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Abstract

We study the problem of choosing an optimal wavelet basis with compact support for sig-
nal representation and provide a general algorithm for computing the optimal wavelet basis. We
first briefly review the multiresolution property of wavelet decompositions and the conditions for
generating an orthonormal basis of compactly supported discrete wavelets in terms of properties
of quadrature mirror filter (QMF) banks. We then parameterize the mother wavelet and scaling
function of wavelet systems through a set of real coefficients. We further introduce the concept of
decomposition entropy as an information measure to describe the distance between a given signal
and its projection onto the subspace spanned by the wavelet basis in which the signal is to be
reconstructed. The optimal basis for the given signal is obtained through minimizing this infor-
mation measure. We have obtained explicitly the sensitivity of dilations and shifts of the mother
wavelet with respect to the coefficient set. A systematic approach is developed in this paper to
derive the information gradient with respect to the parameter set from a given square integrable
signal and an initial discrete basis of wavelets. The existence of the optimal basis for the wavelets
has been proven in this paper. A gradient based optimization algorithm is developed for computing

the optimal wavelet basis.
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1 Introduction

The last few years have witnessed extensive research interest and activities in wavelet theory and its
applications in signal processing, image processing and many other fields [1, 4]. The most attractive
features of the wavelet transform are the multiresolution property and time and frequency localiza-
tion ability. The wavelet transform decomposes a signal into its components at different resolutions.
Its application actually simplifies the description of signals and provides analysis at different levels
of detail. There are many applications of these properties in the areas of signal processing, speech
processing and especially in image processing [13, 11, 9]. The wavelet transform differs from the
short-time Fourier transform (STFT) in the sense of producing a varying time-frequency window
for signal representation. It admits nonuniform bandwidths, so that the bandwidth is higher at
higher frequencies, which makes it possible to implement the wavelet transform through different

levels of decimation in filter banks.

We know that wavelet functions can be used for function approximation and finite energy
signal representations which are useful in signal processing and system identification. The wavelet
basis is generated by dilating and shifting a single mother wavelet function %(¢). The wavelet
function is not unique and its design can be related to that of a power symmetric FIR low pass
filter. Obviously, different wavelets 1)(¢) shall yield different wavelet bases. Appropriate selection
of the wavelet for signal representation can result in maximal benefits of this new technique. One
of the fundamental questions in wavelet applications, how to construct the optimal wavelet basis
for a specific application, remains open. It is reasonable te anticipate that if a wavelet contains
enough information about a signal to be represented, the wavelet system is going to be simplified
in terms of the level of required resolution, which reduces the computational complexity of the
problem for system implementation. It is widely accepted that selection of wavelets can impact
the performance of algorithms and systems in many applications. This paper addresses the issue
of finding an optimal mother wavelet function to span the appropriate feature space for signal

representation.



The key to choosing the optimal wavelet basis lies in the appropriate parameterization and the
adequate performance measure in addition to the accurate interpretation of physical phenomena. A
method was proposed for choosing a wavelet for signal representation based on minimizing an upper
bound of the L? norm of error [14, 8] in approximating the signal up to the desired scale. Coifman
et al. derived an entropy based algorithm for selecting the best basis from a library of wavelet
packets [2]. However, a direct method to systematically generate the optimal orthonormal discrete
wavelet basis with compact support has not been developed as of yet. Our work attempts to fill this
gap by introducing a systematic approach for constructing the signal based optimal wavelet basis.
We proposed an information measure based approach for constructing the optimal discrete wavelet
basis with compact support in our previous work on adaptive wavelet neural networks [16]. We
shall provide here a direct approach to calculate the optimal discrete wavelet basis. This approach
can be implemented in real time systems due to our parameterization.

The rest of this paper is organized as follows. In section II, we review briefly the multiresolution
property of wavelet functions and the conditions for generating a basis of compactly supported
discrete wavelets in terms of properties of quadrature mirror filter (QMF) banks [15]. In section
ITI, we introduce the concepts of information measure as a distance measure and the optimal discrete
orthonormal wavelet basis under the information measure. A systematic approach is developed to
derive the information gradient and the optimal wavelet basis. In section IV, we provide a proof of
existence of the optimal wavelet basis. In section V, we develop an algorithm for constructing the

optimal basis for wavelets with compact support. In section VI, we summarize our conclusions.

