

A New Deterministic Codebook Structure for
CELP Speech Coding

Yu-Hung Kao} John S. Baras!
University of Maryland
College Park, MD 20742

Abstract

Low bit rate, high quality speech coding is a vital part in voice telecom-
munication systems. The introduction of CELP (1984, Codebook Ex-
cited Linear Prediction) speech coding provides a feasible way to compress
speech data to 4.8 kbps with high quality. However, the formidable com-
putational complexity required for real-time processing has prevented its
wide application. Using our codebook, we reduce the computational com-
plexity of codebook scarch, which originally accounts for 2/3 of the com-
putational complexity, to almost nothing; while preserving the same good
speech quality. This tremendous reduction in computational complexity is
achieved by replacing the traditional stochastic codebook by an artifi-
cially constructed deterministic codebook. After a careful study of the
minimization of vector quantization distortions, we found that although
“randomness” is usually observed in speech residuals; it is not necessary
to use a noise-like stochastic codebook to encode the speech residuals. As
long as the code vectors were distributed uniformly over a sphere, very
small VQ errors can be achieved. The most significant advantage of using
this deterministic codebook is extremely fast codebook search. After this
reduction, we have an algorithm about 5 MIPS. Tt can be handled by even
inexpensive DSP chips, while maintaining the same high quality. Besides
extremely simple encoding and decoding schemes, this codebook also pro-
vides optimal error tolerance property and it doesn’t require codebook
storage. We hope our contribution can finally make CELP speech coding
a widely applicable technology.

*Texas Instruinents
Martin Marietta Chair in Systems Engineering

340

A New Deterministic Codebook Structure
for CELP Speech Coding

Yu-Hung Kao and John S. Baras
Electrical Engineering Department
and Systems Research Center
University of Maryland
College Park, MD 20742

Abstract

Low bit rate, high quality speech coding is a vital part in voice telecommunication
systems. The introduction of CELP (1984) (Codebook Excited Linear Prediction)
speech coding provided a feasible way to compress speech data to 4.8 kbps with high
quality, but the formidable computational complexity required for reai-time processing
has prevented its wide application. Using the new deterministic codebook, we reduce
the computational complexity of codebook search, which originally accounted for 2/3
of the computational complexity, to negligible. Based on this reduction, we produce an
algorithm with complexity about 5 MIPS. It can be implemented in even inexpensive
DSP chips, while maintaining the same high quality. In addition to extremely simple
encoding and decoding schemes, this codebook also provides optimal error tolerance
and it doesn’t require codebook storage. We hope that this contribution can finally
make CELP speech coding a widely applicable and practical technology.

1 Introduction

It is widely accepted that the speech residuals (after short and long term predictions) are
Gaussian distributed, so stochastic codebooks (generated by a Gaussian process) are used to
predict speech residuals. However, since the stochastic codebooks are generated randomly,
there are no special structures to organize them, so we need to use exhaustive search
to find an optimum codebook vector. Although some other researchers (NSA [3]) have
proposed overlapped codebook to reduce the complexity of convolution (in doing perceptual
weighting) by end-point correction, the computational complexity is still high (8 MIPS).
Furthermore, the use of overlapped codebook is an approximation and it degrades quality.
It is not exact as in the pitch codebook case. The fundamental question we investigated
is : Is it necessary to use an un-structured stochastic codebook? Is it possible to construct
a deterministic codebook and by its regular structure to find some efficient ways to search
the codebook instead of erhaustive search? We found that stochastic codebook is not
necessary, and there exists a codebook structure that provides not only tremendous savings
in search time but also other nice properties. This paper is organized as follows: Section
2 explains the motivation behind the new codebook structure. Section 3 describes the fast
search algorithm. Section 4 introduces a modification of the codebook, which provides
even better performance. Based on the same principle, the readers can construct their own

modifications to achieve the best performance under different situations. Section 3 provides
performance comparisons and summary of the property of the new codebook. Section 6
gives our conclusion.

