees that

i) = Us, W] _
fr=el =

2. Finite Time Case

For the finite time case, we are only interested in the
satisfaction of 3. Hence, the problem can be restated
as: Given ¥ > Ymin, and a finite time interval [0, K],
find a control policy u € Oo,K-1, such that there
exists a finite quantity B (z), with 8% (0) = 0 and

K-1

E“ Hrign, us)—1(8i1,w) |2 =

i=0

Y rigr = 8i4a |2} < Bk (o),  (2)
Vrse€ F&K(!Eo), V z4 € Xo.

Before proceeding further, we introduce a function
space £ = {p: R" — R"}, and define for each
z € R a function 6, : R® — R* by

N A 0 if €=z
5"(0_{—00 if {#£¢z

Furthermore, we introduce the following pairing:

(p,q) = sup_ g~ {p(z) + ¢(z)}.

2.1. Information state

Motivated by results obtained in the set-valued
stochastic control problem (3], and by the formalism
of [10], for a fixed ¥, x € A} 1 (Xo), and ug g1, we
define the information state p, € £ by

a

r(z) = sup sup

z0€Xo r2€L5Y (z0)

k
{po(z0)+) | 181, i-1)

=1

=lriu) P =V | n—s? =2} (3)

where, I'y’} (2o) is the set of state trajectories com-

patible with the observed Y1,k and Uug g1, given that
the initial state was z¢. Here, the convention is that
the supremum over an empty set is —oo. Since,
zo € Xo, we may assume that Po(z) = —o0, for
all z ¢ Xo. i

Lemma 1 For any output feedback controller
u € Oo,x-1, the closed loop system L% is finite
gain on [0, K] if and only if the information state
Di satisfies :

sup {(Pk,o) lPo = 620} < ﬁ}‘{(IO)a (4)

1,0 EA%(Xo)

for all k € [0, K] and for some finite B (zo), with
Bk (0) = 0.

Now, define H(p,u,y) € £ by H(p,u,y)(z) =
sup.e g~ {p(§) + B(¢,z,u,y)} with the function B
defined by -

Bl&,z,v,9) 2 sup {|U(z,v) ~I(s,v) |* —
s€F(§,v)

7|z~ *}
if z € F(§,v), y € G(£,v), and is equal to —oo0 else.
Then, we obtain

Lemma 2 The information state is the solution
of the following recursion

| Pe+r = H(pe,ur,yr+1)
Do € £

fork=0,..., K -1.

(5)



The information state dynamics (5) may be regarded
as a new (infinite dimensional) control system =, with
control u and uncertainty parameterized by y. The
state px, and the disturbance 3 are available to the
controller, so the original output feedback dynamic
game is equivalent to a new game with full informa-
tion. The cost is now given by

sup  {(px,0) | po = p}, k € [0, K]

V1.0 €A% (Xo)

Assuming ¥ is finite gain, define

A £y . .
Jk ={p€ €| (p,0),(p, k) is finite}
and define for a function M : £ — R®,

dom M & {p € £ | M(p) finite}

We now need an appropriate class I; g~y of con-
trollers, which feedback this new state variable. A
control u belongs to I; k1, if for each k € [i, K — 1],
there exists a map i from a subset of £¥~¢+1 (se-
quences p; k) into U, such that ux = @(p;x). Note
that, Ig x—1 C Oo,k—l, fork=1,...,K.

2.2. Solution to the finite time output feed-
back robust control problem

‘We use dynamic programming to solve the’ game De-
fine the value function by

My(p) = _inf sup {(Plno) | po = p}
u€O0g k- -1yeAy 1.( o)
(6)

for k € [0, K], and the corresponding dynamic pro-
gramming equation is

Mi(p) = inf sup {Mk—l(H(p)ua y))}) ke [liK]
uel ¢
veR ,
- (M
with the initial condition Mo(p) = (p,0). Then, we

obtain the following necessary and sufficient condi-
tions.

Theorem 1 (Necessity) Assume that @ €
Oo,kx—1 solves the finite time output feedback ro-
bust control problem. Then there exists a solution
M to the dynamic programming equation (7) such
that J§ C dom M., Mi(6) =0, Mi(p) 2 (»,0),
ke0,K].