2 Wavelet Transform and QMF Banks

This section reviews the properties of wavelet transforms and QMF banks as well as the relationship
between them for generating orthonormal discrete wavelets. It makes use of the multiresolution
property of wavelets as studied by Mallat [10], the link between wavelets and filter banks from
Daubechies [3], and the structures of multirate systems and quadrature mirror filters (QMF) of

Vaidyanathan [15], and Herley [5].



2.1 Wavelet Transform

The basis functions of a wavelet system are dilations and shifts of a single function called the mother

wavelet. A general form of the basis functions is

Pas(t) = \/ia«p(t —°

) (1)

a

where a € R*, b € R. The parameters a and b provide scaling and shift of the original function

1(t). The wavelet transform is defined as

Xuad) = —= [ v (= )ate)ar @
W™ - \/E oo a z .
The discretized version of the wavelet basis functions is
Pmn(t) = ag ™ *P(ag™ — nby), m,n € Z, ag > 0,by # 0, (3)

which corresponds to a = af* and b = na{*bo, where the size of the shift depends on the scaling
factor. We are interested in the dyadic case, that is, ap = 2 and by = 1. It was shown [10] that it is
possible to construct a mother wavelet function v(z) € L?(R) such that for 5,1 € Z, {¢;1(z)};iez
with

Yiale) = 272279 — 1) (4)
is an orthonormal basis of L2(R). Any signal in L?(R) can be decomposed into its components
in different scales in subspaces of L?(R) of corresponding resolutions, the reverse is true when the
regularity condition for the mother wavelet ¢(z) is introduced [4, 10]. The base wavelet function

1(z) plays a central role in this formulation.

2.2 Multiresolution Approximation

A multiresolution approximation due to Mallat [10] of L?(R) is a sequence {V;};cz of closed sub-
spaces of L?(R) such that the following hold, with Z denoting the set of all integers:

(D-
VicVj1, Vjez (5)
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+00 +00
|J Vjis densein L*(R) and (] V; ={0} (6)

j==o0 j==o0
(I1).

flz)eVi<= f2z)€eV;1, VjeZ (7)
(110).

f@yeVi= fz—2k)eV;, ke Z (8)

and there is a scaling function ¢(z) € L?(R), such that, for all j € Z,

b1 =272z —1))ez (9)

is an orthonormal basis of V; with V; C V;_;.

With this setting, W}, the complement of V; C V;_1, can be expressed as
VieW; =V (10)

with
Vy =2, W (11)

For all j, there is a wavelet function, ¢(z), such that,

bia(z) = 279/2p(2 7z — 1))iez (12)

is an orthonormal basis of W;. The additional information in an approximation at resolution 277
compared with the resolution 277*! is contained in the subspace W, the orthogonal complement of
V; € V;_1. If we define Py, to be a projeétion operator in L?(R) and I to be the'identity operator,
then

Py, =1, as j — —o0. (13)

Any square integrable function f(z) € L(R?) can be represented as

Fla) =" wijpiu(x), (14)
i

the coefficients w;,; carry the information of f(z) near frequency 27 and near = = 271.
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2.3 Orthonormal Wavelet Basis and QMF

A particularly useful setup for our problem is a basis of discrete orthonormal wavelets with compact
support. It is useful for real time implementation on digital computers. The compactness of support
provides a means of isolation and detection of signals at a certain region, which has proven useful
in signal processing problems. Our interest is in parameterizing the discrete wavelet basis functions
with a finite number of parameters to generate the optimal wavelet basis for signal representation.

From the multiresolution property of wavelets due to Mallat [10], for ¢(t) € V}, we have ¢(2t) €
V-1 and ¢(2t — n) is a basis for the space V;_1. Hence, we have the expression for the scaling

function ¢(t) with ¢ denoting time as [4]

M) =VE S cxd(2t— k) (15)

k=-—o00

The corresponding discrete wavelet is given by

o0
P(t) =v2 Y dpp(2t — k) (16)
k=—00
where the coefficient v/2 is for normalization purposes. These are the two fundamental equations
for the scaling function ¢(¢) and wavelet function v (¢) which is determined by the scaling function
¢(t). The scaling function is to be parameterized by a finite set of parameters as we proceed. Let

us denote hg(k) = ¢ and hi(k) = di and take their Fourier transforms

Ho(e) = ho(k)e ¥ (17)
k
and
Hi(e™) = 3 ha(k)e ", (18)
k

The coefficients {cx} and {di} can be identified with the impulse response of a low pass filter and

a high pass filter respectively. The frequency domain versions of the fundamental equations are



available by taking the Fourier transform of Equation (15) and Equation (16) with ®(w) and ¥(w)

being their Fourier transforms respectively.

