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ABSTRACT

The time-recursive computation has been proved particularly useful for the real-time evaluation of one and
two-dimensional block transforms. Unlike the FFT based ones, time-recursive architectures require only local com-
munication. Also, they are modular and regular, thus they are very appropriate for VLSI implementation and they
allow high degree of parallelism.

In this paper, we establish an architectural framework for parallel time-recursive computation. We consider a
class of linear operators that consists of the discrete time, time invariant, compactly supported, but otherwise ar-
bitrary kernel functions. We specify the properties of the linear operators that can be implemented efficiently in
a time-recursive way. Based on these properties, we develop a routine that produces a time-recursive architectural
implementation for a given operator. This routine is instructive for the design of a CAD tool that will facilitate the
architecture derivation.

Using this background, we design an architecture for the Modula.fed Lapped Transform (commonly called Modi-
fied Discrete Cosine Transform), which has linear cost in operator counts.

AN

1. INTRODUCTION

Since the revolutionary publication by Cooley and Tukey* the fast Fourier transform (FFT) has been playing a
key role in a wide range of applications, including transform coding, data filtering and spectral estimation!6:2%:22,
Nevertheless, the increasing demand of processing huge volumes of data in real time, especially in audio, radar, sonar
and video applications, suggests that the FFT-like algorithms may not be considered as the main building block in
such applications. Three different reasons corroborate to this conjecture:

* Global Communication: The flow graphs of the FFT and the FFT-like fast algorithms exhibit a common
structure composed of a series of log, N alternating butterfly interconnection and multiplier stages!®2%:25.
The butterfly communication scheme requires global communication links if a parallel implementation is to be
considered.

* Block Processing: The FFT-like algorithms require buffering of blocks of data, and then block processing. This
is not the natural way of processing for a number of applications such as audio, radar, sonar and video, where
the the input data are supplied in a sequential manner.

¢ Sliding Transform Computational Complezity: The FFT has been widely used for the transformation of win-
dowed data, where the frequency content of the data is extracted for each displacement of a sliding window.
This phenomenon appears in the transform domain adaptive filtering problem!71%. The Discrete Fourier Trans-
form used in such applications is referred to as the sliding DFT??2. The FFT implementation of the sliding
DFT requires the repetitive processing of neighboring data samples when the window slides.
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The time-recursive approach manages to overcome these disadvantages and provides efficient architectural imple-
mentations for block transforms!®19:9:26:11,12.13.3,

In this papei, we summarize a study towards a unifying methodology for deriving time-recursive realizations with
focus on architectural implementations. We consider the implementation of the mapping operator [ho hy -~ hn-i1):
z(-) — X(-), which operates on the semi-infinite sequence of scalar data z(-) and produces the sequence X(-) as

follows:

N-1
X(@t)= > haz(t+n—-N+1), t=0,1,- 1)
n=0
A time-recursive evaluation of a mapping operator [As hy -+ hn-1] is the one that is based on an update

computation of the type
X@+1)=UX(@),=z(t+ 1),z(t+1-N))

(see Fig. 1). Within the time-recursive approach, the 8 x 8 Discrete Fourier Transform for example is viewed as eight
linear operators that function independently from each other: given a common input sequence they produce eight
coefficient sequences. The frequency coefficients are evaluated at time instant ¢ + 1 based on their values at time

instant ¢ and the input samples at the edges of the sliding window in Fig. 1. For the kth frequency component we
have [h,, =e ¥ n=0,1,---,N - 1]. The time-recursive update procedure for this case jg2l,11

X(t+1)=e ¥ [X() +2(t+1) -zt - N+1)].

There is a common infrastructure among the time-recursive computations in the above mentioned diverse areas.
The unifying feature is a shift property we discuss in the following Section, where we establish the framework for for-
mulating time-recursive expressions. In Section 3, we derive a unifying procedure for architectural design. In Section
4, we report a design example: the Modulated Lapped Transform (MLT)*. The time-recursive implementation of
an Extended Lapped Transform!® with basis length equal to 4N is also briefly discussed. We conclude with Section 5.

2. TIME-RECURSIVE COMPUTATION: BASIC FRAMEWORK

We can specify a mapping operator [ho hy --- hy-1] with a function f(+), for which the values at the points
0,1,---,N — 1 are the prescribed coefficients: hn = f(n), n=0,1,---,N — 1. In the sequel, we will use the term
kernel function or simply kernel for this function f(-). Furthermore, we will call kernel group a vector of kernel
functions

£() = [fo() () -+ SO
Shift Property: A kernel group £(:) satisfies the shift property (SP), if it satisfies the (matriz) difference equation
f(n—1)=Rf(n), n=12,---,N, (2)

with a specified final condition £(N), where R is a constant matriz of size M x M.

