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ABSTRACT

We investigate the problem of fast and accurate classification of high range resolution radar returns from ships. In
addition we investigate the problem of efficient organization of large databases of pulsed high resolution radar returns
from multiple targets in order to economize memory requirements and minimize search time. We use synthetic radar
returns from ships as the experimental data. We develop a novel algorithm for hierarchically organizing the database
which utilizes a multiresolution wavelet representation working in synergy with a Tree Structured Vector Quantizell
(TSVQ), utilized in its clustering mode. The tree structure is induced by the multiresolution decomposition of the
radar returns. The TSVQ design algorithm is of the “greedy” type. We demonstrate that our algorithm automatically
computes the aspect graph (i.e. the simultaneous representation of compressed pulses as functions of aspect and
elevation) for a single target or for a group of targets. We also develop a novel optimization framework for the
simultaneous design of the wavelet basis, the Tree-Structured Vector Quantizer and the Classification rule. We
describe an efficient and promising implementation consisting of an adaptive Wavelet Transform - Tree Structured
Vector Quantization with Learning. We show experimental results which indicate that the combined algorithm
executes orders of magnitude faster data search time, with negligible performance degradation (as measured by

rate-distortion curves).

1 INTRODUCTION

The problem of automatic classification of high range resolution (HRR) radar returns when a large number of
targets is possible, presents formidable algorithmic and computational difficulties. A closely related problem is related
to the organization and construction of efficient and economic target model databases which will result in significant
search speed-up and memory reduction. These problems are of general interest for one and two dimensional signals
in general. HRR radar returns are known to be very sensitive to even small viewpoint (i.e. aspect and elevation
angles) variations (of the receiver), and this adds to the difficulty and the size of the problem.

In order to develop high performance algorithms for such problems which are at the same time practical to
implement (i.e. they have reasonable computational requirements) it is essential to: (a) develop systematic ways
to reduce the representation of the data needed for storage and classification; and (b) develop algorithms that are
amenable to massively parallel implementation. In this paper we investigate such methods based on multiresolution
representations of the data and “greedy” search algorithms based on Adaptive Vector Quantization (AVQ) (11].
Wavelet-based multiresolution representations [1]—[9] of the data appear to be particularly well suited for this
problem because, as we showed in [16], they are equivalent to radar returns with pulsed radars of different pulsewidths
(due to the basic convolutional nature of both operations). These representations lead naturally to classification
schemes that are progressive. That is a small amount of information, in the form of a coarse approximation to
the return, is used first to provide partial classification and progressively finer details are added until satisfactory
performance is obtained. This results in a scheme where small amounts of computation are used initially and
additional computations are performed as needed, resulting in extremely fast searches while preserving high fidelity
in the search. Each target is reperesented by its multiresolution aspect graph [17], which is a quantization (produced
by clustering) of the space of HRR returns and view points. Using an efficient Tree-Structured Vector Quantization
(TSVQ) algorithm we cluster the returns from the various viewpoints into equivalence classes according to an
appropriate discrimination measure. This approach automatically accounts for the discrimination capability of the
sensor and in effect it performs a quantization of the sensory data which reduces the data input to the classification
algorithm by orders of magnitude. In each equivalent class a “paradigm” is selected and the collection of these typical
pulses arranged in a multi-scale tree constitute the target model that is guiding the on-line classification search.

To study such schemes and their alternatives we develop a mathematical framework that is based on a combined
compression-classification approach. This is done by casting the overall problem as a multi-objective optimization
problem and by investigating fast algorithms for its resolution. A convex combination of the three competing
performance measures: distortion, rate and Bayes missclassification cost, is constructed and is used to organize and
analyze the overall algorithmic approach. This formulation makes explicitly clear the trade offs between the details
in the signal representation and the efficiency of the database search that need to be considered for overall algorithm
performance. Within this framework we are able to indicate how our TSVQ wavelet algorithm provides a fast and
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accurate suboptimal scheme for compressing the data representations in a way that is suited for classification. At
the same time we indicate how Learning Vector Quantization (LVQ) [5] can be succesfully employed to implement
the labeling of the VQ cells required for classification in a suboptimal but fast and accurate way.

