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ABSTRACT

Economic descriptions of objects are essential for model-based ATR. We develop economic target descriptions
based on high range resolution target returns, utilizing wavelet multiresolution representations and Tree Structured
Vector Quantization, in its clustering mode. The algorithm automatically constructs the multi-scale aspect graph of
the target, which is a most efficient model that guides the on-line ATR algorithm. This results in a progressive coding
of the target model information and in an extremely efficient, hierarchical indexing of the stored target models. As a
final outcome we obtain extremely fast recovery, search and matching during the on-line ATR operation. In addition
these scale space (or multiresolution) representations can be used to generate target fingerprints across a range of
scales, unavailable heretofore, which aid substantially in target recognition even with occluded or spurious data.

We have successfully addressed the problem of reducing the target model representations with respect to viewpoint
variations and other sensor parametric variations. Our method can be viewed as a quantization of the space of sensing
operations. The resulting aspect graph is a (relational) graph representation of this quantization. Aspect graphs
of target radar returns are generated algorithmically. Since our off-line model/parameter tuning methods are based
on general vector quantization, our methods extend naturally and efficiently to multi-sensor data: LADAR, TV,
mmWave, SAR, etc..

We also investigate, the so-called new target insertion problem in a fielded ATR system, and the required fast
reprogrammability of the ATR system. We compare the performance and cost (both computational and hardware) of
ATR algorithms based on the parallel use of single target aspect graphs vs ATR algorithms using the combined aspect
graph for the group of targets under consideration. We show that efficient real-time ATR algorithms can be con-
structed using the aspect graph of each target in a parallel computation. The resulting architecture includes wavelet
preprocessing with neural networks postprocessing. We use synthetic radar returns from ships as the experimental
data to demonstrate the performance of the resulting ATR algorithm.

1 INTRODUCTION

High range resolution radar returns contain in their structure substantial information about the target which
can be used to better identify complex targets consisting of many scatterers. This applies to many forms of radar
signatures, including the amplitude of pulsed radar (PR) returns, the phase of pulsed radar returns, Doppler radars
(DR), synthetic aperture radar (SAR) returns, inverse synthetic aperture radar (ISAR) returns, millimeter-wave
(MM-wave) radar returns. With the increasing resolution of modern radars it is at least theoretically possible to
store many of the possible returns gii.e. returns organized according to aspect, elevation, pulsewidth etc.) of a
complex target and use them in the field for target identification. The advantage of the increasing radar resolution
is the availability of more detailed information, and ultimately of specific features, characteristic of the radar return
from a specific target. The disadvantage is that these very detailed characteristics require an ever increasing amount
of computer memory to be stored. The latter not only results in unfeasible memory requirements but it also slows
down the search time in real field operations.

It is therefore important to develop extremely efficient ways to compress the representations of high resolution
data returns from real targets, and to design efficient search schemes which operate in a progressive manner on the
compressed representations to recover the target identity. Wavelet theory [1]—{9] offers an attractive means for the
development of the required multi-resolution representations. This can be roughly explained by the fundamental
property of wavelet representations of signals to uncover the superposition of these signals in terms of different
structures occurring on different time scales at different times (see [14, 17, 25] for details). Successful methods to
provide effective compression of radar returns must address also the substantial variability of the returns with respect
to aspect, elevation and radar pulsewidth. It is therefore physically meaningful to cluster the radar returns from
various viewpoints into equivalence classes using a measure of similarity. The resulting quantization of the signal
space (i.e. of the radar returns) characterizes the limits of discriminating between returns from different targets
using information about the viewpoint; in essence if we insist on extremely fine quantization cells we are modeling
the radar sensor noise and not the underlying complex target. A systematic application of these two fundamental
techniques leads to the development of economic radar target models.
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The problem of automatic target recognition based on high range resolution (HRR) radar returns when a large
number of targets is possible, presents formidable algorithmic and computational difficulties. A key step in the
design and implementation of high performance ATR algorithms is the organization and construction of efficient and
economic target models which will result in significant search speed-up and memory reduction. In this paper we use
as target models scale space aspect graphs constructed using the two basic techniques mentioned above (i.e. wavelets
and hierarchical clustering) as describe in our work {14, 17, 25).