2 The Motivation Behind the Deterministic Codebook

To find the answer of whether a stochastic codebook is necessary, let us discuss the physical
meaning of finding an optimum excitation vector in the codebook : In CELP, for a given
speech residual vector T, we want to find a codebook vector &, which, after scaling, will
produce minimum square error from the speech residual vector 7. Because of the scaling
factor, the criterion is not the same as nearest neighbor in the Euclidean distance sense.
To see this, suppose that we have a speech residual vector 7 and a codebook vector Z. The
criterion is equivalent to maximizing ’
|7"'~5:’\2 |712|Z|2cos?0

= = |7%cos?8
EaRT

VZ € codebook

Since 7 is fixed in the search, we are actually maximizing c0s20. To maximize cos™f
is equivalent to minimize sin20, thus minimizing the difference between these two vectors,
|¥ — gain x Z]. Therefore the criterion is to maximize cos®8, since scaling can do the rest.
To reveal more insight into this problem, suppose we want to maximize cosd. To maximize
cos@ means to find a codebook vector which is most parallel to the speech residual vector.
The above discussion is best illustrated by the following diagram:

7 - .
/Ar—gaznxx

f gainX7ZT

By the above argument, we conclude that the criterion for a good codebook is : 1t must
span the n-dimensional sphere as uniformly as possible. Given a fixed number of vectors.
they will have the best directional representation ability if they are uniformly distributed
over the n-dimensional sphere. We now see clearly that it is not necessary to use an
un-structured stochastic codebook; rather, we can construct a codebook which can span
the n-dimensional sphere more uniformly than a randomly generated stochastic codebook.
This means we can even construct a codebook which is actually better than a stochastic
codebook. We call such a codebook a deterministic codebook. Such codebooks have been
proposed for CELP coding in earlier works [1,2]. However, our codebook is substantially
different.

The reason why randomly generated stochastic codebooks are widely used is that when
we plot the histogram of the speech residuals, we can see that they are approximately
Gaussian distributed. So an i.i.d. Gaussian process can be used to generate the codebook.
and fortunately, the result comes out reasonably good. When we construct our deterministic
codebook, we must take this approximate Gaussian distribution property into consideration.
We shall see later that this step is also necessary in order to bring down the codebook size
from impractically large to somewhat manageable.

2

We know that a good codebook needs to span the n-dimensional sphere uniformly. To
simplify things, we restrict the elements of our codebook vectors to be ternary, ie. -1,0,and
1. Note that all the simplifications made here have always been justified by experimental
results; and if this is not considered satisfactory, we may argue that in the search process
stated above, the direction of a vector is used as the matching criterion rather than its ezact
location. So the ternary restriction should be able to retain the directional representation
ability of each vector.

In the NSA CELP standard (Federal 1016) [3], the vector length is n = 60. This means
that even with the ternary restriction, there are 360 _ 1 (zero vector) possible vectors in
the 60-dimensional space. That is of course too large! To achieve 4.8 kbps encoding (the
original speech is quantized to 14 bits/sample, sampling rate 8K, so it is 112 kbps), we
only have 9 bits reserved for the codebook index, which means that our codebook size can
only be 2°. To bring down-the size, first we consider the approximate Gaussian distribution
property of speech residuals. We know that most of the residuals are fairly small. so we
can let a fair amount of codebook vectors’ components be zero and thus reduce the size of
the codebook. But how many? There is no way to derive the cutoff threshold theoretically.
Based on experiments, the NSA team used [3] a 77% zero codebook and have reported a
fairly good performance. So we follow this suggestion (make it 80% zero, because 777% of
60 is not an integer) and let our vectors have 48 zeros out of the total 60 comporents. and
the remaining 12 components are 1’s or -1’s. After these simplifications, the codebook size
becomes

57— 2% x n\ _ 2% x n! :212:><60!
w (n—w)lxw! 48! x12!

where n is the dimension, w is the weight. As we can see, this size is still too large. much
larger than the desired 29,

How can we further reduce the size of the codebook? The residuals are time sequences.
and we know that human ears are relatively insensitive to phase shifts in the speech wave-
form. So, the positions of those 12 1’s and -1’s may not be that important. Why not choose
12 fized positions to put those non-zero spikes, and only play with the signs of them! After
doing so, the size is reduced to 2!2, quite close to the ideal 2°. We still need some more
restrictions to reduce the codebook size!