Lemma 0.1 A recursive implementation of a kernel group £(-) is feasible if this kernel group satisfies the shift
property.

Proof: (2) gives:
M-1
foln=1)= Z rpefe(n),

¢=0
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forn=1,2,---,N, p=0,1,---,M — 1, where r5q,p,¢=0,1,---, M — 1 are the elements of the matrix R. Let
N-1
Xp(t) =) fr(n)z(t+n—-N+1),

n=0

for p = 0,1,---,M — 1. Suppose this is available at the time instant t + 1. For the quantities X,(t + 1), p =
0,1,---,M — 1 we have:

X+ 1) =0 st +n+1=-N+1)fp(n)=Ta 2(t+n—N+1)fp(n—1)= ’
Eiwa+n~N+nz€?mﬁmo=zﬁ?mJEiﬁﬁ+n—N+nnwD |

and therefore we obtain:
M-1
Xp(t+1) = Z {rpe [(Xq(t) —z(t = N + 1) f,(0) + =(t + 1) f(N)]}, (3)
¢=0

p=0,1,---, M — 1. If we assume knowledge of the boundary values {f,(0), f((N), ¢=0,1,---, M — 1}, (3) specifies
the algorithm that performs the update computation we were after. Furthermore, note that if R is nonsingular,
knowledge of £(0) yields f(N). a

Corollary 1 A kernel group £(-) that satisfies the shift property can be implemented recursively as follows:
1. Compute the matriz R by evaluating f(n — 1) and using (2).
2. Ewvaluate f(n) at the pointsn =0 and n=N.
3. At each time instant t evaluate (3).

Note that the first two steps of the above procedure belong in the ifxitialization phase (off-line computation).

The issue of specifying a family of kernel groups that satisfy the shift property is addressed by Lemma 0.2:
Lemma 0.2 The shift property (SP) is satisfied by:
1. The singleton kernel group [cb™], where b and c are non-zero free parameters.
2. The kernel group
fi(n) c10d™ + cppd™"

where b is a non-zero parameter and the coefficients are free parameters, such that cogcyy — coi1c10 # 0.

[hm]z[mw+mrq, 4)

3. The kernel group [co, amn, .-, chQ]T, where Q is an arbiirary positive integer and the coefficients are non-zero
parameters.

4. The union of two kernel groups that satisfy SP.
5. The cartesian product of two kernel groups that satisfy SP.

The proof of this lemma can be found in ® and 7.

In 7 and ® we demonstrate how an arbitrary mapping operator can be expressed in an optimal manner as 3
superposition of the basis functions specified by Lemma 0.2. Here we assume that such an expression can be obtained
by inspection (and utilizing Lemma 0.2). For example, the kernel functions of the Short Time Fourier Transform,
the Discrete Cosine Transform and the Modulated Lapped Transform belong in this class of kernels. Consequently,
we can obtain a time-recursive algorithm for a specified mapping operator as follows:
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Design Procedure

Input : hp = 3; cidi(n), where {i(n)} is a set of kernel functions that satisfy the shift property and {c;} is a set of
known constants.

Step 1: Specify the kernel groups f:(-) in which the kernel functions #i(-) belong. For ezample, if ¢i(n) = n? then,

according to Lemma 0.2 / statement 3, we get fiin)=[1n nz]T

Step 2: For each kernel group f;(-) use (2) in order to compute the matriz of parameters R; and evaluate fi(n) at the
pointsn=0andn=N.

The outcome of this design procedure is the following algorithm:
1. Evaluate (8) in order to obtain X;(t), defined as Xi(t) = nN;ol i(n)z(t+n-N+1).
2. Evaluate X(t) = Y ; i Xi(t)-

The kernel group associated to the mapping operaior is the union Ui fi(9)-

3. ARCHITECTURE DESIGN

Let us consider the simple case of a mapping operator h, = #(n), where ¢(n) is an element of the size-2 kernel
group f(n) that satisfies SP. (3) dictates an architectural implementation that has the lattice structure in Fig. 2. In
an abuse of terminology, we will use the name lattice architecture for the architectures that realize (3) regardless the

size of the associated kernel group.

