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Abstract

We tnuvestigate the problem of efficient representa-
tions of large databases of pulsed radar returns from
naval vessels in order to economize memory and mini-
mize search time. We use synthetic radar returns from
ships as the ezpertmental data. The resulls extend lo
real ISAR returns. We develop a novel algorithm for
organizing the database, which utilizes a multiresolu-
tion wavelel representation working in synergy with a
Tree Structured Vector Quantizer (TSV(Q), utilized in
its clustering mode. The tree structure 1s induced by
the multiresolution decomposition of the pulses. The
TSVQ design algorithm is of the “greedy” type. Our
ezperiments lodate indicale that lhe combined algo-
rithm resulls in orders of magnitude faster data search
time, with negligible performance degradation from the
full search veclor quantization. The combined algo-
rithm provides an efficient indexing scheme {with Te-
spect Lo variations in aspecl, elevation and pulsewidth)
for radar data which can facilitate the devlopment of
ATR, surveillance and mulli-sensor fusion systems.

1 Introduction

High resolution ship radar returns contain in their
structure substantial information about the target
which can be used to better identify complex tar-
gets consisting of many scatterers. This applies to
many forms of radar signatures, including the ampli-
tude of pulsed radar (PR) returns, the phase of pulsed
radar returns, Doppler radars (DRQI, synthetic aperture
radar (SAR) returns, inverse synthetic aperture radar
(ISAR) returns, millimeter-wave (MM-wave) radar re-
turns. With the increasing resolution of modern radars
it is at least theoretically possible to store many of the
possible returns {i.e returns organized according to as-
pect, elevation, pulsewidth etc.) of a complex target
and use them in the field for target identification. This
Is true for naval targets in particular. The advantage
of the increasing radar resolution is the availability of
more detailed information, and ultimately of specific
features, characteristic of the radar return from a spe-
cific ship. The disadvantage is that these very detailed
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characteristics require an ever increasing amount of
computer memory to be stored. The latter not only
results in unfeasible memory requirements but it also
slows down the search time in real field operations. It is
therefore important to develop extremely efficient ways
to compress the representations of high resolution data
returns from real ships, and to design effictent coding
schemes which operate in a hierarchical manner on the
compressed representations to recover the ship identity.
It 1s our contention that multi-resolution representa-
tions of the radar data, followed by properly designed
hierarchical clustering are key means to achieve both
objectives.

Wavelet theory [1]—[9] offers an attractive means
for the development of such multi-resolution represen-
tations. This can be roughly explained by the funda-
mental property of wavelet representations of signals
to uncover the superposition of these signals in terms
of different structures occurring on different time scales
at different times.

In this paper we describe recent results on hierar-
chical representations of high resolution radar returns
from ships. This is accomplished by developing hierar-
chical clustering schemes using wavelet representations
which are motivated from the physics of radar scatter-
ing [16], in the same way that wavelet analysis of sound
is motivated by the physics of sound and speech signal
generation. In addition we use sophisticated versions
of Vector Quantization (VQ) [11] to further compress
and cluster the wavelet representations of the radar sig-
nals, in a way that permits hierarchical search across
resolutions and a progressive scheme for identification
of the ship (target). For a detailed exposition we refer
the reader to [16].

High range-resolution radar returns can be de-
scribed as complex valued signals of finite duration.
For a complete characterization of a complex target one
can store the whole set of these two dimensional {unc-
tions (pulses) for all possible values of radar pulsewidth
§ (i.e. different resolution), aspect o and elevation e.
Even if one quantizes the three—dimensional space of
8, a, € the required storage is enormous and impractical
for real applications. Qur efforts to date have concen-
trated on amplitude representations only. Given the
amplitude of a high-range resolution radar return, sev-
eral characteristics of the scatterer distribution of the
target can be revealed. Varying the radar pulsewidth