B(w) = %Ho(efwﬂ)@(w/z) (19)
and
I(w) = %Hl(efw”)@(w/z) (20)

These two equations can be used recursively to generate the scaling and wavelet functions.

We need to consider the case when Hy(z) is a causal FIR filter, i.e., there are only finitely m-any
nonzero ¢ for the filter. Without loss of generality, we assume that cx # 0 when & € [0, K] where
K is a positive odd integer. The scaling function ¢(t) can be nonzero only on [0, K] due to the finite
duration of the sequence {cx}. The base wavelet function obtained through ¢(t) is also compactly

supported. With the FIR assumption, the fundamental equation for the scaling function becomes
K
P(t) = V2> ck(2t — k). (21)
k=0
The corresponding discrete mother wavelet is given by
K
Y(t) = V2 drd(2t — k), (22)
k=0

We need to find the conditions for the generated wavelet function to produce an orthonormal
basis for a subspace of L2(R) for function approximation and signal representation. Interestingly
enough, the dyadic orthonormal wavelet functions can be related to binary tree structured QMF
banks constructed from the two basic FIR filters which determine the scaling function and the

wavelet function.

Figure 1 (a) shows a three level dyadic tree structured QMF bank for wavelet transformation.
The input sequence z(n) is decomposed into different resolutions by passing the signal through

the QMF bank. The output z;, are the related wavelet coefficients. Figure 1 (b) provides the
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Figure 1: (a) Wavelet analysis QMF bank and (b) its equivalent four channel system

Figure 2: (a) Wavelet synthesis QMF bank and (b) its equivalent four channel system



vo(n) Yo(n)
= Ho(2) o2 | b2 2 Fy@
H1 @ X (n) & 5 v{(n) 1 ” y1(n) F1@ xn)
Analysis bank (a) Synthesis bank
A
} }
/2 T 0]

(b)

Figure 3: Quadrature mirror filter bank (a) and its response (b)

equivalent four channel filter bank which is derived from (a) through block transforms. Figure 2
demonstrates the corresponding synthesis QMF bank whose input is the sequence of the wavelet
coefficients while the output is the reconstructed signal Z(n) which is the wavelet representation of

the original signal.

Definition 2.1 (Vaidyanathan [15] p196) A filter bank is said to be a perfect reconstruction
system if its transfer function is a pure delay, free from aliasing, amplitude distortion and phase

distortion, i.e., if £(n) = cz(n — ng).

Definition 2.2 (Vaidyanathan [15] p288) A rational transfer matriz H(z) is said to be parau-
nitary if

H(z)H(z) = dI, for all z (23)
where d is a constant, I is the identity matriz.

The QMF bank in Figure 3 is a general setting. The reconstructed signal is given by
1
X(z) = 3lHo(2)Fo(2) + Hi(z) F1(2)]X ()

43 [Ho(~2)Fo(2) + Hy (=) (2)) X (~2) (24)
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The X (—2z) term represents the aliasing component of the system due to decimation of the input

signal z(n). The matrix notation of the above is

o sl 5, ][]

The conditions for this filter bank to be free of aliasing are the following [15],
Fo(z) = Hi(—2), Fi(z) = —Ho(-2), (27)

which cause the coefficient of the X (—z) to be zero and thus cancel the aliasing component. In
fact, only the filter Hy(z) needs to be designed for the system and the rest filters are given by the

above relation. If we further assume that Hy(z) be power symmetric, i.e.,
Ho(2)Ho(2) + Ho(—2)Ho(—2) = 1, (28)

and assign
Hi(z) = —2z N Hy(-2) (29)
where N is an odd integer, then, the transfer function of the QMF bank reduces to a pure delay of

N unit time. Thus, Z(n) = z(n — N) and the QMF bank forms a perfect reconstruction system.

The following theorem is a revised version of a theorem due to Vaidyanathan [15, p530].

Theorem 2.1 (Vaidyanathan [15] p530) Let Hy(z) and Hi(z) be causal FIR filters, then the
scaling function $(t) and the wavelet function 1(t) generated by the QMF bank of Figure 1 and
Figure 2 are causal with finite duration Kby. Further, if Ho(z) and Hi(z) satisfy the parauni-
tary condition, |Ho(1)| = V2 and Hy(e?*) # 0 while |w| < 7/2, the wavelet functions ¥;,(t) are

orthonormal.
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The condition imposed for orthonormality of wavelets can be relaxed when the number of levels
of the QMF tree is finite, in this case, both the scaling function and the mother wavelet function
are obtained through finite recursion by using Equation (19) and Equation (20) respectively, i.e.,
the paraunitary condition alone is enough to guarantee the orthonormality of the wavelet functions.
A proof of this fact in the frequency domain can be found in [15]. As a matter of fact, this is the
usual situation in practical application and implementation.

