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Abstract

The structural parameters of many statistical models can be estimated maximizing a penal-
ized version of the likelihood function. We use this idea to construct strongly consistent estimators
of the order of Hidden Markov Chain models. The specification of the penalty term requires pre-
cise information on the rate of growth of the maximized likelihood ratio. We find an upper bound
to the rate using results from Information Theory. We give sufficient conditions on the penalty
term to avoid overestimation and underestimation of the order. Examples of penalty terms that

generate strongly consistent estimators are also given.
1. Introduction

Let {Y:,teZ} be a stationary finitely valued stochastic process that admits a representation
of the form Y; = f(X) where {X,teZ} is a finite Markov chain and f is 2 many-to-one function.
We call such a process a Hidden Markov Chain (HMC).

Under well known conditions on f a HMC inherits the Markov property of X; and becomes
a finite Markov chain itself, but this case is non-generic. In general a HMC need not be a Markov
chain of any finite order and will therefore exhibit long-range dependencies of some kind. This
fact means that the class of HMC's is a very rich one and it comes to no surprise that it is
extensively present in many applications.

We can find HMC’s appear under various disguises in such diverse fields as: engineering
(stochastic automata, speech recognition), biosciences (in medicine to study neurotransmission),
economics (stock market predictions), and many others.

On the theoretical side the same fact (lack of the Markov property) makes the class of HMC’s
difficult to work with. The general methods developed for the study of stationary processes apply
but being non-specific they will not give the best results. Theoretical work on the specific class
of HMC'’s has proceeded along two main lines.

The early contributions, inspired by the work of Blackwell and Koopman [4], concentrated on
the probabilistic aspects. The basic question was the characterization of HMC’s. More specifically

the problem analyzed was: among all finitely valued stationary processes Y, characterize those
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that admit @ HMC representation. This problem was solved by Heller [11] in 1965. To some
extent Heller's result is not quite satisfactory since his methods are non-constructive. Even if
Y, is known to be representable as a HMC, no algorithm has been devised to produce a Markov
chain X, and a function f such that ¥, = f(X¢) or at least Yy ~ f(X,).(i.e. they have the same
laws). In recent years the problem has attracted the attention of workers in the area of Stochastic
Realization Theory, and while some of the issues have been clarified a constructive algorithm is
still missing.

The first contributions dealing with statistical aspects were made in the late sixties. Baum
and Petrie (3] studied maximum likelihood estimation of the parameters of a HMC proving consis-
tency and asymptotic normality of the MLE. They also provided an algorithm for the numerical
computation of the MLE (of course there is little hope for an explicit solution in a non-Markovian
setting) basically inventing the EM algorithm that became popular only later thanks to the work
of Dempster, Laird and Rubin [7]. After the mid seventies HMC’s made only sporadic appear-
ances in the statistical literature. In 1975 HMC’s were proposed by Baker [2] as models for
automatic speech recognition (ASR) and ever since they have been adopted as one of the models
of choice in this ficld. Computational aspects became very important and much work was done
on the implementation of Baum’s algorithm. A good survey of this area of research is [12] which
also includes an extensive bibliography.

Although much work has been dedicated to parameter estimation for HMC’s only very re-
cently the order estimation problem reccived some attention. The order of an HMC Y: is the
minimum integer ¢ for which there exists a g-valued Markov chain X, such that Y = f(Xy)
for some f. The knowledge of the order of an observed HMC Y; allows the construction of the
most economical representations f(X,) in the sense that the number of parameters (the transition
probabilities of X) is minimized. The order cannot be estimated using the classical maximum
likelihood because increasing the parameter g automatically increases the likelihood. This is the
typical behavior of the likelihood function when the parameter is structural i.e. the parameter
(usually integer valued) indexes the complexity of the model. As another example of structural

parameter we mention the order of a Markov chain i.e. the smallest integer m such that:

P(Xe | X{™Y) = P(X | X{Zh) Vt>m+1, VXL

Again the maximum likelihood technique fails when applied to the estimation of the param-
eter m.

In this paper we describe our recent results on the problem of order estimation for hidden
Markov chains. The detailed proofs can be found in [8]. The technique we adopt is based on
the compensation of the likelihood function. A penalty term, decreasing in ¢ (or m), is added
to the maximum likelihood and the resulting compensated likelihood is maximized with respect
to ¢ (or m). Proper choice of the penalty term allows the strongly consistent estimation of

the structural parameter. Accurate information on the almost sure asymptotic behavior of the
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maximum likelihood is of critical importance for the correct choice of the penalty term and the
Law of the Iterated Logarithm (LIL) is therefore the best tool for this study.