By now, it seems that we have run out of intelligent and rationally justified ways to come
up with other restrictions. The next step is entirely empirical: let us put some restrictions
about the possible combinations of these 1’s and -1’s.

Now we have two decisions to make : to choose 12 non-zero positions out of the total
60, and set some restrictions on the combinations of those 1’s and -1’s.

First let us consider how to choose 12 non-zero positions out of the 60 vector length.
Intuitively, it seems reasonable to place them uniformly over the 60 positions : only elements
with index 5n are non-zero , i.e. X0000X0000X0000 ... , each X can be either 1 or -1.
This configuration has critical significance when we consider the calculation of perceptual
weighting. We shall see this a little later.

Now we have a 60-dimensional vector which has 12 spikes uniformly distributed. It
looks like this :

III

The spikes can flip up and down to form the 2% vectors needed. We may see this vector
this way : since we want to use it to represent the noise like speech residual, by flipping
these spikes up and down we will have good shaping ability, at least better than randomly
generated vectors.

Now we have 212 vectors in our codebook. We further need to put some restrictions
on the combinations of 1’s and -1’s. Let us first partition the vector into 3 equal length
sub-vectors. The length of each sub-vector is 20 and there are 4 non-zero elements in each
of them. We pose the restriction that we allow only even numbers of -1’s out of these 4
non-zero elements. So, now we can have 4 1’s (1 combination), 4 -1’s (1 combination), and
2 1’s, 2 -1’s (6 combinations) for each sub-vector. Each sub-vector has 8 combinations. that
means each vector has 83 = 29 combinations. Finally, we get a codebook size of 2°. that
takes 9 bits for the codebook index ; exactly what we need!

It is important to note that because this is a deterministic codebook, we don’t even need
to store the codebook, the codebook index, alone, already specifies each vector exactly.

The arguments above are not easily justified on a theoretical basis. The problem is
that we are trying to densely “pack” a 60-dimensional sphere with only 29 vectors: and
this number is definitely not enough to do a good job. We’ve already taken the Gaussian
distribution into consideration, which is the only characteristic exploited by a randomly
generated stochastic codebook. Besides that, we have just tried to make these vectors
spread more uniformly. The good behavior of our codebook is heuristically suggested by
extensive experiments [4], indicating that the size of the excitation signal sphere is of
secondary importance compared with the long term predictor.

3 A Fast Algorithm to Compute Inner Products

Recall that we need to calculate the measure:
|7 £
-

YZ € codebook

Which means we need to calculate the square of the inner product |7 £]? and the energy
|Z|2. To calculate the 29 inner products of the speech residual vector with respect to each of
our codebook vectors, we note that there are only 1’s and -1’s in the codebook vectors, so
there is actually no need for multiplications. We only need to pick the right components in
the speech residual vector, and then add or subtract them. We will come back to perceptual
weighting later.