We summarize the conditions for compactly supported scaling functions and wavelets to be
orthonormal based on the theorem above and the properties of AC matrices of the two channel

QMF banks as a lemma as follows.

Lemma 2.1 A compactly supported scaling function and wavelets generated through the finite re-

cursion are orthonormal if the matriz

_ | Ho(e™)  Hi(e")
7'l(“-")_ Ho(ej(w+7r)) Hl(ej(w-+-7r))

is paraunitary for all w for the two-channel quadrature mirror filter (QMF) bank.

This is the constraint that the parameters ¢; should satisfy. In particular, the cross-filter

orthonormality implied by the paraunitary property, is satisfied by the choice of
Hi(z) = —2 K Hy(-2z71), K odd (31)
or in the time domain,
hi(k) = (=1)*ho(K — k). (32)

As we can see from the above, both the scaling function and the wavelet function depend on the
selection of {cx} for k € [0, K]. As a consequence, the dilations and shifts of the mother wavelet

depend on the selection of this set of parameters subject to the paraunitary condition imposed on

the filters of the QMF bank.
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3 Optimal Discrete Wavelet Basis with Compact Support

In this section, we parameterize the discrete wavelets, introduce an additive information measure

and derive the information gradient for computing the optimal basis for wavelets.

3.1 Parameterization of Wavelet Functions and Information Measures

We first introduce a distance measure for optimization purpose. Inspired by the work in [2], we

define an additive information measure of entropy type and the optimal basis as the following.

Definition 3.1 (Coifman et al [2]) A non negative map M from a sequence {f;} to R is called

an additive information measure if M(0) =0 and M(X; fi) = >o; M(fi).

Definition 3.2 Let z € RN be a fized vector and B denote the collection of all orthonormal bases
of dimension N; a basis B € B is said to be optimal if M(Bz) is minimal for all bases in B with

respect to the vector .

We shall define a distance measure between a signal and its decompositions to subspaces of

L?(R) motivated by Shannon entropy (Shannon’s formula) [6]

H(X) = —~ > P(z)log P(z (33)
reX

which is interpreted as a measure of the information content of a random variable X with distri-

bution P, = P in information theory.

Definition 3.3 Let H be a Hilbert space which is an orthogonal direct sum of its subspaces H;
H=@&) H, (34)

and let B be a basis spanning H; a map £ is called decomposition entropy if

”'Uz” ”'Uz”
2 T B e (35)
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forv e H, ||v|| #0, such that

v = EBZW’ v; € Hj, (36)

and we set

plogp =0, when p =0. (37)

Entropy is a good measure for signal concentration in signal processing and information theory.
The value of exp £(v, B) is proportional to the number of coefficients and the length of code words

necessary to represent the signal to a fixed mean error and to error-less coding respectively. The

: 2 . aqe . >, . -« -
number %Iy is the equivalent probability measure in the decomposition entropy which is the

stochastic approximation of Shannon entropy since the density function of the signal is unknown.
For a source of a finite number of independent signals, such as a digital image considered as a source
of independent pixels, its entropy is maximum for uniform distribution 7, p42]. If the entropy value
is less than the maximum, then, this implies that a higher concentration of the signal energy over
certain bands exists. In our formulation, energy concentration is identified with a model of lower
order or networks with less complexity. The implication of using entropy as a performance measure
takes advantage of the nonuniform energy distribution of the signal or system in consideration over
its energy spectrum. The optimization of the wavelet basis finds the suitable wavelet for a certain
class of signals which have energy concentration at certain frequency bands. In other words, we
are seeking a representative of a certain class of signals to generate suitable subspaces in which the
decomposition entropy is minimized or equivalently that the energy of the signal is concentrated.

Let () be the mother wavelet function and let ¥(t) represent the orthonormal discrete wavelet
basis of L? generated by dilation and shifting of (t). Sirxﬁlarly, we define ¥; to be the basis of
Hj;. We write ¥(t) = {9;,(t)} and ¥;(t) = {1;,(t)}icz respectively. We treat both ¥(¢) and ¥,

as operators and thus define the following.