6 changes the resolution of the returned pulse, in the
sense that more (narrow pulse) or less (wide pulse) de-
tails can be distinguished. Varying the view-point (i.e.
the aspect, elevation (a,¢) pair) changes the shape of
the returned pulse, because dominant scatterers have
typically highly directive returns (in space), and be-
cause small variations in aspect produce large varia-
tions in the phase of the signal returned from each
scatterer. Successful methods to provide effective com-
pression of radar returns must address the substantial
variability of the returns. As a consequence, some sort
of averaging (or clustering? is necessary in represent-
ing the more meaningful, slower variation of the radar
return (or the RCS) as aspect and elevation are chang-
ing. It is therefore physically meaningful to cluster
the radar returns from various viewpoints into equiv-
alence classes using a measure of similarity. The re-
sulting quantization of the signal space (i.e. of the
radar returns) characterizes the limits of discriminat-
ing between returns from different targets using infor-
mation about the viewpoint; in essence if we insist on
extremely fine quantization cells we are modeling the
radar sensor noise and not the underlying complex tar-
get.
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Figure 1: Variation of ship radar return vs pulsewidth.

Higher compression rates can only be achieved by
developing coding techniques that are adapted to the
information content of the signals, and to their physi-
cal nature. This requires the organization of the radar
return data in such a way as to represent and separate
the important features of the return. For the amplitude
of ship radar pulse returns, this means the location of
the local maxima and their geometrical characteristics.
In particular we need ways to describe how these local
maxima coalesce as the radar pulsewidth § increases.
This corresponds to changes in the return pulse as the
resolution varies and corresponds to the physical prop-
erty of coherently combining the returns from domi-
nant scatterers as a function of range extent. Such a
coding scheme results in a hierarchical clustering in-
duced by the multiresolution representation, resu%ting
in efficient storage and speedy recovery of the informa-
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tion [16].

Experiments with variable pulsewidths and real tar-
gets, in order to obtain a multiresolution representa-
tion of the ship is not a very practical solution. The
NRL Code 5750 digital simulation model is a flexi-
ble tool for experimentation, and it has been used as
the basic data generation source for the studies re-
ported here. This model has been validated against
field returns and provides high accuracy simulations.
The digitally simulated ship model consists of over 400
scatterers of a variety of types, including flat plates,
point scatterers and dihedrals. These scatterers are
distributed in both range and space in accordance with
their actual locations on a ship. We are interested
in the variability of pulsewidth from a minimum of
10 ns. At a bow-on aspect the ship is approximately
300 ft long, resulting in a range extended pulse return
of approximately 600 ns plus a pulsewidth. To cap-
ture safely all ship pulses we used a range gate of 128
bins corresponding to a returned signal time duration
of 1280 ns. At the finer resolution of 10 ns, and sam-
pling at the corresponding rate produces 27 samples.
We also maintain pulse-to—pulse independence, by se-
lecting the radar pulse repetition interval (PRI) to be
long enough with respect to the correlation time of an
individual scatterer.
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Figure 2: Scale space diagram for ship radar returns

In Figure 1 we show a typical result of
a ship return with transmit pulse widths of
10 ns, 20 ns, 40 ns, 80 ns. In the three-~dimensional
representation shown, we see clearly the coalescence
of the ship scatterers as we move from fine to coarse
pulsewidths. In Figure 2 we have extracted the loca-
tion of the maxima of the ship radar return as a func-
tion of pulsewidth, or equivalently resolution. Uniform
localization ccrresponds to vertical lines. We call dia-
grams such as the one depicted in Figure 2 scale space
diagrams, extending a notion originally introduced by
Witkin in computer vision [13]. Our experiments to
date regarding uniform localization of radar features



are not complete and this issue will be revisited else-
where.

One of the objectives of the work reported in [16]
is to show, by experiments with synthetic data, that
our methodology (combining wavelet representations
with clustering algorithms) provides a substitute which
involves only processing the high resolution radar re-
turns; recapturing in essence the effects of variable
pulsewidth data. This result in itself is an important
finding.