The technique that we have just (roughly) described and the same probabilistic tools have
been used for the estimation of the structural parameters of ARMA procA:‘esses (see e.g. (1], [10]),
but we are not aware of any previous work that employs this approach for hidden Markov chains.
The behavior of the maximum likelihood is difficult to evaluate because no explicit expressions for
the estimators are available. The LIL works for one special case, but we must use other methods
to evaluate the asymptotics. We resort to a result from Information Theory to get the necessary

asymptotics of the maximum likelihood.
2. Towards a Realization Theory for HMC’s

There are many equivalent ways of defining HMC's. We pa.rtiéularly like the definition that
originated in Realization Theory [16] and we will borrow it.

Definition 2.1 (SFSS): A pair {X, Y; teN} of stochastic processes defined on a probability space
(22, 7, P) and taking values in the finite set X x ) is said to be a stationary finite stochastic
system (SFSS) if the following conditions are met:

(i) (Xi, Y1) are jointly stationary

(ii) P(Yt+l = Vg1, Xegp1 = Ti41 | le = yi, X{ = zi)'—=P(Yt+1 = Yep1, Xi41 = Teq | X =1z,)
The processes X and Y; are called respectively the state and the output of the SFSS. The cardi-
nality of X will be called the size of the SFSS.
Definition 2.2 (HMC): A stochastic process Y; with values in the finite set Y is a Hidden Markov
Chain (HMC) if it is equivalent to the output of a SFSS.

Recall that two stochastic processes are said to be equivalent if their laws coincide. Definition
2.2 has therefore to be interpreted as follows: the process Y; is a HMC if its probability distribution
function Py(y7) := Pr(¥{® = y}] can be represented as Py(y}') = P(Y;" = y}') where ¥; takes
value in Y and is the output of a SFSS. Observe that we do not require Y; to be defined on the
same probability space (2, F, P) as Y;; they can be completely different objects but they are
indistinguishable from observation. From now on when we refer to Y; as a HMC we will actually
refer to any process ¥; in the same equivalence class. We will refer to any SFSS (X:, Y2) with
Y, equivalent to Y; as a representation of the HMC Y,.

In the introduction we referred to HMC’s as stationary processes of the form Y; = f(X\)
where X is a stationary Markov Chain, but this is equivalent to Definition 2.2. Clearly, if ¥
= f(X.) with X, stationary Markov, the pair (X}, ¥;) will be a SFSS and Y; a HMC according
to Definition 2.2. Conversely, let Y; be a HMC according to Definition 2.2 and X, be the state
process of a SFSS associated with ;. If we sum (ii) of Definition 2.1 over y,4; we get P(X(41 =
ze41 | X{ = zf, Vi = y}) = P(Xe41 = 2141 | Xt = z¢) and after taking conditional expectations
with respect to X{ we have P(X 41 = 2441 | X{ = 2}) = P(X¢31 = z¢41 | Xi = z¢). Therefore

X1 is a Markov Chain. As a direct consequence of Definition 2.1 (ii) we also have that the process
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St = (X, Y1) is a Markov Chain. Taking f : X x J — ) to be the projection map on the second
component i.e., f(z,y) = y we get the representation Y; = f(S;) as desired.

In general HMCs do not have finite memory. Nevertheless their laws are completely specified
by a finite number of parameters. In fact to specify the laws of a SFSS it iis; suflicient to specify the
finite set of matrices {M(y), yeY} whose elements are: mij(y) == PV =4, Xeq1 =7 | X. = 1),
4,7 =1,2,--- | X |. Observe that the matrix A := Ey M(y) is the transition matrix of the
Markov Chain X;. If to the matrices M(y) we add an initial distribution vector = such that
7 = mA (stationarity) then we have a complete specification of the laws of the SFSS.

Very often in the literature the following “factorization” hypothesis is made:

PYiui =y, X1 = | Xe=1) = P(Yiq1 =y | Xe41 = ))P(Xe1 =5 | X = 1)

Since the factorization hypothesis always holds for the process S, = (X.,Y:) we will assume it
without loss of gencrality. Let b;, := P(Y; =y | X, = ¢), B the | X | x | ) | matrix of the
biy’s, and By := diag {byy, bay," - bey} (where ¢ 1= | X |). The factorization hypothesis now gives:
M(y) = AB,.