Definition 3.4 Let ¥ be a basis given as above; a basis operation is defined to be a map from L*(R)

to a set of real numbers, i.e., U(t) f(t) = {fj1};1ez where fj; = (f(t),¥;.(t)) for all f(t) € L2

13
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Figure 4: Mesh structure of the projection space

Consider Vj, the subspace of L?(R), with
V=R, H; (38)

and Equation (14), and let M and N be appropriate positive integers. If we truncate the approxi-

mation in Equation (14) to a scale up to M, we have

M N
f@)y= >0 > wiw(). (39)

j=—MI=—N

The subspaces used to approximate the function f(z) has a mesh of size (2M + 1) x (2N + 1) as
in Figure 4.
Given a function or signal f(t) € L?(R) and a base wavelet function 1(t) with a finite mesh of

size (2M + 1) x (2N + 1), we decompose the signal into the orthogonal subspaces as

M N
F& = >0 3 fiubj). (40)

j=—MI=—N

We are going to find the optimal wavelet base function (t) for a given signal f(¢) such that the
additive information measure M is minimized. The result of the base operation ¥ f(t) appears as
the weights on the nodes of the mesh. The weights on the vertical line with coordinate 7 form the

number set produced by U, f(t).
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Although the decomposition entropy is a good measure for the “distance”, it is not an additive
type of map because the norm |[v]| is used to scale the vector. We thus further introduce a cost

functional

M¥,0) = =3 |lv;1* log [|v; 1 (41)
j
which relates to the decomposition entropy through

E(v,T) = |lv]| 2 A(®,v) + log [|v]|* (2M + 1). (42)

As shown in the expression above, the cost functional A takes the wavelet basis ¥ and the signal
vector v as its arguments. For any fixed signal, it is a functional of the basis and hence that of
the wavelet function 1(¢). The function in (41) is an additive measure. Since the two functionals
above share the same set of minimal points, we minimize the functional A(¥, f) to find the optimal
wavelet basis through multiresolution decomposition of a given signal of finite energy.

The weight of the decomposition of the signal f(t) on a subspace H; is measured by a subnorm

|| f;1| defined as

1561 = || Pa, £ 1)) (43)
where
N
1517 = > fA. (44)
=—N

Similarly, the norm of the decomposed signal is given by

M

IFO1F = > 15112 (45)

j=—M

3.2 Sensitivity Gradient of Wavelet Components

We need to further find %’2};—’ which is a measure of the sensitivity of the components of the signal

decomposition with respect to a wavelet basis versus the change of the defining parameter set of the
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mother wavelet. One can compute this quantity through numerical methods from the relations and
definitions. Based on the definition of information measure and the properties of QMF discussed
earlier, we derive an explicit expression for analyzing the sensitivity of a dilated and shifted wavelet

function versus the parameter set as follows.

Lemma 3.1 The sensitivity gradient %Ci’i of the component v;; of the wavelet basis ¥ with respect

to the parameter c 1s given by

%’l B W;[(—l)"—’“¢(2—j“t—2l—n)

+ (~1)"Vaek (22 — 4l — 20— k)] (46)

Proof:

From the fundamental equation of wavelets (22) and the wavelet basis function,

i o7 O —j+1p _ o7 _
Bt = VaI Zn hi(n)$(2-9+1 — 21 — ) (47)
or
i _ \fa57T [ahl_(”) ~j+1y _op _ O sig-itly o _
o 2-J zn 9, (2 t—2l —n)+ hi(n) aqus(2 t—2l—n)|. (48)

From Equation (21), we have

96(t) _ V2¢(2t — k). ) (49)
dek
hence,
i¢>(2—J'+1t -2 —n) = V22792 — 4l — 2n — k). (50)
c’)ck

We next need to find ﬂ(%cﬂl_ From the time domain relation (32) of the QMF, we have ,

hi(n) = (=1)"ho(K —n) (51)
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with hg being compactly supported on [0, K]. Thus,

0

hl (n) = a—Ck

(=1)"cK-n (52)

and there is only one nonzero term when K — n = k. This yields,

6h1 (n)
de

= (—1)K-F, (53)

The lemma is proven through (50) and (53).

This lemma establishes a direct link between the rate of change of the components in the basis
¥ and the variations of the parameters in the fundamental equations of wavelets, which leads
to the next theorem. We introduce the following theorem to show the relationship between the
information measure and the parameter set {cy}. The relation to be described shall provide a clue

for developing an algorithm to find the optimal mother wavelet function for signal representation.