2 Hierarchical Clustering of Multireso-
lution Radar Returns

We refer to [2], (3], [9] for wavelet fundamentals. In
such a multiresolution analysis [2] one has two func-
tions: the mother wavelet v and a scaling function ¢.
We denote by f the generic radar pulse, by Ymon =
27227 — 1), b a(2) = 27™/2$(2- ™z — n) the
functions obtained by dilation and translation from Y
and ¢. The coefficients of expanding f in terms of
the ¥, . are cma(f), while a,, ,,(f) are the coeffi-
clents of expanding f in terms of ¢mn. Usually one
denotes by V,,, the space spanned by the émn. The
spaces V,, describe successive approximation spaces,

VoV Vg € Vo, C V_g..., each with reso-
lution 2™. This sequence of successive approximation
spaces Vp,, constitutes a multiresolution analysis [2, 9).
Wi denotes the space which is exactly the orthogonal
complement in V,,_; of V,,. These concepts result in
a fast algorithm for the computation of the Emn(f)
(or ¢™) and ap, . (f) (or a™) [2]. The whole process
can also be viewed as the computation of successively
coarser approximations of f, together with the “dif-
ference in information” between every two successive
levels.

We generated radar return databases for two differ-
ent ships, Ship I and Ship 2, utilizing the NRL Code
5750 ship radar return simulator. In generating the
synthetic data we kept the radar fixed and turned the
ship, including the motion induced by sea waves. We
varied the aspect angle from 0° to 360° in increments of
0.05°. This allowed for large variation in the number
and appearance of dominant scatterers.The parame-
ters in the synthetic data were as follows. Radar fre-
quency: 16.25 GH z, Elevation angle: .023°, Sea state:
3, Pulsewidth: 10 ns, Pulse Repetition Interval: 80 ms
to 1 s. Each database contained 7,200 pulses at fine
resolution. We did not change the range gate and
therefore each pulse in the database has the same time
duration.

Let S denote the set of discretized radar pulses. The
fine resolution data will be denoted by S%f(n), n € I°,
where 1° C {1,2,---,27}, is the index set of the fine
resolution data. We could subsample the given data
to economize computations but in our experiments we
took I° to be the full set {1,2,---,27}. We shall let
N = 27 denote the number of samples in the fine reso-
lution data, where J is the maximum possible number
of scales that we can consider. In practice one consid-
ers scales up to J* where J* < J. We denote by A7°
the sampling interval for the fine resolution; it can be
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also thought as the resolution of the fine resolution
data. Respectively for each resolution m we denote by
I the subset of I° where sampled values of the m'h
resolution pulse representation S™ f are computed. I™
is obtained from I™~! by decimation; resulting in our
case in [I™| = 27-™ We used N = 128, and J* = 3.
This gives us four scales (including the given fine scale)
m = (,1,2,3, with vector lengths 128, 64,32, 16 and
resolutions 10 ns, 20 ns, 40 ns, 80 ns, respectively.

We identify a0 with the vector of sampled data SOf.
Then we use the pyramid scheme [2] to recursively com-
pute the successive approximations S™ f to the pulse
f at various scales m and the residual pulses W™f.
All signals are digitized and we identify the vector al®
with S™ f and the vector ¢™ with W™ f. As we pro-
ceed with this analysis step from scale m to the coarser
scale m + 1, the space of signals becomes smaller, and
the length of vectors is halved. Thus at scale 1 we
have N/2 = 27-1 samples and resolution Ar! = 2A7°.
At scale m we have N/(2™) = 27-™ samples and
resolution Ar™ = 2™Ar%  Thus the algorithm re-

cursively splits the initial vector a0 representing the
sampled pulse SOf to its components ¢ at different
scales indexed by m representing the wavelet residu-
als W™ f. Thus the multiresolution scheme replaces
the information in each pulse f = S°f with the set
{Wmf1 m = 1)27"'1‘]‘) SJ'f}'

As was shown in [16] the peaks of the radar pulse
coalesce as we vary the resolution from fine to coarse,
in a manner similar to the one observed when we used
variable pulsewidths of comparable resolution; c.f. Fig-
ure 1. This justifies the suitability of wavelet analysis
for radar signals. It was shown in [16], that within
the approximations involved, the “smoothed” return
S7r at resolution J is equivalent to the return due to a
“smoothed” transmit pulse S’ p at the same resolution.