In addition to economic target models we must address the development of massively parallel algorithms for
ATR which efficiently utilize these target models. In this paper we develop such algorithms operating in parallel,
where the target data are processed concurrently as they are received by algorithms tuned to a particular target
model. Ve demonstrate that such massively parallel algorithms have superior performance than algorithms based
on a compound model of the entire target database constructed with the same efficiency.

Our target representations lead naturally to classification schemes that are progressive. That is, a small amount
of information, in the form of a coarse approximation to the return, is used first to provide partial classification
and progressively finer details are added until satisfactory performance is obtained. This results in a scheme where
small amounts of computation are used initially and additional computations are performed as needed, resulting in
extremely fast searches while preserving high fidelity in the search. Each target is reperesented by its multiresolution
aspect graph [15], which is a quantization (produced by clustering) of the space of HRR returns and view points.
Using an efficient Tree-Structured Vector Quantization (TSVQ) algorithm we cluster the returns from the various
viewpoints into equivalence classes according to an appropriate discrimination measure. This approach automatically
accounts for the discrimination capability of the sensor and in effect it performs a quantization of the sensory data
which reduces the data input to the classification algorithm by orders of magnitude. In each equivalent class a
“paradigm” is selected and the collection of these typical pulses arranged in a multi-scale tree constitute the target
model that is guiding the on-line classification search. In its parallel version our scheme allows for the comparison
of the sensor data to many hypothetical targets at the coarse resolution and to a progressively smaller candidate
set as the resolution is refined and more detailed features are revealed. We therefore achieve progressively finer
classification with a constant computational resource since the coarse comparisons are faster per target hypothesis
as compared to the finer ones.

We demonstrate our results by experiments with highly accurate synthetic returns from the Naval Research
Laboratory code 5750 ship radar return simulator. We use a two ship example but the results generalize easily to
many ship senarios. We show confusion matrices computed which demonstrate the high performance of the resulting
ATR algorithm. In its parallel multi-target model implementation the algorithm also solves the so called “new
target” insertion problem. Indeed, the addition of targets is handled by adding the corresponding aspect graphs and
by passing the sensor data through these models; no new expensive off-line training of the algorithm is required.

2 EFFICIENT TARGET MODELS FOR RADAR RETURNS

A key construct in our approach to economical target model hierarchies is that of an aspect graph [15], which is
a hierarchical data structure, indexed by sections of viewpoint, that stores compressed target formats. A general
definition of the aspect graph [15] is that it is a graph structure in which there is a node for each yeneral view of the
object as seen from some maximal connected cell of viewpoint space, and there is an arc for each possible transition
across the boundary between the cells of two neighboring general views. A general viewpoint is defined as one from
which an infinitesimal movement in any possible direction in viewpoint space results in a view that is equivalent to the
original. Under this definition, the aspect graph is complete in that it provides an enumeration of the fundamentally
different views of an object, vet is minimal in the sense that the cells of general viewpoint are disjoint. Thus the
aspect graph is equivalent to a parcellation (tesselation) of viewpoint space into general views. Considerable research
has been performed in recent years on algorithms that compute the aspect graph and its related representations [15].
However, todate these conventional methods have addressed only the ideal case of perfect resolution in object shape,
in the viewpoint, and the projected image, leading to a set of important practical difficulties [15], [25].

Almost exclusively, previous work on aspect graphs has focused on computer vision and object geometry (11, 15].
Our notion of the aspect graph as developed in (14, 17, 25] is an extension of these concepts to sensors other than
cameras such as radar. Earlier work by one of the authors has addressed these very points successfully for FLIR
sensors [18].