Theorem 2 (Sufficiency) Assume there exists a
solution M to the dynamic programming equa-
tion (7) such that 6, € dom M for all z € X,,
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Mk(‘sO) = 01 Mk(p) 2 (p1 0): k e [01 K] Let
u* € Io k-1 be a policy such that uj = 4% _, (i),
k=0,...,K —1; where 4}(p) achieves the min-
imum in (7), k = 1,...,K. Then u* solves the
finite time output feedback robust control problem.

3. Infinite Time Case

We pass to the limit as X — 00 in the dynamic
programming equation (7)

Jm M (p) = M(p)

where My (p) is defined by (6), to obtain a stationary
version of equation (7)

M(p) = inf sup {M(H(p,u,y))}  (8)
u yER‘

3.1. Dissipation inequality
The following lemma is a consequence of Lemma 1.

Lemma 3 For anyu € O, the closed loop system
B¢ is finite gain if and only if the information
state satisfies

sup  sup {(pk,0) | po = 0z0} < B¥%z0) (9)
"21 VEA'{.,.(ZO)

for some finite B%(zo), with B%(0) =

Hence, we say that the information state system =%
((5) with information state feedback u € I) is finite
gain if and only if the information state pj satisfies
(9) for some finite %(zg), with 8%(0) = 0. Further-
more, if X* is finite gain, we write

J* = {pe £ (p,0),(p, ") finite)

We say that the information state system 2% is finite
gain dissipative if there exists a function (storage
function) M (p), such that dom M contains & for
all z € Xy, M(p) > (p,0), M(8) = 0, and satisfies
the following dissipation inequality

M(p) 2 sup {M(H(p,u(p),))}

(10)
yeRR

Note, that if =% is finite gain dissipative, then pg €
dom M, implies p; € dom M, Vk > 0.

We will need the following assumption.

A: Assume that for a given v > 0, the system Eu
such that

11rn I8 HZk1,Tk) |[< v



implies 0 € lim infy_, o F (g, G ).

Remark: The assumption above, can be viewed to
be analogous to the detectability assumption often
encountered in H,, control literature.

We now state a version of the bounded real lemma
for the information state system =.

Theorem 3 Let u € I. Then the information
state system Z¥ is finite gain if and only if it is
finite gain dissipative. Furthermore, if Z% is fi-
nite gain dissipative, then

(i) E* is stable for all feasible z € R™.

() Z* is ultimately bounded.

(1i) If T% satisfies assumption A, then L* {s
weakly asymptotically stable.

3.2. Solution to the output feedback ro-
bust control problem

It can be inferred from theorem 3, that the controlled
dissipation inequality (10) is both a necessary and suf-
ficient condition for the solvability of the output feed-
back robust control problem. However, the following
two theorems give necessary and sufficient conditions
in terms of the dynamic programming equation (8).

Theorem 4 (Necessity) Assume that there ez-
ists a controller & € O which solves the output
feedback robust control problem. Then there ez-
ists a function M (p), such that J® C dom M(p),
M(p) > (p,0), M(bo) = 0 and M solves the sta-
tionary dynamic programming equation (8) for all
peJt

Theorem 5 (Sufficiency) Assume that there ez-
ists a solution M to the stationary dynamic pro-
gramming equation (8) such that §, € dom M,
Vz € Xo, M(6) = 0, and M(p) > (p,0). Let
@ € I be a policy such that ii(p) achieves the min-
imum in (8). Then, @ € I solves the information
state feedback robust control problem, (and hence
the output feedback robust control problem) if the
closed loop system %8 satisfies assumption A.

4. Example

As an example, we design a disturbance rejection con-
troller for the following system, using both Hy, and
set-valued design techniques. The details of the de-
sign process will be given elsewhere [2]. The system
is given by

Ok +2] + (c1 — 2)6[k + 1] + (1 — ¢)O[k] +
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cafoga(Blk +1] - Ok]) = coult]  (11)

with 61] = [0} = 0. Here 6 is the position in
radians, and the nominal values of the parameters
are: ¢] = 0.162, ¢ = 0.1, ¢ = 6.43 x 104, and
f=172x10"3 Furthermore, ~10 < u[k] < 10,
and we assume a £10% variation in the parameter
values. The above system corresponds to a sampling
time of 0.01s. The controller is supposed to reject
output additive disturbances (i.e. y[k] = 6[k] — r[k])
of upto £0.25 radians, with a cutoff at 0.5 Hz. We
first carry out the Ho, design.