The principal result of this paper is the develop-
ment of a hierarchical, tree-structured organization of
radar returns, which utilizes the multiresolution repre-
sentations provided by wavelets. Vector Quantization
(VQ) is primarily used as a data compression method.
By properly defining a rate-distortion measure between
the respective sample distributions one can reinterpret
the process of vector quantization in the context of op-
timal decision theory. In fact, this flexibility of the
definition and interpretation of rate and distortion in
Shannon’s theory has recently lead to very beneficial
cross-fertilization between these two areas, in particu-
lar between tree-structured vector quantizers $1 1] and
classification (decision) trees [14]. VQ in addition is
a clustering algorithm. Indeed the codewords, repre-
sented by the centroids, can be thought of as represen-
tatives of the equivalence class represented by each cell
of the VQ (each Voronoi cell). It is in this sense that we
use VQ in our approach to the problem of. hierarchical
representations for ship radar returns.

Implementations of the basic VQ algorithm in which
the search is exhaustive are called full-search. In many
VQ systems the time overhead associated with this
search is too costly. Of particular interest is tree struc-
tured vector quantization (TSVQ) (11}, which provides
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Figure 3: Illustrating a multiresolution TSVQ by split-
ting Voronoi cells based on different resolution data.

logarithmic (in the number of datag scarch time vs lin-
ear (in the number of data) search time provided by
full search VQ. TSVQ is a special case of hierarchical
VQ [11]. TSVQ is one of the most effective and widely
used techniques for reducing the search complexity in
VQ. A useful method for designing the tree structure is
based on the application the Linde-Buzo-Gray (LBG)
algorithm [11] to successive stages using a training set.
We have used a variant of this method which is of the
“greedy” (15] variation. More precisely our algorithm
splits the cell which contributes the largest portion of
the current overall distortion.

The algorithm which implements our overall ap-
proach is described in the sequel of this section. We
first perform a multiresolution wavelet representation
of the radar pulses, based on the selection of a mother
wavelet. This allows us to consider each pulse recon-

structed at different resolutions S°f, S'f,..., §7°f.
We then proceed by splitting the signal space at various
resolutions in cells as indicated pictorially in Figure 3,
and detailed below.

The data vector space (gsignal space) is partitioned
into cells, or collections of data vectors which are deter-
mined by the repeated application of the Linde-Buzo-
Gray (LBG) algorithm. LBG is first applied to the

coarsest resolution representation of the data vectors

{S7°f, f € 8}. Since it is the coarsest representa-
tion, the corresponding length of the data vectors is
the shortest; in our experiments that length was 16.
As a result this clustering is faster than a clustering
performed on the much longer fine resolution represen-
tations of the data vectors. The resultant distortion is
determined based on a mean squared distance metric,
and is computed using the finest resolution representa-
tion of the data vectors. The cell (equivalence class of
coarse resolution representations) which is the great-
est contributor to the total average distortion for the
entire partition is the cell which is split in the next ap-
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plication of LBG. A new Voronoi vector is found near
the Voronoi vector for the cell to be split and is added
to the Voronoi vectors previously used for LBG. LBG
is then applied to the entire population of data vectors,
again using the coarsest representation of each vector.
These steps are repeated until the percentage reduc-
tion in distortion for the entire population falls below
a predetermined threshold. The partition in the coars-
est resolution is then fixed, and further partitioning
continues by splitting the cells already obtained based
on finer resolution representations of the data vectors
in the cell. The algorithm then iterates through the
following steps until the allotted number of cells have
been allocated, or until total average distortion has
been reduced to a requisite level. Each new layer in
the tree corresponds exactly to partitions based on the
next finer resolution representation of the data.

An important step in the algorithm addresses the so-
called “centering problem” for the various radar pulses.
In real field databases the radar pulses will not be per-
fectly aligned with each other; there will be random
time shifts. If we compute the L? distance of even very
similar pulses, which have been shifted with respect to
each other, large errors will result. These errors can
distort the VQ computations, produce erroneous cell
centroids and reduce the performance of the overall al-
gorithm. The following adjustments were introduced
and eflectively corrected these problems. First, when
we compute the distance between a pulse f and a cen-
troid ¢, we compute the inf, {||f, — 0||}, where f, is
the shifted version of f by 7, and 7 is within allowed
bounds. Fach pulse remaining in the cell is then shifted
by the 7 determined by this infimization. The new
centroid is computed by averaging these shifted pulses.
Second, the new centroid is centered so that its median
point coincides with the middle point of the range gate
interval. This process is iterative.