2 HIGH RANGE RESOLUTION RADAR RETURNS

signatures, including the amplitude of pulsed radar (PR) returns, the phase of pulsed radar returns, Doppler radars
DR), synthetic aperture radar (SAR) returns, inverse synthetic aperture radar (ISAR) returns, millimeter-wave
gM -wave) radar returns. With the increasing resolution of modern radars it is at Jeast theoretically possible to
store many of the possible returns (i.e returns organized according to aspect, elevation, pulsewidth etc.) of a complex
target and use them in the field for target identification. The advantage of the increasing radar resolution is the
availability of more detailed information, and ultimately of specific features, characteristic of the radar return from
a specific target. The disadvantage is that these very detailed characteristics require an ever increasing amount of
computer memory to be stored. The latter not only results in unfeasible memory requirements but it also slows down
the search time in real field operations. It is therefore important to develop extremely efficient ways to compress
the representations of high resolution data returns from real targets, and to design efficient search schemes which
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Figure 1: Variation of complex target radar return vs pulsewidth.

High range-resolution radar returns can be described as complex valued signals of finite duration. For a complete
characterization of a complex target one can store the whole set of these two dimensional functions (pulses) for all
possible values of radar pulsewidth § (i.e. different resolution), aspect o and elevation €. Even if one quantizes the
three-dimensional space of 6, @, € the required storage is enormous and impractical for real applications. Qur efforts
to date have concentrated on amplitude representations only. Given the amplitude of a high-range resolution radar
return, several characteristics of the scatterer distribution of the target can be revealed. Varying the radar pulsewidth
6.ch'ange.s the resolution of the returned pulse, in the sense that more (narrow pulse) or less (wide pulse) details can be
dxstmguxsheq. Varying the view-point (i.e. the aspect, elevation (e, 68 pair) changes the shape of the returned pulse,
because dominant scatterers have typically highly directive returns (in space), and because small variations in aspect
produce large variations in the phase of the signal returned from each scatterer. Successful methods to provide
effective compression of radar returns must address the substantial variability of the returns. As a consequence,
some sort of averaging (or clusteringf is necessary in representing the more meaningful, slower variation of the radar
return (or the RCS) as aspect and elevation are changing. It is therefore physically meaningful to cluster the radar
returns from various viewpoints into equivalence classes using a measure of sirnilarity. The resulting quantization of
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the signal space (i.e. of the radar returns) characterizes the limits of discriminating between returns from different
targets using information about the viewpoint; in essence if we insist on extremely fine quantization cells we are
modeling the radar sensor noise and not the underlying complex target.

Experiments with variable pulsewidths and real targets, in order to obtain a multiresolution representation of
the ship are not a very practical solution. The NRL Code 5750 digital simulation model is a flexible tool for
experimentation, and it has been used as the basic data generation source for the studies reported here. This model
has been validated against field returns and provides high accuracy simulations. The digitally simulated ship model
consists of over 800 scatterers (for each viewpoint) of a variety of types, including flat plates, point scatterers and
dlhedrals. These scatterers are distributed in both range and space in accordance with their actual locations on a
ship. To capture safely all ship pulses we used a range gate of 128 bins corresponding to a returned signal time
duration of 1280 ns. At the finer resolution of 10 ns, and sampling at the corresponding rate produces 27 samples

In Figure 1 we show a typical result of a ship return with transmit pulse widths of 10 ns, 20 ns, 40 ns, 80 n.s:
In the three-dimensional representation shown, we see clearly the coalescence of the ship scatterers as we m(;ve froni

fine to coarse pulsewidths. This is also demonstrated in Figure 2, showing the pulse returns corresponding to the four

different pulsewidths. In Figure 2 we also have traced, by connecting the major peaks of each return, the coalescence
of the ship scatterers as we move from fine to coarse pulsewidths.

10 ma puaiss
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Figure 2: Individual target pulse returns from the same target model for different pulsewidths.

9 scale space diagrams, extending a notion originally introduced
rovide a “fingerprint” of the target,
hen all other scattering parameters

We call diagrams such as the one depicted in Figure §
by Witkin in computer vision [13]. It is clear that such scale space diagrams p
since they indicate how scatterers combine; a property of the target geometry W
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are kept constant. Our results todate (16, 18, 19] show that by combining wavelet representations with clustering
algorithms we obtain similar multi resolution representations of the target radar return; recapturing in essence the

effects of variable radar pulsewidth data.
3 SCALE SPACE ASPECT GRAPHS FOR RADAR RETURNS