Using appropriate combinations of different terms, we can calculate all the 2° inner
products with an extremely small amount of operations. Suppose the speech residual is 7.
and the codebook vector is Z. Since in our codebook vectors, only elements with index 5n
(zo,Zs,Z10, - --) are non-zero, and they are all 1’s and -1’s, we only need speech residual
elements with index 5n (7o, 7s,T10, - - -) to calculate all the inner products. For each of the 3
sub-vectors, we calculate 8 sums corresponding to 8 combinations of codebook sub-vectors.
The 8 sign combinations for each sub-vector that we use are:

17 Tg | Ts | T1o | T15
0|+ 1+ + +
1+ |+ - -
21+ - [+ 1 -
3]+ - - +
41 - {+ | + -
50 -1+ -1+
6| - - + +
7. - - -

For each sub-vector we have 8 sums. If we pick one sum from each subvector we have
3 sums, and by adding these 3 sums we have one inner product. There are 8% ways to pick
3 sums from 3 sub-vectors, and these ways provide exactly the 29 inner products we need!
This is illustrated in the following schematic :

_pick 1 out of 8
E:ro +r5+T0E rﬂ

r_’t’l‘go + T2s + Tap + T35 add

E'NO + 745 £T50 = 755

We now consider perceptual weighting. Let the impulse response hg, h1, ho, .. .characterize
the partical filter, i.e. FIR filter. We need to complete convolutions of the impulse response
7 with each of our codebook vectors. Since all of our codebook vectors have 4 zeros between
two nonzero elements, if we reduce the impulse response sequence length to 3, keep only
ko, h1, ha, hs, and hg, the codebook vector after perceptual weighting should look like :

h0h1h2h3h4 h0h1h2h3h4 h0h1h2h3h4 v (60 hiS)

+or— +;:— +or—

With different sign combinations, but each group of (hq, h1, ha, ha, hy) should be of the
same sign. By inspecting h, we see that over 80% of its energy is contained in the first 5
components, thus this approximation should not cause too much distortion.

Keeping the same structure as before, we perform the following substitutions :

ro = Toho + T1hy + T2he + T3ha + Tahy
rs = rsho + reh1 + T7he + T8hs + rohy

rss = Tssho + Tsehy + Tsthe + Tssha + Ts9h4
We see that we can still get all 2° inner products, with pereptual weights. using an
extremely small number of operations.
We also need to calculate the energy for each codebook vector after perceptual weight-

ing, and fortunately, as the codebook vectors after perceptual weighting all look alike, as
described above, their energies are all the same and equal to:

4
12x Y A
=0

Because they are all the same, we don’t even have to calculate them.

The spirit of this algorithm is : Since all the codebook vectors are just different combi-
nations of signs, the “components” in all inner products are the same : it is not necessary
to re-compute these components, it is enough to play with the combinations of signs and we
can get all the inner products.

We now compute the exact number of operations needed. First, we need 5 x 12 = 60
MUL and 4 X 12 = 48 ADD to compute the above rg,75,...,755. Then we need 4 Xx3x3 =
96 ADD or SUB to compute 8(combinations) X 3(sub-vectors) = 24 terms. Finally we
need 2 x 512 = 1024 ADD to compute the 512 inner products. The total is only 1228
operations to get 512 inner products! And only 60 of them are MUL, others are ADD or
SUB. 1228/7.5ms = 0.16 MIPS. Compared with the brute force search requiring 80 MIPS
(512 x 60 codebook), this represents an improvement of 500. Compared with overlapped
codebook complexity of 8 MIPS, this represents an improvement of 50. Originally the
codebook search dominated the complexity of CELP analysis, now the computations needed
for codebook search is negligible compared to pitch search.

Actually the codebook doesn’t have to be so restrictive (as stated above) to benefit from
the above algorithm. As long as the non-zero positions in all codebook vectors are fixed.
and their absolute values are the same, which means the only difference among all codebook
vectors is different sign combination, then we can use the above algorithm.