We have constructed a hierarchical organization of
the radar return data as a tree. The tree is conformant
with the wavelet multiresolution data representations.
This representation can be constructed for a single ship
or for a collection of ships. In the former case this con-
struction produces a “model” for the ship as viewed by
the radar sensor. In the later this construction orga-
nizes an entire database of ship radar returns.

3 Experiments, and

Conclusions

Interpretations

It is clear that the search of the hierarchically or-
ganized database (as a tree) will be much faster than
the case by case search of the overall database. The
question is: how much performance did we sacrifice?
To answer this question we compared the results of
the wavelet-TSVQ algorithm with those of full-search
VQ applied to the finest resolution data, by means of
the total (operational) distortion vs number of cells
(i.e. the number of terminal nodes) performance curve.
In all our experiments the two curves were very close
showing that the performance of the wavelet-TSVQ al-
gorithm 1s indeed excellent. Additional results can be
found in [16]. This performance of our algorithm shows
that we are getting high performance in an efficient
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Figure 4: Performance comparison between full-search
VQ on fine scale pulses vs wavelet-TSVQ on multires-
olution pulses; Ship 2 data set
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Figure 5: Performance of the wavelet-TSVQ algorithm
on multiresolution pulses for three wavelets; Ship 1
data set

way. A typical result is depicted in Figure 4. The
results shown used the Ship2 data set. The solid curve
corresponds to the wavelet TSVQ algorithm, while the
dashed curve corresponds to full-search VQ. There is
a small discrepancy when the number of cells is very
small, 3 to 5. These should be disregarded as it is
not reasonable to assume such a small number of cells.
The mother wavelet used in these results was the Haar
wavelet.

We also examined the performance sensitivity of our
algorithm with respect to the mother wavelet used in
the multiresolution representation. Our experiments
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todate demonstrate that the tree itself is sensitive to
the mother wavelet used, but the performance of the
algorithm is not. In Figure 5 we show the total (oper-
ational) distortion vs number of cells (i.e. the number
of terminal nodes) performance curves for the wavelet-
TSVQ algorithm, operating on Ship1 data set, for three
different mother wavelets: the Haar wavelet, an or-
thonormal wavelet with highest number of vanishing
moments from E, chapter 6] constructed from y H with
N =6, and a biorthogonal symmetric wavelet, based
on splines with less dissimilar lengths { = 4 = k, k=4
from [10). The three curves are almost indistinguish-
able, designating a robustness of our algorithm with
respect to wavelt selection. Further research is needed
in this direction however.

The resulting collection of centroid pulses at each
resolution can be considered as a compressed repre-
sentation of the data set. It is actually a quite good
approximation. To test the accuracy of the approxi-
mation we computed “water fall” diagrams of the ship
radar returns as functions of aspect angle. In these
diagrams, see for instance the bottom image in Figure
6, the horizontal axis shows the range extent (range
bins), while the vertical axis shows the aspect angle (0°
to 360°). The value of each pixel is the radar return
amplitude from this bin at the corresponding aspect
angle. These are color coded but here are shown in
gray scale. In Figure 6, the bottom image shows the
raw data, or the pulses at the finest scale. The mid-
dle (resp. upper) image shows the “water fall” diagram
corresponding to the coarser resolution 1 (resp. resolu-
tion 2). These coarser diagrams are constructed by de-
picting only the centroid pulses, from each cell. These
centroids correspond to the raw data and are shifted
so as to be aligned with the corresponding finest res-
olution pulse, using the method described at the end
of section 2. Figure 6 shows a typical multiresolutiuon
“water fall” digram for the Ship I data set, while Fig-
ure 7 for the Ship2 data set. In both Figures we used
the Haar wavelet. We conclude that our algorithm
provides increasingly (with resolution) accurate repre-
sentation of the ship radar returns.