A key construct in our approach to economical target model hierarchies is that of an aspect graph {17], which is
a hierarchical data structure, indexed by sections of viewpoint, that stores compressed target formats. A general
definition of the aspect graph [17] is that it is a graph structure in which there is a node for each general view of the
object as seen from some maximal connected cell of viewpoint space, and there is an arc for each possible transition
across the boundary between the cells of two neighboring general views, which is called a visual event. A general
viewpoint is defined as one from which an infinitesimal movement in any possible direction in viewpoint space results
in a view that is equivalent to the original. In contrast, a visual event is one for which there is at least one direction in
which an infinitesimal movement results in a view that is different from the original. Under this definition, the aspect
graph is complete in that it provides an enumeration of the fundamentally different views of an object, yet is minimal
in the sense that the cells of general viewpoint are disjoint. Thus the aspect graph is equivalent to a parcellation
(tesselation) of viewpoint space into general views. Considerable research has been performed in recent years on
algorithms that compute the aspect graph and its related representations [17]. However, todate these conventional
methods have addressed only the ideal case of perfect resolution in object shape, in the viewpoint, and the projected
image, leading to the following set of practical difficulties [17]:

o A very small change in the detail of the 3-D shape of an object may drastically affect the number of visual
events and nodes in the aspect graph. This is unrealistic and creates very brittle parcellations of the viewpoint

space.

e A node in the aspect graph may represent a view of the object that is seen from such a small cell of viewpoint
space that it is extremely unlikely to ever be witnessed. This is unrealistic also in the sense that all nodes of
the aspect graph are not of equal significance. The underlying shape and size of the parcellation cell should
have bearing on its importance.

o The views represented by the two neighboring nodes in the aspect graph may differ only in some small detail
that is indistinguishable in a real image. In practical terms such nodes must be the same. In addition the
detection of differences in views must depend on distance and noise level.

Almost exclusively, previous work on aspect graphs has focused on computer vision and object geometry [12, 17].
Our notion of the aspect graph as developed here is an extension of these concepts to sensors other than cameras
such as radar. Earlier work by one of the authors has addressed these very points successfully for FLIR sensors [20].

The various algorithms that have been developed may be classified using three properties: the object domain, the
view representation, and the model of viewpoint space. We use object domain and the 2-D viewing sphere in our
algorithms. According to a panel discussion [17] on “Why aspect graphs are not (yet) practical for computer vision”
held at the 1991 IEEE Workshop on Directions in Automated CAD-Based Vision concluded that an important
problem has been the fact that aspect graph research has not included the notion of scale. The results reported
here and in [20] incorporate scale in the construction of the aspect graph in a manner consistent with the sensor
considered. Indeed we have developed an algorithmic construction of scale space aspect graphs. Scale space aspect
graphs are equivalent to families of viewpoint space tesselations parameterized by scale.

The approach described here is based on the physical principle that the view of the target signature remains
invariant over regions of viewpoint and resolution, depending on sensor physics, environmental conditions, etc.
The fact that the sensor data are noisy further reinforces the argument. In our algorithmic construction we first
determine viewpoint equivalence classes according to a distortion measure and then identify the significant radar
return features that remain invariant in the viewpoint tessels (see Figure 3) determined by the equivalence classes.
In this iterative process, refinements can result, causing further subdivision of a class. Our algorithms work across
multiple resolutions. Furthermore, we can compare characteristic radar returns from each equivalence class of each
target to test if the resulting cluster has acceptable classification performance; this brings the characteristics of the
sensor directly in the target model hierarchy. Motivated by existing terminology in computer vision (12, 17] we call
the resulting viewpoint equivalence classes aspects. If we arrange the aspects as nodes in a graph we can connect
them with links to obtain what we call the aspect graph of the target. The links denote the appearances of new
features, or the disappearances of features relating the transitions between various aspects. This precompiled object
can be used to guide the target classification process on-line.