An alternative time-recursive architecture, obtained by using a transfer function approach, is shown in Fig. 3,

where”
dy = —roo—r11 noo = fo(N)reo + fi(N)ror 110 = fo(0)roo + f1(0)ro

d2 = roor11 — To1T10 Mol = —fo(N)dz ny= —fo(o)dz (5)
no2 = fo(N)rio + fi(N)r1n n12 = fo(O)rio + f1(0)r1y
nes = —fi(N)dz niz = —fi1(0)d2

We use the name IIR architecture for the architecture derived by computing the transfer function. If a kernel group
f(n) of size M = 2 satisfies the difference equation '

f(n)=71f(n—1)+72f(n—2) n=1)21"'1N (6)
for some constant scalars 7, p = 1,2 and arbitrary initial conditions f(n),n = —1, -2, then the parameters of the
7

IIR implementation are specified by the expressions

di=-71/712 neo= fo(N - 1) npo= fO(_l)

dy = —1/72 ngy = fo(N)/‘72 na= fO(O)/72 (7)
no2 = fi(N = 1) ni2 = fi(-1)
nos = fi(N)/v2 ma=—-f(0)/[r2 .

The lattfer are useful in cases where we know in advance that a mapping operator exhibits the property of satisfying
such a difference equation (see for example 2). '

Fig. 2 and Fig. 3 suggest that the IIR architectures imply higher implefnentation cost than their lattice counter-
parts. Nevertheless, this is not always true, since the implementation cost depends on the following two factors:

1. The number of the functions in the kernel group that participate in the linear expression of the mapping
operator.

2. Whether the periodicity property (defined next) is satisfied by the kernel group in question.
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The role of these factors becomes clearer with the example in Section 4.

Periodicity Property: A kernel group £(-) = [fo() fe) - fM_l(.)]T, satisfies the periodicity property (PP) if
the following relation holds:

foN) _ AN) _ fuaa(N)
£ = /O T i 0 (8)

for some non-zero constant S.

The name of this property is justified by the following special case: Consider the kernel group (4). In 3 (as well
as in 7) we prove the following Lemma:

Lemma 0.3 If the parameter b of the kernel group (4) is of the form b = &/, then (4) satisfies the periodicity
property if and only if B = j%, that is, if the kernel functions are periodic with period equal to N. Furthermore, if
PP is satisfied the ratio value in (8) is equal to S = (=1)F.

An example of kernel group that satisfies PP is fi(n) = [cos F(+1) sinkz(n+ %)]T Observe that these two
kernel functions specify the Discrete Cosine Transform and the Discrete Sine Transform. Fig. 4 and Fig. 5 show how
the architectures in Fig. 2 and Fig. 3 will be modified if the periodicity property holds.

Fig. 6 depicts a flow graph diagram that summarizes the architecture design procedure for a given mapping
operator. For the sake of simplicity here we have restricted ourselves to the special case where kernel groups of size
M =2 are sufficient for implementing a given mapping operator. Nevertheless, the generalization to arbitrary values
values of M is straightforward. This design procedure provides the guidelines for developing a CAD tool appropriate
for time-recursive architecture design.

4. ARCHITECTURE FOR MODULATED LAPPED TRANSFORM

In this Section, we consider the architectural implementation of the Modulated Lapped Transform (MLT)*. We
also discuss the design of the time-recursive architecture for an Extended Lapped Transform (ELT) with basis length
equal to 4N 1516, Both transforms are Lapped Orthogonal Transforms, thus they exhibit the desirable property of
suppressing the blocking effects when used in data compression. The use of these transforms in a novel audio coding
scheme has been reported recently?4. Furthermore, if they are used in transform domain adaptive filtering they oper-
ate as Quadrature Mirror Filter (QMF) banks. In both cases the time-recursive implementation is particularly useful.

The MLT operates on segments of data of length 2N, z(t +n—2N +1),n=0,1,---,2N — 1 and it produces N
output coefficients X;(¢),k=0,1,---, N — 1 as follows!4:

230 «» 1 x 1 1 N
.Xg(t):ck NZSIDW(R-}-i)COS[N(k-Fa)<n+§+?)Jl’(t+Tl—2N+l), (9)
n=0

where t = 0,1,---and ¢ = (—=1)*+2/2 if k is even and ¢; = (=1)=1/2 [T k is odd. The sequence of the kth output
coefficients X (t),¢ =0,1,--- can be thought of as the output of the mapping operator

hip = (ck\/g> sin 2= (n—f—%) cos [% (k+%) (n+%+%>J. (10)