In {11] Heller characterized the finite valued stationary processes Y; that are HMC’s. Let )
denote a finite set, Y* the set of finite words from Y, and C* the set of probability distributions
on V*. C* is convex. A convex subset C C C* is polyhedral if C = conv {g1(*), -, ¢.(*)} i.e. C is
generated by finitely many distributions ¢;(-)eC*. A convex polyhedral subset C C C* is stable if
C =conv {q1(-),"-*,4¢c(:)} and for 1 <7 < ¢ and Vye) the conditional distributions

av)

QS(' ly) = q.'(y)

Then
Theorem 2.1 (Heller (11]): Py(-) is the pdf of a HMC if f the set Cy := conv{Py(- | u) ueY*}
is contained in a polyhedral stable subset of C*.

Consider now a HMC Y; with the set of parameters M := {c, M(y),7} wherec = | X |. It is
natural to identify a representation of the HMC Y, with the set AM. When clear from the context
we will omit ¢ from the list of parameters. Two questions now arise naturally.

The first question is: can the parameters of a representation be determined directly from
Py(:)?

Such a representation of Y; is inherently non-unique and we would like to find the “simplest”
one. Take | X | as a measgre of complexity, and for a given HMC Y, define its order as the
minimum of | X' | among all representations. A representation for which | X | equals the order is
said to be a minimal representation.

The second question is: can the order be determined?

Past work contains some partial answers. Unless otherwise noted the following summary is

derived from the works of Gilbert [9], Carlyle [5] and Paz [14]. Let p(-) be an arbitrary pdf (not
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necessarily HMC), and vy -+ v, v} - - v, 2n arbitrary words from Y*. The compound sequence
matrix (c.s.m.) P(v;-:-vpn, vi-+-v,) is the n x n matrix with i,j element p(viv}). The rank
of p(-) is defined as the maximum of the ranks of all possible c.s.m. if such maximum exists
or +co otherwise. Suppose now that p(+) is the pdf of a HMC which admits a representation
M = {c,M(-),7} of size c. Then we have that: P(v; - vy, ) = Gl - va)H(vy - vy)
where G, H are n x ¢ and ¢ x n matrices respectively, the i-th row of G is g(v;), the j-th column
of H is h(v;-) and p(v,—v;) = wM(v;v;)e = rM(v;)M(v;-)e = g(_v,-)h(v;-).

It clearly follows that the rank of a HMC cannot exceed the size of any of its representations

and therefore in particular:

The rank of a HMC is a lower bound to its order.

It is important to note that the concept of the rank of a pdf is only loosely related to the
HMC property because there are examples of pdf's with finite rank that do not correspond to
HMC’s. Also there are examples of HMC’s whose order is strictly greater than their rank.

A representation M = {c, M(.), 7} of size c is regular if the rank of the corresponding pdf
equals ¢. It is not difficult to establish that regular representations are minimal. As it was just
noted not all HMC’s admit regular representations, but the following two results will justify our
interest in them. The first result states that it is “easy” to check regularity. Or more precisely :
A finite number of operations is sufficient to determine the regularity of a given representation
M = {c,M(-),m}. The second result states that almost all representations are regular. Let I be
the set of all M := {c, M(-),7} of size c. T is a compact set in R¥ for some k depending on c.

Then: The non-regular elements of I are a closed subset of R¥-Lebesgue measure zero.
3. Families of HMC’s

In this section we introduce the families of HMC’s that will be used as model classes. From
now on ) will be a fixed finite set with | ¥ |= . The family © of all HMC’s of all orders (taking
values in Y) can be identified with the family of all § := {cg, Mo(y), 7¢} with ceV. For 6¢© define
Ps(yr') := meMeg(y]')ec,; we will often drop the subscripts and simply write Pe(y[') = n M (y})e).

Define © := {0¢©; cy = ¢}. Note that V qV8eO, 360, such that Ps(-) = Py(-) or, abusing
the notation, ©; C ©g4,. Statisticians refer to families having the last property as nested families.