We now turn to the explicit description of our algorithm. We employ wavelets and Tree Structured Vector
Quantization. We refer to (2], [3], [9] for wavelet fundamentals. In such a multiresolution analysis [2] one has two
functions: the mother wavelet ¥ and a scaling function ¢. We denote by f the generic radar pulse, by ¥mn =
2=/ 2h(27™t — n), $mn(z) = 2-™/2$(2-™z — n) the functions obtained by dilation and translation from ¢ and
¢. The coefficients of expanding f in terms of the ¥m n are ¢m o(f), While am 1 (f) are the coefficients of expanding
f in terms of ¢ . Usually one denotes by V}, the space spanned by the ¢,, . The spaces Vi, describe successive
approximation spaces, ... Vo C V; C Vo C V_; C V_,..., each with resolution 2™. This sequence of successive
approximation spaces Vi, constitutes a multiresolution analysis [2, 9]. W,, denotes the space which is exactly the
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orthogonal complement in V;,_; of V,,. These concepts result in a fast algorithm for the computation of the ¢,, n(f)
(or ¢™) and ap 4(f) (or a™) [2]. The whole process can also be viewed as the computation of successively co'arser
approximations of f, together with the “difference in information” between every two successive levels.

We generated radar return databases for various different ships, utilizing the NRL Code 5750 ship radar return
simulator. In generating the synthetic data we kept the radar fixed and turned the ship, including the motion induced
by sea waves. We varied the aspect angle from 0° to 360° in increments of 0.05°. This allowed for large variation in
the number and appearance of dominant scatterers. Each database contained 7,200 pulses at fine resolution.

Let S denote the set of discretized radar pulses. The fine resolution data will be denoted by S%f(n), n e I°
where 19 = {1,2,---,27}, is the index set of the fine resolution data. We shall let N = 27 denote the number of
samples in the fine resolution data, where J is the maximum possible number of scales that we can consider. In
practice one considers scales up to J* where J* < J. Respectively for each resolution m we denote by I™ the
subset of I° where sampled values of the m** resolution pulse representation S™ f are computed. I™ is obtained
from I™~! by decimation. We used N = 128, and J* = 3. This gives us four scales (including the given fine
scale) m = 0,1,2, 3, with vector lengths 128, 64, 32, 16 and resolutions 10 ns, 20 ns, 40 ns, 80 ns, respectively. We

identify a0 with the vector of sampled data S9f. Then we use the pyramid scheme [2] to recursively compute the
successive approximations S™f to the pulse f at various scales m and the residual pulses W™ f. As we proceed
with this analysis step from scale m to the coarser scale m + 1, the space of signals becomes smaller, and the length

of vectors is halved. Thus the algorithm recursively splits the initial vector a0 representing the sampled pulse S°f
to its components ¢™ at different scales indexed by m representing the wavelet residuals W™ f; the multiresolution
scheme replaces the information in each pulse f = SOf with the set {W™f, m=1,2,...,J* §7° f}

We construct the scale space aspect graph by developing a hierarchical, tree~structured organization of radar re-
turns, which utilizes the multiresolution representations provided by wavelets. Vector Quantization (VQ) is primarily
used as a data compression method. By properly defining a rate-distortion measure between the respective sample
distributions one can reinterpret the process of vector quantization in the context of optimal decision theory. In fact,
this flexibility of the definition and interpretation of rate and distortion in Shannon’s theory has recently led to very
beneficial cross-fertilization between these two areas, in particular between tree-structured vector quantizers (11] and
classification (decision) trees [14]. VQ in addition is a clustering algorithm. Indeed the codewords, represented by
the centroids, can be thought of as representatives of the equivalence class represented by each cell of the VQ (each
Voronoi cell). It is in this sense that we use VQ in our approach to the problem of hierarchical representations for

HRR radar returns.

Resaludon 3

Resolution 2

p‘ ': Resotusion |

Figure 3: Illustrating a multiresolution TSVQ by splitting Voronoi cells based on different resolution data.

Implementations of the basic VQ algorithm in which the search is exhaustive are called full-search. In many vQ
systems the time overhead associated with this search is too costly. Of particular interest is tree stn_lctured vector
quantization (TSVQ) [11], which provides logarithmic (in the number of data) search time vs linear (in the number
of data) search time provided by full search VQ. TSVQ is a special case of hierarchical VQ [11]. TSVQ is one of the
most effective and widely used techniques for reducing the search complexity in VQ. A useful method for designing
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the tree structure is based on the application the Linde-Buzo-Gray (LBG) algorithm (1 1] to successive stages using
a training set. We have used a variant of this method whl_ch 1s of the “greedy” (15] variation. More precisely our
algorithm splits the cell which contributes the largest portion of the current overall distortion. We first perform a
multiresolution wavelet representation of the radar pulses, based on the selection of a mother wavelet. This allows

us to consider each pulse reconstructed at different resolutions SOf, Sf,---, 577 f. We then proceed by splitting
the signal space at various resolutions in cells as indicated pictorially in Figure 3.