After a few algebraic manipulations, we derive the following decomposition of the mapping operator:

hen=— (Cn/%) fk+1,0(n)— (CH/%V-> fra(n), k=0,1,--- N =1, (11)

where
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is the associated kernel group. For this kernel group we have fi(n — 1) = Rifi(n), where

cos X sin kX
Re = { —sinqﬁ- cos% ] (12)
We also have f20(0) foo(2N) . (Ic . 1) r]
E,0 - E,0 _ | €cos {5y 3) 3
[ 4ol ] = s feete | = [ EIEIRE ] 1s)

where S = 1. Therefore, the periodicity property is satisfied. Since both member functions of the kernel group appear
in the decomposition (11), the lattice architecture is recommended (cf. Fig. 6). In Fig. 7, we provide the lattice
architecture module that is used as the building block in the MLT architectural implementation. The latter is depicted
on Fig. 8 for the case of N = 8. Note that the lattice is a rotation circuit that can be implemented very efficiently
either with a CORDIC processor!® or by a distributed arithmetic approach?®. The lattice architecture we propose
for the N-point MLT involves 2N + 3 multipliers, 3(N + 1) adders, N — 1 rotation circuits and local interconnection,
as opposed to %(logN + 1) multipliers, %(IogN + 1) adders, %’- rotation circuits and global interconnection of
the implementation in !4, The IIR implementation for building the MLT modules is also considered for the sake of
completeness. By substituting the expressions (12) and (13) in (5) we obtain

d; = —2cos %’ ngp = €os [(k + 5) x W]
dz =1 ngy =
nig = sin [(IC + %

|

|
a
o}
@
2 nd
+

The resulted ITR module is obtained by using the above expressions in Fig. 5.

One can view MLT as a cosine transform for which the input data are modulated by a sin-shaped window. The
modulation in time domain is equivalent to a convolution operation in frequency domain. Under this light, we observe
that the time-recursive design in Fig. 8 implements the data modulation in the frequency domain (more accurately,
in a cosine transform domain). The length of the convolution that takes place in this domain is equal to 2, since the
sin-shaped window contains two frequency components. Other Extended Lapped Transforms utilize more complex,
sum-of-cosine type modulation windows!®1¢. One can easily observe that the shape of the modulation window (and
in particular the number of the summation terms) relates with the locality of the communication links in the associ-
ated time-recursive architecture. This is the same phenomenon appears in the use of sum-of-cosine windows in the
Short Term Fourier Transform!.

For the sake of concreteness consider the following ELT for which the basis length is equal to 4N. It operates
on segments of data of length 4N, z(t + n —4N +1),n = 0,1,---,4N — 1 and it produces N output coefficients
XELT(k,t),k =01,.---,N-1 16,

Xerr(k,t) = \/%211;1;1 [—ﬁ; -+ %cosﬁ (n + %)] cos [-1’\'7 (F+ %) (n+ -12- + %’.,—)} (14)
z(t+n—4N + 1),

where t =0, 1,---. The modulation window is

1 1 T 1
[—K/-E-FECOS]—\,'(TI-*-E), n-0,1,---,4N—-1].

Obviously it is a sum-of-cosine type of window that contains three frequency components. One can show that in
transform domain the modulation operation translates into a convolution operation with length equal to 3. The
implementation cost of the associated time-recursive architecture is slightly higher from the cost of the MLT (see
Table 1), while the locality of the design is maintained?.
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5. CONCLUSION

The shift property dictates the common infrastructure of the time-recursive computation in a variety of applica-
tions. The time-recursive approach yields architectural implementations that are modular, regular and require local
communication, thus they are very appropriate for VLSI implementation. We have developed a routine that can be
used for designing time-recursive architectures in a systematic way. This routine specifies the guidelines for a CAD
tool that could be specified high level description of mapping operators and produce VLSI layout for the associated
time-recursive architectures.

The time-recursive architecture of the Modulated Lapped Transform has been designed and the architecture for
an Extended Lapped Transform is discussed. These designs have an important impact on real-time audio data cod-
ing. In particular, the real-time computation of the MLT has become very interesting, since it has been incorporated
recently by the ISO-MPEG and ASPEC standards for audio data coding with the name Modified Discrete Cosine
Transform (MDCT).
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implementation cost
(mult, add, rotation)

MLT | time-recursive 9N +3,3N+3,N-1
fast algorithm | & (log, N + 1), ¥ (logy N +1), X
ELT | time-recursive 3N +4,4N +4,N +2

fast algorithm | ¥ (log, N +1), ¥ (logy N +2), N

Table 1: Operator counts for time-recursive architectures of some N-point block transforms.
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