A few considerations about the identifiability of © are now in order. A point 0eQy is identifi-
able in ©g if for any 6' # 6(6'€©,)Py(-) # Pgi(-) i.e. for at least one word w, Py(w) # Pg{w). This
definition is too strong and it would give no identifiable points in any ©,. In fact for a given 6 at
least the (finitely many) points 6’ obtained by permutations of the rows and columns of M(y) and
™ give Pg(-) = Py(-). We will say that 6e©, is identifiable modulo permutations (im.p.) if the
only points §'¢@, with Py(-) = Pg(-) are obtained by permutation as described above. Regular

points 8¢, (i.e. points for which rank Py = g) are good candidates for being i.m.p. but a few
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(mild) extra conditions must be added. We have adapted to our case the following theorem from
Petrie [15] on identifiability.
Definition 3.1: 6 = {q,M(y),n} is a Petrie point if: § is regular, M(y) is invertible Vy, and
Jyed such that b;y, (i =1,2,---q), are distinct. |
Theorem 3.1(Petrie [15] adapted): The Petrie points of ©, are identifiable modulo permutation.
Theorem 3.2(8]:The sct of Petrie points is open and of full Lebesgue measure in Q,.

It will often be convenient to somewhat restrict the family © in order to simplify statistical
considerations. To this end we have the Definition 3.2:for 0 < § < 1/q define:
@g = {060y a;5 > 6, b5, > 8, Vi, j,y}).

With the abuse of notation introduced earlier we have:

[ §/2
o) c 0¥

This nested property will be essential later.

4. HMC’s as Models of Stationary Processes

The consistency of the Maximum Likelihood Estimator (MLE) for HMC’s was established
in [3] under the assumption that the true distribution of the observations comes from a HMC. In
our work we have shown that, if Y is stationary and ergodic, the MLE taken on a class of HMC's
converges to the model closest to the true distribution in the divergence sense. The result in (3]
is therefore a special case of ours. In the course of this work we have also obtained a slightly
generalized version of the Shannon-McMillan-Breiman theorem.

Suppose a given series of observations {y1,y2 - - yn} is to be modeled for some specific reason.
For example we might want to predict yn41 or compress {y; + - ya} for storage. Confronted with
this problem a statistician would most likely set up a related parameter estimation problem as
follows. First assume that the sample is generated by some unknown stochastic mechanism,
let us say yx = gx(w),1 £ k < n. The observed data sample is now interpreted as the initial
segment of a realization of an unknown stochastic process. Based on prior information, insight,
and mathematical tractability, a class of models would then be selected. The models in the class
will be denoted {fi(:, 6),0¢0} where { fx(-,8)}x>1 is a stochastic process whose probability law is
completely specified by the parameter §. The modeling problem is now reduced to an estimation
problem. According to some specified criterion of optimality the statistician selects a model, i.e.
estimates the 8, that best fits the data. Let us call the estimator based on n observations 6,.

How are we to judge the quality of 8,7 Ideally we should compare fk(-,é,,) to gk(-) but
the latter is unknown. There are two possible solutions. The classical one is to assume that the
unknown process g is actually a member of the selected class i.e. gx(+) = fi(:,6o) for some true
(but unknown) 6y. The estimator 8, is then judged to be good if it behaves well, uniformly with
respect to 6oe©. Based on this idea a great deal of statistical theory has been developed on the

asymptotic properties of various estimators.
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The second approach (which we prefer) does not rely on the existence of a true parameter 6,
in O. After all the class of models was chosen more or less arbitrarily, why should gx belong to it?
The problem is transformed into one of best approximation. A distance d(-,-) between probability
measures is introduced and 6. is defined as d(Py, Ps.) = ming d(P,, Ps). The estimator 8, is
judged to be good if it is close to §.. In the statistical literature this is known as the misspecified
model approach.

In this section we introduce our first statistical result involving HMC’s. We observe the
process Y; with values in the finite set J. The only assumptions on Y; are stationarity and
ergodicity. Denote by Q the probability distribution on }* induced by Y;. The class of models
for Y; will be ¥ := O: with ¢ and § fixed. Notice that we do not assume a priori that Q = Py,
for some fye¥. Instead we are adopting the misspecified model approach.