The data vector space (signal space) is partitioned into cells, or collections of data vectors which are determined
by the repeated application of the Lindf:-Buzo—Gray (LBG) algorithm. LBG is first applied to the coarsest resolution
representation of the data vectors {S7 f, f € S}. Since it is the coarsest representation, the corresponding length
of the data vectors is the shortest; in our experiments that length was 16. As a result this clustering is faster than a
clustering performed on the much longer fine resolution representations of the data vectors. The resultant distortion
is determined based on a mean squared distance metric, and is computed using the finest resolution representation
of the data vectors. The cell (equivalence class of coarse resolution representations) which is the greatest contributor
to the total average distortion for the entire partition is the cell which is split in the next application of LBG. A new
Voronoi vector is found near the Voronoi vector for the cell to be split and is added to the Voronoi vectors previously
used for LBG. LBG is then applied to the entire population of data vectors, again using the coarsest representation
of each vector. These steps are repeated until the percentage reduction in distortion for the entire population falls
below a predetermined threshold. The partition in the coarsest resolution is then fixed, and further partitioning
continues by splitting the cells already obtained based on finer resolution representations of the data vectors in the
cell. The algorithm then iterates through these steps until the allotted number of cells have been allocated, or until
total average distortion has been reduced to a requisite level. Each new layer in the tree corresponds exactly to
partitions based on the next finer resolution representation of the data.

Spherical Resolution As © e
Quantization Cells pect Quantization
Tessels

NEEE R

Figure 4: Illustrating a multiresolution aspect graph for radar ship data.

The algorithm constructs a hierarchical organization of the radar return data as a tree, which is conformant with
the wavelet multiresolution data representations. This representation can be constructed for a single target or for a
collection of targets. In the former case this construction produces a “model” for the target as viewed by the radar
sensor. In the later this construction organizes an entire database of target radar returns. The resulting tree is our
aspect graph of the target(s). As illustrated in Figure 4 a multiresolutioncgor scale space) aspect graph for radar ship
data results naturally from our construction. Here the concentric spheres designate different resolutions (scales). The
cells on these spheres illustrate aspect equivalence classes for the radar signals (returned pulses). These equivalence
classes mean that the pulses in these clusters are difficult to discriminate due to their similarity. As we move inwards
in this graph, the outside cells split as we can now get further characteristics of the target based on finer resolution
information on the pulse. These characteristics are related to dominant scattering centers. To construct the aspect
graph we select as the representative from each equivalence class, the radar pulse corresponding to the centroid of
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\he corresponding Voronoi cell. The resulting graph has geometrically the appearance of a tree; a typical one is
depicted in Figure 5. The nodes (cells in these figures) correspond to aspect—elevation neighborhoods for which the

corresponding returned pulses are too similar to be separated. The nodes are given for various resolutions as well as

the percentages of pulses that were clustered in each cell. It is clear from this discussion that the aspect graph is a
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Figure 5: Apect graph (as a tree) for a typical ship radar data set

reduced but accurate model of the target and can be used to guide the ATR process in model-based ATR. In such an
application the received pulse is compared with the “canonical” pulse at each node sequentially as the ATR process
evolves. The aspect graph directs the search in an efficient and speedy manner; it is well known that tree based
search is logarithmic in the number of terminal nodes, which is a substantial reduction from conventional methods.

oy
9000
8000
7000

5000

Figure 6: Comparison between full-search VQ on fine scale pulses vs wavelet-TSVQ on multiresolution pulses

It is clear that the search of the hierarchically organized database (as a tree) will be much faster than the case
by case search of the overall database. The question is: how much performance did we sacrifice? To answer this
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question we compared the results of the waveletTTSVQ z.a.lgori_thm with those of full-search VQ applied to the finest
resolution data, by means of the total (operational) distortion vs number of cells (i.e. the number of terminal
nodes) performance curve. In all our experiments the two curves were very close showing that the performance of
the wavelet-TSVQ algorithm is indeed excellent. Additional results can be found in [16]. This performance of our
algorithm shows that we are getting high performance in an efficient way. A typical result is depicted in Figure 6.
The solid curve corresponds to the wavelet TSVQ algorithm, while the dashed curve corresponds to full-search VQ.
As shown in [19] using “water fall” diagrams it is actually a quite good approximation.