4.1. H,, design
We, first smoothen and approximately linearize the
system (11) via dithering and nonlinear feedback, to

obtain G%(z) = F-_lﬂ'?mﬁ as the nominal plant.
Due to the pole at 2 = 1, it is not possible to carry
out an He, design on this nominal plant. So, we ap-
ply a unity feedback, and shift the poole away from
1. Thus, we work with P%(z) = 1_4%%7 Repre-
senting the parameter variations as a multiplicative
perturbation (Am(2)), we obtain [[Ap)lee < 0.25.
Transforming the discrete time plant into continuous
time, using the inverse Tustin transform (which pre-
serves the Ho, norm), the problem can be stated as:
Given P°(s), Wy(s), Wa(s), and W3(s), maximize
PWITw,e
W2Tw,u
WiTy,y o
Ty, is the sensitivity function, Tw,y is the comple-
mentary sensitivity function, and T\, is the transfer
function from the disturbance to the controller out-
put. Here, W3(s) = 0.25, W,(s) = 10"2;'_3%,
and Wi(s) = ;2. The solution is obtained via 7
We get p = 8.625, and the corresponding controller
Cp(z) is

81.832z% — 137.862% - 25.3722 +137.862 — 56.45
24 — 24123 4+ 1.4522 + 0.36z — 0.39

which can now be transformed to correspond to the
original plant G(z) by Cq(z) = Cp(z) + 1.

P, while ensuring that < 1, where

4.2. Set-valued design

As in the Ho, case, we pick W(s) = o We dis-
cretize it using the Euler transform, which is known
to preserve the Hoo and /' norms [11]. Weighing
the disturbance with W), we obtain z3[k + 1] =
0.9686z3[k] + 0.0314r with r € [-0.25,0.25]. Fur-
thermore transforming (11) into its state space form,
and allowing for parameter variations, we obtain

zifk+1] € Az[k]+ Bulk]+C
zalk+1] = za[k] +0.01z,[k]
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¢ Error incurred during step disturbances

$3[k + 1]
y[k + 1)
zlk+1)

€ 0.9686z3(k] + 0.0314[-0.25, 0.25)
= ﬂ:zlk] - :Ba[k]
= 10(z2[k + 1] — zs[k + 1])2

with 131[0] = 22[0] = 173[0] = 0. . Here, A =
[0.8212,0.8542], B = [0.05787, 0.07073), and C =
[~0.08712,0.08712]. Note that 6[k] = z,[k], and
the error e[k] = y[k]. To avoid the infinite time dy-
namic programming, in practice we implement a cer-
tainty equivalence controller [6],(12]. Assuming, we
have a solution to the state feedback control prob-
lem, with @ its policy and V' the value function, we
estimate £ € argmax, {pi(z) + V(z)}, where p; is
the information state at time k.. Based on this, we
then choose ux = #i(Z) as the control value at time
k. 'In general, the certainty equivalence controller is
non-optimal, '

We solve the state feedback problem with z; €
[-2.5,2.5), Az; = 0.1, z; € [(-0.3,0.3], Az; =
0.01, z3 € {-0.35,0.35), Azz = 0.05, and we use
Au = 0.5. For this descretization, the optimal value
of 7y lies between 0.12 and 0.14. We pick v = 0.14.
The dynamic programming equation converges after
14 iterations. While carrying out the simulations, the
plant parameters ¢, c3, c3, and f are sinusoidally
varied between their exterme values at frequencies
of 0.1, 0.2, 0.25, and 0.4 Hz respectively. - Figure
1 shows the error incurred due to a step disturbance
(dashdot) by the Ho, controller (dashéd), and the
certainty equivalence controller (solid). The large er-
ror for the Ho, controller is due to saturation of the
input. However, using a more stringent W3 (s) during
the design process yields a controller that is ineffec-
tive in rejecting disturbances (due to extremely sm,
values of p). ‘
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5. Conclusion

In this paper, we stated and solved the robust out-
put feedback control problem for systems governed by
dynamic inclusions. The problem remains computa-
tionally hard. One way of reducing the computation
cost is via the certainty equivalence controller. How-
ever, conditions need to be established as to when
certainty equivalence holds (see [9] for such results).
Work is currently underway in this direction, and for
developing efficient computational algorithms, as well
as approximations to the original problem.
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