The various algorithms that have been developed may be classified using three properties: the object domain, the
view representation, and the model of viewpoint space. We use object domain and the 2-D viewing sphere in our
algorithms. According to a panel discussion [15] on “Why aspect graphs are not (yet) practical for computer vision”
held at the 1991 [EEE Workshop on Directions in Automated CAD-Based Vision concluded that an important
problem has been the fact that aspect graph research has not included the notion of scale. Qur results reported in
(14, 17, 25] and in [18] incorporate scale in the construction of the aspect graph in a manner consistent with the
sensor considered. Indeed we have developed an algorithmic construction of scale space aspect graphs. Scale space
aspect graphs are equivalent to families of viewpoint space tesselations parameterized by scale. It is precisely these
scale space aspect graphs that we use in this paper as efficient target models to develop high performance model
based ATR algorithms.

The key idea on which our target modeling is based, is the physical principle that the view of the target signature
remains invariant over regions of viewpoint and resolution, depending on sensor physics, environmental conditions.
etc. The fact that the field sensor data are noisy further reinforces the argument. In our algorithmic construction [25]

38/ SPIE Vol. 2234



we first determine viewpoint equivalence classes according to a distortion measure and then identify the significant
radar return features that remain invariant in the viewpoint tessels (see Figure 1) determined by the equivalence
classes. In this iterative process, refinements can result, causing further subdivision of a class. Our algorithms work
across multiple resolutions. Furthermore, we can compare characteristic radar returns from each equivalence class
of each target to test if the resulting cluster has acceptable classification performance; this brings the characteristics
of the sensor directly in the target model hierarchy. Motivated by existing terminology in computer vision [11, 15]
we call the resulting viewpoint equivalence classes aspects. If we arrange the aspects as nodes in a graph we can
connect them with links to obtain what we call the aspect graph of the target. The links denote the appearances of
new features, or the disappearances of features relating the transitions between various aspects. This precompiled
object 1s then used to guide the target classification process on-line.

We now turn to the explicit description of our economical target models. We employ wavelets and Tree Structured
Vector Quantization. We refer to (2], [3], [9] for wavelet fundamentals. In such a multiresolution analysis [2] one
has two functions: the mother wavelet ¥ and a scaling function ¢. We denote by f the generic radar pulse, by
U = 2772927 — ), ¢ n(z) = 27™/2¢(27™z — n) the functions obtained by dilation and translation from
¥ and ¢. The coeflicients of expanding f in terms of the Ymn are cm n(f), while ap, o(f) are the coefficients of
expanding f in terms of ¢, ,. Usually one denotes by V,,, the space spanned by the ®m n- The spaces V,, describe
successive approximation spaces, ... Vo C Vi C Vy C Vo1 C V_s..., each with resolution 2™. This sequence of
successive approximation spaces V;, constitutes a multiresolution analysis [2, 9]. W,, denotes the space which is
exactly the orthogonal complement in V;,,_; of V,,. These concepts result in a fast algorithm for the computation
of the ¢y (f) (or ¢™) and am n(f) (or a™) [2]. The whole process can also be viewed as the computation of

successively coarser approximations of f, together with the “difference in information” between every two successive
levels.

=
“ : Restuion
' : Restuson'

Figure 1: Illustrating a multiresolution TSVQ by splitting Voronoi cells based on different resolution data.

We generated radar return databases for various different ships, utilizing the NRL Code 5750 ship radar return
simulator. In generating the synthetic data we kept the radar fixed and turned the ship, including the motion induced
by sea waves. We varied the aspect angle from 0° to 360° in increments of 0.5°. This allowed for large variation in
the number and appearance of dominant scatterers. Each database contained 720 pulses at fine resolution.