Theorem 3.1 Let \(-,-) be the additive information measure as defined in (41) and f(t) € L*(R)
be a fized signal. Let [0, K] be the compact support for {cx} and let U be the corresponding wavelet
basis from dilations and shifts of the mother wavelet (t). Then the gradient of the information

measure with respect to the parameter set {cx} for the given signal is given by

oA, f (1))

L = VY Y log2 511
k i1

s (=D * (F(), g2t =2 = n)) |

+(=1)"ex—n (1), 627742 — 4l — 2n — k)] . (54)

Proof:

By the chain rule, we have the information gradient

OMY,J() _ 5~ ONL (1) DL

55
Fox T (55)
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The definition of information measure A(f(¢)) in (41) yields

(Y, f(t))

PTG —log | f5]I* — 1
J

= —log2|;l? (56)

with 2 being the base of the log function. We apply the chain rule again,

fslle o 2
Jdeg Oy, ;fj’l

= 2Zf], af“ (57)
We have so far
TS _ 2% S leg2 51 At (59)
Since

the result from the previous lemma concludes the proof.

This theorem demonstrates an explicit relation among the gradient of the additive information
measure, parameter set {cx} and the measured signal f(¢). It points to the direction for updating the
parameter set to reduce the information measure and thus will facilitate the search for the optimal
wavelet basis. This algorithm starts by assigning an initial set of parameters which form the low
pass filter of the QMF bank which is followed by the generation of both the scaling function ¢(¢) and
the mother wavelet 1(t) through a recursive process. The wavelet decomposition is implemented
through passing the input signal through the QMF bank composed of Hy(z) and Hy(z). The flow

chart in Figure 5 describes this process.
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Figure 5: Flow chart for computing (%)
4 Existence of the Optimal Wavelet Basis

An existence theorem is proven in this section through the decomposition of unitary matrices and

lattice structures of QMF.

4.1 Decomposition of Unitary Matrices

We shall show that the paraunitary matrix discussed earlier can be decomposed to its minimum
forms and thus be parameterized for the optimization purpose. We first introduce some basic
definitions and notations to facilitate the description of our problems. Let F' be a subfield of C
closed under complex conjugation, let U be the multiplication group of two by two unitary matrices

over the ring of Laurent polynomials F(z) with |z| = 1. Define a natural conjugate operation

denoted by ~ which takes the complex conjugate of F' and replaces z by its reciprocal. Denote U
to be the subgroup of matrices in U which have determinant 1 and equal identity matrix when
evaluated at z = 1. Use UT to represent the two by two multiplication group of unitary matrices
over the subfield F'. It is obvious that the aliasing component (AC) matrix in (26) belongs to U.
From the previous definition of a paraunitary matrix, it can easily be converted as a unitary matrix
here with a scaling factor d. Without further explanation, we shall identify those two in the rest

of this section.

Theorem 4.1 (Pollen [12]) For every element M € U, there exist unique

AEUI,BG[1 Okl,CeU
0 =

19



with k € Z such that M = ABC.

The uniqueness holds upon the choice of the parameter k£ of matrix B. To proceed further, we
define the order of a matrix in U to be the highest order of the Laurent polynomial appearing in
the matrix. This theorem shows [12] that we can factor the matrix in U into the product of a zero
order polynomial matrix, a monomial matrix and a matrix which has unit determinant and is equal
to the identity matrix upon evaluation at z = 1. The process can be repeated when the order of

the factor C is greater than one. Hence, we may have
M = ABC
= ABABC (60)

= ABAB1A3By - ApBpCp,

where m < deg(M). The matrices in U have a nice property of being able to be expressed as a

unique product of a minimal number of simple factors in U.

Definition 4.1 A matriz X € U is called a simple factor if its degree is not more than one.

Lemma 4.1 A 2 x 2 matriz X is a simple factor if

a+(l—a)z b—bz

X=1 _b—b2) a+(1-a)z

with |a — 32 + B2 = ()2

The set of simple factors is a subset of the collection of all the degree 0 or 1 elements of U1.
Proof:
Obviously, X is an identity matrix when z = 1. The circle condition regarding a and b in the
theorem proves that det(X) = 1.

O
The topology of the factor is shown here to be a circle when the field is real, or a 2-sphere for
complex field. The set of all simple factors is a subset of the set composed of all the matrices of

degree zero and one.
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The unique factorization theorem for second order matrices in U due to Pollen is introduced

here without proof for the parameterization of the unitary matrices.