4 An Improvement

Based on the discussions in the previous sections, we can interpret the meaning of those
12 spikes in each codebook vector £ as dividing the speech residual 7 into 12 “clusters”,
namely, rq - - 74 is the first cluster, rs---rg is the second cluster, .. .etc. And the decision
of +1 or -1 of each spike simply determines whether the cluster is a “positive” cluster or
a “negative” cluster. Because we have only 9 bits allocated for the codebook index and
there are 12 spikes in our codebook vectors, we have to pose the restriction that only even
numbers of -1’s are allowed in each sub-vector in order to restrict the number of possible
sign combinations to be 2° instead of 2!2. Obviously this restriction will limit the ability
for each of those 12 spikes to determine the signs of those 12 clusters, and we suspect that
this limitation will increase the encoding error. It would be preferrable if we can encode
the sign of each cluster freely. Recall that we made the decision to use 12 spikes because
NSA used a 77% zero stochastic codebook, and 12 spikes out of 60 vector elements is 80%,
which is close to 77%. What if we use 9 spikes? Then there are 9 clusters and we can decide
the sign of each cluster freely.

When we have the freedom to determine the sign of each cluster freely, we don’t even
have to compute inner products as in the 12 spikes case (this will become clear shortly). Not
only the computation is reduced, but the resulting codebook has improved error tolerance as
well. Here is the full description of this improved codebook and its encoding and decoding
schemes:

Since 9 is not a factor of 60, we cannot have equal size clusters as in the case of 12
spikes. However, it doesn’t matter if each cluster has the same size, we can still spread
these 9 spikes as uniformly as possible in the 60 positions. Naturally, we choose the cluster
sizes to be 7,7,6,7, 7,6, 7,7, 6; these 9 clusters add up to 60.

The codebook vectors after perceptual weighting look like:

hoh1hahshahshe hohihohshalishe
+or— +<;;-

h0h1h2h3h4h5 e (60 h:S)
N e’
+or—

Note that in the 12 spikes case we use hq - - - hy as perceptual weighting impulse response,
here we use either hg - - -hg or hg---hs depending on the size of each cluster.
Recall that we need to calculate the measures:
|7 &
2 !
|Z]

VI € codebook

where 7 is the perceptually weighed speech residual, £ is the perceptually weighed
codebook vector. And we want to choose the Z that results in the largest value. Note that
all ©’s have the same energy:

6 5
6x > hI+3x)y A
1=0 1=0
so we don’t have to compute it. Regarding the inner products of 7 and Z, we only have
to compute the following 9 terms:

rohg + rih1 + Toha + r3hs + rahy + 5hs + Tehs

rrho + rghy + rohe + T10hs + T11h4 + T12hs5 + T13he
r14ho + T1sh1 + T16he + T17ha + T1gha + T19hs

rsaho + Tsshy + Tsehe + rs7ha + Tsgha + Tsohs

We can add (or subtract, depending on the signs of those 9 spikes) these 9 terms to form
all the 2° inner products. But it is not necessary. If we choose the signs of the 9 spikes in
the codebook vector to be the same as the 9 terms computed above, then the inner product
will be the largest. So we can then determine the 9 bits in the codebook index according
to the signs of these 9 terms. Set the bit to 1 if the corresponding term is positive, set to 0
if negative. This completes the encoding of the codebook index. In the decoding, it is even
easier: set the spike to 1 if the corresponding bit (in the codebook index) is 1, set to -1 if 0.

To compute the exact number of operations needed, we only need to calculate the 9 terms
mentioned above: 60 MUL and 51 ADD. That is only 111 operations or 111/7.5ms = 0.015
MIPS. With a complexity this low, it really doesn’t make sense to compute the MIPS. The
real benefit of this improved codebook is its error tolerance property. Because each bit in
the codebook index encodes 1/9 of the codebook vector, if 1 bit is flipped, only 1/9 of the
codebook vector will be decoded incorrectly. However in the stochastic codebook case, if 1
bit is flipped, the whole vector will be different.