Let § denote the set of discretized radar pulses. The fine resolution data will be denoted by S°f(n), n € I°,
where 1% = {1,2,.--,27}, is the index set of the fine resolution data. We shall let N = 27 denote the number of
samples in the fine resolution data, where J is the maximum possible number of scales that we can consider. In
practice one considers scales up to J* where J* < J. Respectively for each resolution m we denote by I™ the
subset of J® where sampled values of the m*® resolution pulse representation S™f are computed. I™ is obtained
from I™~! by decimation. We used N = 128, and J* = 3. This gives us four scales (including the given fine
scale) m = 0,1,2,3, with vector lengths 128,64, 32, 16 and resolutions 10 ns, 20 ns, 40 ns, 80 ns, respectively. We

identify a0 with the vector of sampled data S°f. Then we use the pyramid scheme [2] to recursively compute the
successive approximations S™f to the pulse f at various scales m and the residual pulses W™f. As we proceed
with this analysis step from scale m to the coarser scale m + 1, the space of signals becomes smaller, and the length
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of vectors is halved. Thus the algorithm recursively splits the initial vector al representing the sampled pulse S°f
to its components ¢c™ at different scales indexed by m representing the wavelet residuals W™ f: the multiresolution
scheme replaces the information in each pulse f = S°f with the set {(Wrf, m=1,2,--..J* S f}.

Spherical Resolution
Quantization Cells

Aspect Quantization
Tessels

Figure 2: Illustrating a multiresolution aspect graph for radar ship data.

We then construct the scale space aspect graph for each ship target by developing a hierarchical, tree-structured
organization of radar returns, which utilizes the multiresolution representations provided by wavelets. Vector Quanti-
zation (VQ) is primarily used as a data compression method. By properly defining a rate-distortion measure between
the respective sample distributions one can reinterpret the process of vector quantization in the context of optimal
decision theory. In fact, this flexibility of the definition and interpretation of rate and distortion in Shannon’s theory
has recently led to very beneficial cross-fertilization between these two areas, in particular between tree-structured
vector quantizers {10] and classification {decision) trees [12]. VQ in addition is a clustering algorithm. Indeed the
codewords, represented by the centroids, can be thought of as representatives of the equivalence class represented
by each cell of the VQ (each Voronoi cell). It is in this sense that we use VQ in our approach to the problem of
hierarchical representations for HRR radar returns.

A useful method for designing the tree structure is based on the application the Linde~Buzo—Gray (LBG) algorithm
{10] to successive stages using a training set. We have used a variant of this method which is of the “greedy” (13]
varlation. We first perform a multiresolution wavelet representation of the radar pulses, based on the selection of a
mother wavelet. This allows us to consider each pulse reconstructed at different resolutions S°f, S'f,---, 57" f. We
then proceed by splitting the signal space at various resolutions in cells as indicated pictorially in Figure 1. The data
vector space (signal space) is partitioned into cells, or collections of data vectors which are determined by the repeated
application of the Linde-Buzo-Gray (LBG) algorithm. LBG is first applied to the coarsest resolution representation

of the data vectors {S7"f, f e S}. The resultant distortion is determined based on a mean squared distance metric,
and is computed using the finest resolution representation of the data vectors. The cell (equivalence class of coarse
resolution representations) which is the greatest contributor to the total average distortion for the entire partition
is the cell which is split in the next application of LBG. A new Voronoi vector 1s found near the Voronoi vector for
the cell to be split and is added to the Voronoi vectors previously used for LBG. LBG is then applied to the entire
population of data vectors, again using the coarsest representation of each vector. These steps are repeated until the
percentage reduction in distortion for the entire population falls below a predetermined threshold. The partition in
the coarsest resolution is then fixed, and further partitioning continues by splitting the cells already obtained based
on finer resolution representations of the data vectors in the cell. The algorithm then iterates through these steps
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until the allotted number of cells have been allocated, or until total averagé distortion has been reduced to a requisite
level. Each new laver in the tree corresponds exactly to partitions based on the next finer resolution representation
of the data.