As explained n detail in [18, 20] the multiresolution aspect aspect graph constructed by our wavelet-TSVQ method
provides an extremely efficient hypothesis generation and indexing mechanism to guide the on-line classification pro-
cess. Our method constructs these efficient indexing schemes algorithmically, without resorting to ad hoc heuristics
typical of previous work [23, 24, 25, 26]. Our method can be further extended to provide extremely efficient indexing
methods of local features or groups of features, which can be thought of as fingerprints of the targets. The method-
ology described here has distinct advantages over other indexing schemes such as the Geometric Hashing technique
of Lamdan et al [22], or the methods of Knoll and Jain (21]. Our techniques hold great promise for ATR algorithms
involving large libraries of target models, without commensurate increase in computational complexity. The key idea
we are exploring with our aspect graphs is the use of clusters of features, represented in terms of geometric properties
that are invariant under projection, as keys for indexing into a hashed library.

4 ANALYTICAL FRAMEWORK: COMBINING COMPRESSION AND
CLASSIFICATION

Vector quantization (VQ) has been traditionally used, by the majority of the practitioners as a compression
algorithm [11]. VQ is a common method of lossy compression that applies statistical techniques to optimize distor-
tion/bit rate tradeoffs. However, as we have already pointed out, VQ can be also used as a classifier quite successfully
20, 16). Therefore VQ can be used in a combined mode to perform classification efficiently utilizing compressed data.

his key idea provides an efficient analytical framework for the design and analysis of fast progressive classification
algorithms. There are various methods to approach this promising idea. The one described here, combines some
additional advantageous requirements. First, careful design of the overall scheme can emphasize local classifications
involving only small regions of the signal. Second, these local classifications can be combined in a hierarchical fashion
that reflects the signal model, the sensor performance and sensitivities, and progressive increase in the confidence of
the classification.

In such an approach, which fundamentally combines data compression and classification, one needs to develop
efficient adjustment methods to weight the relative importance of the two aspects of the algoritm. Indeed, while
efficient compression can reduce significantly the complexity of classification by bringing forward essential local
characteristics of the signal, excessive compression may throw away valuable information and thus reduce the accuracy
of classification. The design of this tradeoff is the most difficult and less unexplored, albeit most promising, part of
our approach.

Our approach applies equally well to one-dimensional (radar pulses, acoustic signals, etc.) or multi-dimensional
signals (FLIR, ISAR, SAR, LADAR, etc.). By appropriate indexing we can always consider a given signal (one-
dimensional or multi-dimensional) as a vector. VQ operates on subblocks or subvectors of the signal or, in more
sophisticated schemes, on subblocks or vectors of a feature vector computed from the given signal by some trans-
formation. These subblocks or subvectors of the vector, on which VQ is to operate, correspond to local information
from the signal or local features of the signal. For each subvector, the VQ encoder determines the nearest codeword
gwhich is also a vector of the same dimension) and outputs the chosen codeword’s index. When VQ operates in the

ata compression mode the sequence of indices so generated can be stored and then transmitted. The VQ decoder
reverses this operation: it receives as inputs the indices and outputs the appropriate codewords by simple table
lookup. One can easily realize that the computational complexity of the encoding and decoding part of the VQ is
asymmetrical. The decoder is very simple. The attempt of combining compression and classification stems from
the idea that the centroids of the VQ cells (which were called codewords in the compression scheme) are prime
candidates for most typical representatives of the subvectors belonging in the same cell. It is likely that subvectors
that are assigned by the VQ algorithm to the same cell belong to the same class. Therefore one can assign cells to
classes and obtain classification. An efficient way of doing this is represented in the Learning Vector Quantization
(LVQ) algorithm of Kohonen (5, 27}, which we have used and analyzed extensively before [27, 20]. This assignment
of cells to classes can be best understood and analyzed as a method for partitioning the feature space into decision
regions corresponding to each class. Indeed the boundaries of the cells approximate the Bayes decision surfaces for
the classification problem at hand, if this assignment of cells to classes has been performed efficiently.