Theorem 4.2 (Pollen [12]) Let M € U with deg(M)> 0, then there ezist simple factors A; and
B; such that

M = A;B1AsBy - Ay By

This expression is the factorization of M as a product of 2m simple factor elements and factor
inverse. Furthermore, the factorization is unique. A slightly weaker form of the decomposition is
that M is factorized in to a product of m elements of degree one, i.e., M = C1Cs - - Cy,. However,

the elements may not be simple factors.

This theorem implies that the original parameters of the matrix can be parameterized by the
factors in a simple form and the factors can be derived from the coefficient matrices of the original
unitary matrix M. This property is especially useful since we consider the paraunitary property of
the filter transfer function Hy and H; on the unit circle in the z plane which falls into the realm of

this unique factorization theorem.

4.2 Givens Rotation and QMF Lattice Structures

This section intends to transform the constrained optimization of the optimal wavelet function into
an unconstrained problem through parameterization. The decomposition theorem shows that it is
possible to formulate the problem with z on the unit circle, which is convenient to be treated by
trigonometry functions. We need to find an appropriate mapping between the parameters of the
QMF and the corresponding set of unconstrained parameters on the unit circle. We then can apply
the numerical procedure discussed earlier to find the right QMF bank and thus to find the optimal
wavelets. One of the convenient ways is to use Givens rotation as follows.

From the decomposition theorem 4.1, for any matrix in U with degree greater than or equal to

one, we can apply the theorem again until all the factors have degree zero or one as defined above.
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Figure 6: Block structure of the unit factor

c=cos O

s=sinem

Figure 7: A structure block of Givens rotation

The resulting factors are of the form of a 2 x 2 paraunitary transfer matrix

A(z) = [ (1) 2_1 ] . (61)

Figure 6 shows the block structure of this basic factor in U. We notice that the product of two
unitary matrices is still unitary. We further introduce the transfer matrix

_ cosl,, sinl,, ]
R = [ —sinb,, cosb,, } ’ (62)

where 0,, is real. This is the Givens rotation which is used to parameterize the AC matrix on the
unit circle. The block structure of the Givens rotation is shown in Figure 7. It can be easily shown
that the determinant of the AC matrix (26) is B2~K where § is a constant coefficient for the low
pass filter Hy(z) of degree K. At most, the AC matrix has K such factors in its decomposition

form.

Let Hk(z) denote the 2 x 2 aliasing component matrix of degree K; the factorization through
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Givens rotations is given by

10

HK(Z) = aR0A0R1A1 e RK_lAK_lRKAK 0 +1

; (63)

where « is a constant. The structure of the factorization is a cascade system in which the basic
blocks R; and A(z) appear alternatively.

The parameters of the QMF bank, i.e., of the low pass filter Hy(z), are functions of those
angles 6, with m runs from zero to K. The number of parameters of the QMF and that of the
factorization through applying Givens rotation are the same. Hence, the parameter set {c;} can be
expressed as a continuous nonlinear function of those angles which take their values in the closed

interval [0, 27]. We represent the relation as

C = P(9) (64)

where P denotes the nonlinear function of the parameterization, C' and 6 represent the correspond-
ing K + 1 dimensional vectors of parameters. We can minimize (42) through a gradient based

method with

K
A1) _ 5~ aA(gJ(t)) S -

00 o0y

m=0

The optimization of the cost functional (42) turns into an unconstrained optimization on the com-
pact set [0, 2x].

With the parameterization of the low pass filter Hy(z) by the rotation wector 8 over set
[0,27)K+1 ) the existence of the global minimum is guaramteed although the gradient based al-
gorithm may stop at a local minimum. The parameter set C is computed from the final set of
0’s to further improve the optimal mother wavelet 1(¢) and the optimal compactly supported

orthonormal wavelet basis. The next theorem is a main result of this paper.

Theorem 4.3 (Existence of an optimal wavelet basis) Let A(-,-) be the additive information

measure as defined in (41) and let f(t) € L2(R) be an arbitrary finite energy function. Then there
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exists an optimal mother wavelet function ¥*(t) such that, A(¥*, f(t)) = Amin where U* is the

wavelet basis generated by the dilations and shifts of ¢¥*(t).