The algorithm constructs a hierarchical organization of the radar return data as a tree, which is conformant with
the wavelet multiresolution data representations. This representation can be constructed for a single target or for a
collection of targets. In the former case this construction produces a “model” for the target as viewed by the radar
sensor. In the later this construction organizes an entire database of target radar returns. The resulting tree is our
aspect graph of the target(s). As illustrated in Figure 2 a multiresolution (or scale space) aspect graph for radar ship
data results naturally from our construction. Here the concentric spheres designate different resolutions (scales). The
cells on these spheres illustrate aspect equivalence classes for the radar signals (returned pulses). These equivalence
classes mean that the pulses in these clusters are difficult to discriminate due to their similarity. As we move inwards
in this graph, the outside cells split as we can now get further characteristics of the target based on finer resolution
information on the pulse. These characteristics are related to dominant scattering centers. To construct the aspect
graph we select as the representative from each equivalence class, the radar pulse corresponding to the centroid of
the corresponding Voronoi cell. The resulting graph has geometrically the appearance of a tree; a typical one is
depicted in Figure 3. The nodes (cells in these figures) correspond to aspect-elevation neighborhoods for which the
corresponding returned pulses are too similar to be separated. The nodes are given for various resolutions as well
as the percentages of pulses that were clustered in each cell. It is clear from this discussion that the aspect graph

O = Leaf Cell B = Block .
Ship1
Data Set

Scale 0
(Coarsest) B4 B2

Scale 1 BS§ /

Scale 2 B B3

E O &

(Finest)

Figure 3: Aspect graph (as a tree) for the shipl radar data set

is a reduced but accurate model of the target and can be used to guide the ATR process in model-based ATR. In
such an application the received pulse is compared with the “canonical” pulse at each node sequentially as the ATR
process evolves. As explained and demonstrated in detail in {14, 17, 25] these scale space aspect graph radar target
models are not only efficient but very accurate.

3 HIGH PERFORMANCE MODEL BASED ATR ALGORITHMS

The efficient radar target modeling techniques and model database organization described in the earlier sections
will be used in this section to design high performance ATR algorithms. As explained in detail in [16, 18] the mul-
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incoming sensor data are first processed by a wavelet preprocessor and then are input to the tree. At each node of
the tree, the distance between the sensor data and the Voronoi vectors (i.e. centroid pulses) of the “children nodes”
is computed and the input pulse progresses to the node corresponding to the “child” with the smaller distance and
the process repeats. When the incoming pulse reaches a leaf node it is declared as Shipl or Ship2 according to the
labeling that has been assigned to that leaf node.

We shall refer to this method as the Combined Aspect Graph (CAG) Method in order to emphasize the
fact that a single aspect graph is constructed for the entire database. It is a reasonable approximation to the more
systematic method described and proposed in [25]. Its advantages are: (i) It includes all relations between the data;
(ii) Due to its tree hierarchy it produces decisions in time logarithmic in the number of leaf nodes (roughly); (iii)
It is based on an approximation of the multidimensional distribution of the data from all targets. Its disadvantages
are: (i) The multidimensional distribution may “hide” the distinguishing characteristics of individual targets; (ii)
The leaf labeling is ad hoc; (iii) When a new target needs to be encountered a costly redesign and retraining must
be performed. The most serious drawback is (iii) which is often unacceptable despite the fact that it is performed
off-line.