Our objective is to design algorithms that combine compression and classification and show that they result in
high performance ATR algorithms. Towards this end we discuss next the various performance measures of such
an algorithm based on VQ. Rate and Distortion characterize the performance of VQ from the point of view of
compression. The performance of the classifier is measured by Bayes risk, which may include in general different costs
for different types of errors. These performance measures are competing and there are various ways of approaching
this multi-objective design problem. One is to combine the objectives (performance measures) by incorporating
the Bayes risk in the distortion measure minimized by the design algorithm. Another is to treat the problem
as a multi-objective optimization problem, where the design algorithm optimizes one performance measure while
satisfying constraints on the other objectives. We plan to investigate both approaches and compare the results on
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ATR problems with real data.
Here we consider the first formulation of the problem where we incorporate a Bayes risk into the average distortion

measure minimized by the design algorithm. Such an approach introduces additional complexity which however
occurs only in the design phase of the overall algorithm. The resulting algorithm has complexity equivalent to that
of an ordinary VQ algorithm. In addition the combined classification and compression scheme requires no more bits
to describe than the bits required for compression alone, which implies that there is no apparent memory overload.

Let F denote the K-dimensional vector space of features. We are given N feature vectors {f}, f2, -+, f~}. Each
feature vector f= (fi, f2,---, fx)T is mapped by a full search VQ onto a codeword (or centroid) Q(f) = 6;, from a
set of centroids {8;,82,---,0x }, where M is the number of cells in the tesselation of F constructed by the VQ. This
tesselation, or partition, induced by Q is denoted by P¥ = {C1,C2,--,Car}, where C,, denotes the generic cell in the
tesselation. Let v, § denote the encoder, resp. the decoder of the VQ implemented in the overall algorithm. That
is for each feature vector f; € F, if Q(f,) = 0, then y(f,) = m, and é(m) = 6,,. Then Q(f,) = &(y(fs)). Since
M << N, the VQ Q compresses the data. Next suppose that we have L classes (or hypotheses) {Hy, H,, -+, HL}.
As explained above, to perform classification we assign a class H; to each cell Cp,. This is the same as assigning
a class label { = 1,2,---,L, to each cell label m = 1,2,-.-, M in the partition of F induced by the VQ. This last
assignment is the decision or classification rule d.

In such a scheme the signal vector x is first transformed by a preprocessor (which in our case is the wavelet
transform (WT)) into a transformed vector w, so that w=Tx, where T in our case denotes the WT. Then a feature
selection map F is applied to bring the transformed vector w into f€ F, so that f=Fw. The design of the combined
compression and classification algorithm is precisely the design of the encoder, decoder and decision rules v, 6, d.
Equivalently this design is the construction of a tesselation {C;,Cs,---,Cx} of F with centroids (or codewords)
{61,682,---,8sm}, and a decision rule d. As in LVQ this design can be accomplished by constructing the tesselation
and the decision rule by an iterative process working with a training (or learning) set of features £ = {ff f£ ... f£.},

where N’ is the number of training vectors available overall.
Given a decoder-encoder pair 7,6, we associate the average distortion

D(7,8) = Elp(£, 8(+(£))] 2 E[ (f,8(n))]- (1)

Here p is the error (distortion) or distance function used in the VQ. Most of the work todate has used a quadratic

function p(f, §(7(f))) = || f=6(7(£))||?, as the distortion measure, basically for its mathematical tractability. Weighted
quadratic functions have also been used [11], notably in speech coding. The selection and design of appropriate

distance functions is very much in need of further research.
Given a classification rule d, the classification performance of the overall scheme can be measured by the Bayes

risk

min p
12n2>N

Jp(y,d) = > P(d(x(D) = H;lf € H;)P(H:)Cij, (2)
i=1j=1
where C;; is the relative cost assigned to the decision that d(y(f)) = H;, while the feature vector f comes from class
H;. The most commonly encountered case is that where Cj; = 0. An important observation is that the encoder §
does not affect the Bayes risk Jp. Let Iy, (H;) be the indicator function taking the value 1 if H; = H; and the value
0 otherwise. We can then rewrite the Bayes risk as follows:

M L L
Ie(r,d) =Y Iy p_ P(r(f) = kIS € Hi)P(H:)Cij, (3)
k=1j=1 i=1
To implement the key idea of the aproach (i.e. to simultaneously consider compression and classification of the
data) we use a Lagrangian formalism, which combines ordinary distortion, compression rate R (which is typically
used as a constraint), and classification error:

JA(716)d) = D(7)6)+ARR(716)+’\BJB(7’d) (4)

The resulting modified distortion measure is used to determine the partitioning 7y of the training vectors by
mapping each vector to the codeword/class label producing the minimum distortion Jx. This combination of the
performance measures provides for flexible trade-off between the compression and classification requirements: indeed
Ag — 0 corresponds to regular VQ, while A\g — oo corresponds to Bayes classification.