-3

5 Results and Advantages of the Proposed Codebook

With all the nice properties mentioned above for the proposed codebook, it is important to
know how the quality of the encoded speech using this codebook compared to that using
the traditional stochastic codebook. For subjective speech quality tests, we submitted the
12 spikes codebook to NSA, and the score reported by NSA is shown below (we compare
with the NSA standard because we follow the NSA standard except for the codebook) :

DAM MOS

NSA Quiet | 62.9£1.0 | 3.25£ .11
Office | 54.4 £1.0 | 2.71 £ .07

E4B | 53.3£0.9 | 2.59 + .06

12 spikes Quiet | 60.3+1.0 | 3.14 £ .09
Office | 52.1 £1.0 | 2.56 = .07

E4B | 51.7£0.9 | 2.52 = .06

As shown in the scores, the 12 spikes codebook scores a little lower than NSA stochastic
codebook. However, we believe the 9 spikes codebook will score better than the stochastic
codebook for the reasons mentioned throughout this paper and also based on the S/N ratios
we obtained from processing 12 sentences including male, female and children.

NSA | 12 spikes | 9 spikes

child | 18.30 19.81 21.01
female | 17.29 14.21 21.65
male | 11.66 8.74 9.36
female | 10.93 10.25 9.90
male | 11.95 11.63 12.16
male | 10.75 9.18 11.27
male | 10.36 9.06 11.47
child | 17.62 16.26 18.36
male | 13.73 13.21 13.79
female | 19.12 18.31 20.53
female | 12.21 12.29 12.17
female | 19.30 18.73 23.36

[average | 14.43 | 13.47] 15.42]

As shown in the above table, the 9 spikes codebook provides the best averaged S/N
ratio.

For objective properties, i.e. speed, memory requirement, and error tolerance, our
codebook is consistently much better (here we refer to the 9 spikes codebook).

1. Search speed is 5000 times faster than stochastic codebook, and 300 times faster
than overlapped codebook. Reducing the computational complexity of CELP from
15 MIPS to 5 MIPS, which can be handled by even low end DSP chips.

2. No need for codebook storage. The codebook vector can be completely decided by the
codebook index. For a 512-size codebook, overlapped codebook needs 1082 words, and

8

stochastic codebook needs 60 x 512 = 30720 words. Considering the implementation
of a stand-alone coding unit, this saving can be a crucial edge.

3. Improved error tolerance. For a stochastic codebook, if one bit of codebook index
is flipped, it represents a totally different codebook vector; that means the quality
degrades miserably. But in our codebook, if one bit of codebook index is flipped.
only 1/9 of the codebook vector components are different, we still have the other 8/9
components correct; that means the quality degrades gracefully.

6 Conclusions

We found that although speech residuals are approximately Gaussian distributed, a stochas-
tic codebook is not necessary for higher quality CELP coding. A ternary, fized nonzero
position deterministic codebook can encode speech residuals as well. It provides not only
tremendous savings in search time but also improved error tolerance. Moreover, it doesn’t
require codebook storage. This structure is very easy to be modified to fit with different
speech frame sizes and different encoding bit allocations. We expect to see this structure
applied to other cases and provide the same good performance results.

7 Acknowledgement

We would like to thank T. Tremain and V. Welch of NSA for their help and suggestions
throughout this work. The University of Maryland has applied for a patent for this algo-
rithm. For further information please contact Mr. G. Gillespie at (301) 405-7507.

8 References

1. M. A. Ireton and C. S. Xydeas, “On improving vector excitation coders through the
use of spherical lattice codebooks (SLC’s)” ICASSP 1989, 57 - 60.

2. C. Lamblin, J. P. Adoul, and S. Morissette, “Fast CELP coding based on the Barnes-
Wall lattice in 16 dimensions” ICASSP 1989, 61 - 64.

3. Thomas E. Tremain, Joseph P. Campbell, JR, and Vanoy C. Welch, “A 4.8 K bps
Code Excited Linear Predictive Coder” U.S. DoD.

4. R. C. Rose and T. P. Barnwell, [II, “Design and Performance of an Analysis-by-
Synthesis class of predictive speech coders” IEEE Trans. on ASSP, Vol. ASSP-38.
NO. 9, Sept. 1990, 1489 - 1503.