We have tested this CAG method on high accuracy synthetic data. The NRL Code 5750 digital simulation
model is a flexible tool for experimentation, and it has been used as the basic data generation source for the studies
reported here. This model has been validated against field returns and provides high accuracy simulations. The
digitally simulated ship model consists of over 800 scatterers (for each viewpoint) of a variety of types, including flat
plates, point scatterers and dihedrals. These scatterers are distributed in both range and space in accordance with
their actual locations on a ship. To capture safely all ship pulses we used a range gate of 128 bins corresponding
to a returned signal time duration of 1280 ns. At the finer resolution of 10 ns, and sampling at the corresponding
rate produces 2’ samples per pulse. We generated radar return databases for two different ships, Ship I and Ship
2. utilizing the NRL Code 5750 ship radar return simulator. In generating the synthetic data we kept the radar
fixed and turned the ship, including the motion induced by sea waves. We varied the aspect angle from 0° to 360°
in increments of 0.5°. This allowed for large variation in the number and appearance of dominant scatterers.The
parameters in the synthetic data were as follows. Radar frequency: 16.25 GH z, Elevation angle: .023°, Sea state: 3,
Pulsewidth: 10 ns, Pulse Repetition Interval: 120 ms to 1 s. Each database contained 720 pulses at fine resolution
(720 for training and 720 for testing for each ship). We did not change the range gate and therefore each pulse in
the database has the same time duration. We use different data for designing the aspect graphs and different data
for testing the resulting ATR algorithms.

Figure 4 illustrates the combined aspect graph constructed with the CAG method. The tree has 30 leaf nodes and
we also indicate in Figure 4 the resulting labeling by majority vote. The small number of elements in some nodes
indicates that further study is needed for the optimal construction and labeling of such aspect graphs. This will
be addressed elsewhere. The performance of the resulting ATR algorithm is described by the “confusion matrix”
depicted in Figure 5.

Confusion Matrix

30 Cells:

Ship 1 Ship 2
Ship 1 0.751389 0.248611
Ship 2 0.148611 0.851389

Figure 5: Confusion matrix for the ATR algorithm constructed with the CAG method

The second method uses separately the data from each ship to construct an independent scale space aspect graph
model for each target. The resulting trees are then used in parallel for the on-line ATR algorithm as follows. The
incoming sensor pulse 1s processed by each tree independently in the usual fashion progressing through the parent
to children nodes on the basis of minimum distance. At the end the incoming sensor pulse will reach a leaf node
in each tree. If the distance from the Voronoi vector of the leaf node where the pulse ended is smaller in the tree
representing Shipl, then a Shipl classification is declared. In the opposite case a Ship?2 classification is declared.

We refer to this method as the Parallel Aspect Graph (PAG) Method. Its advantages are: (i) It is extremely
fast and maximally parallel; (ii) On-line training can be easily implemented; (iii) It provides an acceptable solution
to the “new target” insertion problem. Its disadvantages are: (i) It does not account for correlations between target
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models; (ii) The decision scheme is ad hoc.

Scale 0
(Coarsest)

Ship 2
Data Set

Scale 2

Figure 6: Aspect graph (as a tree) for the ship2 radar data set

We have tested the ATR algorithms constructed with this PAG method using the same data as in the CAG
method. The aspect graph constructed for shipl is depicted in Figure

3, while the spect graph constructed for ship2
is depicted in Figure 6. The resulting confusion matrix is shown in Figure 7.

Confusion Matrix

30 Cells

Ship 1 Ship 2
Ship 1 0.948611 0.051389
Ship 2 0.143056 0.856944

Figure 7: Confusion matrix for the ATR algorithm constructed with the PAG method

Comparing the confusion matrices obtained by the two methods we conclude that the parallel aspect graph method
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produces higher performance ATR algorithms. This is somewhat surprising. We even reduced the number of leaf
nodes in each aspect graph, from 30 to 15, in case some “over training” occured and we obtained similarly excellent
confusion matrices from the PAL method, as shown in Figure 8.

Confusbn Matrix

15 Cells

Ship 1 Ship 2
Ship 1 0.938889 0.061111
Ship 2 0.168056 0.831944

Figure 8: Confusion matrix for the ATR algorithm, PAG method, 15 cell trees

Further study is needed in order to systematically analyze these promising methods and properly quantify their
performance, complexity and trade-offs involved. If these findings hold then we will obtain a superior and systematic
method for constructing high performance, maximally parallel model based ATR algorithms. Generalizations and
extensions to other sensors and to multi sensor problems will follow easily.
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