The design of the algorithm in this formulation proceeds by employing a descent algorithm to minimize Jx(7,6,d)
by alternatively improving 7,6 and d. We start with an initial (7(0), 60, d(9)Y and iteratively apply an improvement
transformation (y(*+1), §(+1) d(t+1)) = T(5() §(1) d(V)) so that Ia(7®,6(),d(®)) is nonincreasing in t. Since J) is
bounded below by 0, it follows that such a scheme will converge as t — oo. This observation allows to implement
simple stoping rules for the iterative algorithm. The most common such rule will be to select a value of A and iterate
until the value of Jy falls below a certain level.
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Thus the iterative transformation T is implemented by the following three successive steps:

Step 1 Choose d(**1) to minimize Ji(7(*), 6(¥), d(*+1).

Step 2 Choose §(+1) to minimize Ja(y(9), 80+1) dC+1)),

Step 3 Choose 7(**1) to minimize J,(y(*+1), §(+1) g(t+1).

The iterations continue until the desired stoping level for Jy is met.

The interpretation of the steps is straightforward. Given a partition of F and a set of centroids, Step 1 minimizes
the Bayes risk associated with the centroid labels. As can be seen from (3), this minimization depends only on the
partition represented by 7; the codeword values given by é do not affect the minimization.

Step 2 minimizes Jy over the codeword values § given the partitioning v and the labeling d. Since the codeword
values do not affect the Bayes risk, J) is minimized when the codewords are chosen as centroids based on the
distortion measure given in (2).

Finally Step 3 determines the partitioning v that minimizes Jy given the centroids § and labels d.

The modified distortion measure of the training sequence is given by

L L
P(f|H;
Iy = Y PO(E S(0) + +ArRO, 80) + 3o 0 3 I, (D) L PG ), )
fEL i=1j=1 )

To implement this scheme we need values for the probabilities appearing in (5); and this is a disadvantage if they
are estimated using the vectors from the training set. We describe below how we resolve this difficulty.

The above procedure can be extended to a Tree-Structured VQ (TSVQ) Lll]. The basic idea for this extension is
quite straightforward. VQ employing full search is computationally costly in both codebook generation and encoding.
On the other hand tree-structured VQ (TSVQ) can signicantly speed up the design with often neglizible decrease
in performance. An additional advantage of TSVQ is that it uses variable rate, so that different numbers of bits
are required depending on the path that the encoder takes through the tree. The extension then is achieved by
combining the above algorithm with well known tree growing and pruning techniques [15]. A TSVQ tree is grown by
successively splitting nodes, until the desired rate is reached. By modifying the splitting criterion and codeword design
methods, the TSVQ can be grown to provide both classification and compression. Our wavelet-TSVQ algorithm
for constructing aspect graphs (as described in section 3 above) implements Steps 2 and 3 in a fast but accurate
suboptimal way.

Regarding Step 1, we use LVQ. Kohonen’s stated goal in LVQ [5] was to imitate a Bayes classifier with less
complexity than other neural network approaches, but there is no explicit minimization of Bayes risk in the code
design. However, in [27, 20] we showed that indeed the way LVQ moves around the centroids during learning,
asymptotically approximates the effect of optimizing Bayes risk. The argument is therefore that implementing LV%
in the above algorithm, essentially replaces the explicit optimization of the average Bayes risk as is formulated in (3).
This can be established analytically by employing a combination of the methods used in {16] and [27]. This method
has the additional advantage of not needing estimates of empirical distributions from the training set. The result is
a much more efficient algorithm. It is important to emphasize that the overall approach is non-parametric, in the
sense that probability distributions for the signal, the transformed signal, and the feature vector are not needed.
Instead the approach can be interpreted as using the training set to learn the emnpirical distributions of the various
vectors and use them as if they were true, very much like the interpretation we have given to the LVQ algorithm
[27, 20]. Finally, we would like to mention that the mother wavelet is an additional parameter on which the modified
distortion measure J, depends. An additional optimization iteration can be added to address this optimization.
Progress in this direction which employes parametrizations of wavelets will be reported elsewhere.
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