We constructed “water fall” diagrams correspond-
ing to our wavelet-TSVQ reperesentation in the same
way. In particular we investigated the similarity of
these diagrams with those of the original data as the
number of cells increased. In Figure 8 we show such a
typical comparison for the ShipI data set. The bottom
diagram corresponds to the finest resolution data, the
middle diagram corresponds to TSVQ with 30 cells,
and the top to 5 cells.

As explained in detail in [16] the trees constructed
by our wavelet-TSVQ method indeed achieve an index-
ing scheme for ship targets reminiscent of that obtained
by varying the aspect angle and the pulsewidth. This
is an indexing scheme because it provides a hierarchical
organization of the multi-viewpoint (aspect and eleva-
tion) multi-pulsewidth radar data from a ship using
significant clusterings in the 6, @, ¢ parameter space.
We also examined carefully the resulting cells to dis-
cover on what characteristics of the pulse the cluster-
ing was based in an essential way. We concluded in (16]
that at the coarse level the wavelet~TSVQ algorithm



Figure 6: Multiresolution water fall diagrams; Ship !
data set

clusters the radar pulses according to aspect. As we
move to finer resolutions the pulses cluster according
10 the location of their maxima. These maxima cor-
respond to significant scatterers. This is a very nice
and natural indexing of the radar returns from a ship.
What is an important contribution is that we have de-
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veloped dosy=tematic automatic rethod for cnnstruct-
ing this indexing. To better resiize the officiency of
our method 1t suffices to compare 11t with conven-
tional methods of indexing radar pitses based on smal
aspect-clevation cells. The miethod also reflects the ac-
curacy hmitations of the sensar, i the sense that it
does not attempt to separate the pulses more than




Figure 8: Multiresolution TSVQ water fall diagrams;
Ship 1 data set

the sensor noise will permit. Putting all this together
we have discovered [16] in addition an extremely effi-
cient indexing scheme for high range-resolution radar
data, which is akin to the aspect graph widely used in
computer vision based object recognition [12].

-
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In Figures 9 and 10 we show the aspect graphs as
trees constructed by our method for the data sets Shipl
and Ship2 resp.. We used the Haar wavelet. We show
the cells that the algorithm created at each resolution
(tree layer) as well as the percentages of pulses that
were clustered in each cell. The notation we have used
to designate the cells is as follows: cell m,k denotes the
cell number k at resolution m. We note that the two
trees are different, reflecting the different ship signa-
tures.

Resokylion 3

Resalution 0

Figure 9: Apect graph (as a tree) for the Shipl data
set

Resoiution 3

Figure 10: Apect graph (as a tree) for the Shipl data
set

The nodes (cells in these figures) correspond to
aspect—elevation neighborhoods for which the corre-
sponding returned pulses are too similar to be sepa-
rated. To each node there is associated a “canonical”
pulse which corresponds to the centroid. The nodes



are given for various resolutions. Transitions from one
node to the other indicate either a change in aspect-
elevation, or in resolution, of adequate magnitude to
cause changes in the pulse that can be discriminated
by the sensor. In the present case these changes are
due to grouping (or ungrouping) of scatterers, or scat-
terer visibility (or non visibility) from the particular
aspect—elevation cell. It is clear from this discussion
that the aspect graph is a reduced but accurate model
of the target and can be used to guide the ATR pro-
cess in model-based ATR. In such an application the
received pulse is compared with the “canonical” pulse
at each node sequentially as the ATR process evolves.
The aspect graph directs the search in an efficient and
speedy manner; it is well known that tree based search
is logarithmic in the number of terminal nodes, which
is a substantial reduction from conventional methods.
This search for identification can be done in two ways:
(i) By passing the received pulse train through each
tree in parallel and (ii) By constructing a large tree
containing all models.  The former method has sub-
stantial implementation advantages. These constructs
are extremely useful in ATR, ship classification and in
the retrieval of data from large radar pulse databases.
The techniques are generic however and can be applied
to a great variety of signal classification and hierarchi-
cal organization problems. We shall pursue several of
these developments elsewhere.
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