Proof:

By the definitions, A is continuous with respect to its arguments, ¥, f(¢) and the parameter set
C, the nonlinear function in (64) is a continuous bijection with 8 € [0,27]5+!, a compact set, as
the consequence, the information measure parameterized by the angular vector € is a continuous
functional defined on a compact manifold [0, 27]%*+1, hence, there exists a vector 8* € [0,2n}K+1, at

which, A attains its minimum. The optimal wavelet is thus determined through C, the coefficients

of the low pass filter in the QMF bank.

O

The existence theorem guarantees that the global optimal solution does exist. However, as
mentioned earlier, the computation may end up at a local minimal depending on the starjing
point and thus yields a suboptimal solution which in many cases may still provide satisfactory

performance.

5 Algorithms

We have identified the problem of finding the optimal wavelet basis ¥ with that of finding a
parameter set {cx} such that the additive information measure X is minimized. Once the set {cy}
is determined, both the scaling function ¢ and the mother wavelet function ¢ can be derived
afterwards. Equipped with the theoremsr above, the information gradient is avail-able, and different
optimization schemes can be applied to solve this problem: We have developed a basis selection
algorithm based on the steepest descent method as follows. To simplify notation, we denote the
parameter set {cocy - --cx_1} by a vector C.

Algorithm 5.1 Computation of the optimal wavelet basis

Step 1: Seti:=1,
)\0 = 0,
mesh parameters M, N;
Initialize vector Cy;
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Input f(t).
Step 2: If C; dose not satisfy the constraint,
then, modify C; and repeat Step 2.
Step 3: C; := C;—1 +pi—1%ﬁ‘_l.
Step 4: Compute ¢ and .
Step 5: Compute X.
Step 6: If |)\1 - )\i—ll > €,
1:=1+1, go to Step 2.
Step 7: Output the optimal basis U and stop.

The mesh size is governed by the choice of parameters M and N. Obviously, when M and N turn
to infinity, the supporting subspace spanned by the dilations and shifts of the mother wavelet turns
to the space L2(R). The size of the mesh is identified with the complexity of the resulting wavelet
system. The constraint on the parameter c; is dominated by the unitary property of the QMF
bank which can be transformed into a set of algebraic equations. The parameters M and N can be
predetermined by the time and frequency localization property of the signal in consideration. We
can also perform an adaptation scheme to generate the system with an appropriate order. This is

realized by a modified algorithm as follows.
Algorithm 5.2 Computation of the optimal wavelet basis with variable mesh size.
Step 1: Seti:=1,
)\0 = 0,
mesh parameters M, N;
Initialize vector Cp;
Input f(t).
Step 2: If C; does not satisfy the constraint,
then, modify C; and repeat Step 2.
Step 3: C;:= Cj— +pi_1£;\_—l.
Step 4: Compute ¢ and .
Step 5: Compute .
Step 6: If |\ — Ai—1]| > €,
1:=1+4+1,
M:=M+1,
N :=N+1, go to Step 2.
Step 7: Qutput the optimal basis ¥ and stop.

This algorithm starts from an initial mesh size determined by M and N in step 1. While updating
the parameter set {C;}, the algorithm adjusts the size of the mesh until the error tolerance is met
to finish the iterative process. The sequence of order updating and parameter updating can be

organized adequately for reducing computation complexity.
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6 Conclusions

This paper has provided a direct approach to construct an optimal orthonormal wavelet basis
with compact support for signal representation and compression. The cost functional, an additive
information measure, is introduced based on the decomposition entropy of the given signal with
respect to an initial wavelet basis. This entropy measures the nonuniform energy concentration of
the given signal of finite energy in the sense of being square integrable. The sensitivity of each
dilation and shift of the mother wavelet function 1(t) with respect to the governing coefficients has
been found, which establishes the gradient of the information measure versus the parameter set.
The parameterization of both the information measure and the mother wavelet allows an explicit
expression of information gradient with respect to the optimization parameters and thus paves the
way to efficient basis selection algorithms.

This methodology of the optimal basis selection in a general setting is useful not only for signal
approximation and reconstruction in L2(R) but also for data compression, system identification and
progressive system modeling. It also finds applications in multiresolution feature extraction and
classification of signals. Our methodology provides means of improving current wavelet applications
by providing a practical approach for generating the optimal wavelet basis. In the context of pattern
recognition, it is also a way to construct a feature space and to partition the signal space according
to its representatives. The results of this research shall appear in a forthcoming paper. The
parameterization of the cost functionals described above is very helpful; other forms of measures

or cost functions may be introduced depending on the contexts of actual physical problems.
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