Our goal is to establish the analog of the consistency of the maximum likelihood estimator

in this set up. Toward this end define:

ha(8,Y) = -rlzlog Po(¥™)

Following the terminology from (13] we define the quasi-mazimum likelihood estimator 6(n)

8(n) := {6e¥; ha(6,Y) = sup hn(0,Y)}

Note that é(n) is defined as a set because no uniqueness is guaranteed for this class of models. It
is easy to see that in the last equation the sup can be replaced by a max.
We need a notion of “distance” between Q and the Py’s. A reasonable choice justified by its

widespread use in statistics and engineering would be the divergence rate:

D@ P = Jim, - Fo o8 £

It can also be shown that:

D(Q || Ps) = Hg - Ho(6) 2 0

where Hq := Egllog Q(Y, | Y71)] is minus the entropy of Y; under Q, and
Hq(8) := Eqllog Ps(Yo | YZ1L)] is a well-defined and continuous function of fe¥.

Next define the quasi-true parameter set as:

N = {8e¥; D(Q | P) = 31(“;1 D(Q || Po)}

An equivalent description is
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N = {§e¥; Ho(8) = max Ho(0)}

For the proof of Theorem 4.1 below we need the following result, established in ].

ha(8,Y) = Ho(8) a.s. Q, uniformly in 8.

We recall the notion of a.s. set convergence that will be used. For any subset £ C ¥ define the
e-fattened set £, := {8e¥; p(6,€) < €}, where p is the euclidean distance. Then b(n) - N as. Q
if Ve > 0 3 N(e,w) such that Vn > N(e,w), §(n) CN,.

We are now ready to state our result:

Theorem 4.1(8}:

b(n) =+ N as. Q

This proof [8] is even simpler than the one given by Baum and Petrie [3] for the case of perfect
modeling (i.e. @ = Py, for some §5e¥) because it uses the uniform convergence of h,(, Y).

We now present a slightly generalized version of the Shannon-McMillan-Breiman (SMB). The
SMB theorem, first introduced by Shannon in 1948, has already a rich history of extensions and
generalizations vestiges of which are found in its very name. The classic version of the theorem
is the following:

Theorem 4.2: Let Y; be a finitely valued stationary ergodic process with probability distribution
Q(-). Then:

%log QYY) = Eqlog QYo | Y2L)) a.e.andin Ly

In this form the theorem has direct application in Information Theory because it allows the
estimation of the entropy rate of a finite alphabet stationary ergodic source. Generalizations of
Theorem 4.2 have appeared for the case of real valued processes. Our result generalizes Theorem
4.2 to reference measures M of the HMC type but it applies only to finitely valued processes.
Theorem 4.3(8): Let Y; be a process with values in the finite set ). Assume Y; to be stationary
ergodic under the probability distribution Q and a HMC under the alternative distribution Pe@g

for some fixed ¢ and §. Let g(¥y¥) = Q(¥{*)/P(YY) and define:

D(Q || P) := lizn Eqllog a(¥s | Y™

Then D, is well defined and moreover:

1 Q)
= %8 Py

~+Dy(Q|| P) aeQ@
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5. Estimation of the Order of a Hidden Markov Chain
The technique that was employed in [8, Chapter 3] for the estimation of the order of a Markov
chain will now be adapted to the estimation of the order of a HMC. As we have seen (8] in the
Markov case, the crucial step is the evaluation of the rate of growth of the maximized likelihood
ratio (MLR). For Markov chains we evaluated this rate to be Oa.s.(loglog n) and we also had very
precise results for the lim and the lim of the MLR. For HMC's we will be able to get the rate
Oaq.s.(loglogn) only in special cases. For the general case we get Oq.s.(logn).

At first the problem of estimating the rate of the MLR for HMC seems easy to solve. For any
yi write: Py(y7) = Ez;. Py(yl,zt) = ZI;. Py(sT') where the process S¢ = (X¢,Y:) is a Markov
chain.

Clearly maxg Py(y;') < EI;. maxg Py(s?).

Since S; is a Markov chain we know from [8, Theorem 3.3.2] that:

maXp Pg(s?)
Po,(s7)

— p%n

where a, = O, , (loglogn)

Substituting in the previous inequality we find:

max Po(y[') < ) €™ Pyy(s7) = €™ ) Poy(s7) = e Po, (47)

n n
o %

From this we immediately get the desired rate:

maxg Pe(yT)

lo
8 Pgo(yil)

= 0,.,.(loglogn)

This idea, or variations of it, has appeared in the literature, but unfortunately it is wrong.
The problem is that Theorem 3.3.2 of (8] does not state that ap = O, ,.(loglogn) uniformly with
respect to the realization w.

In Section 2 we defined the order of a HMC Y; as the minimum integer ¢ for which there
exists a representation of Y; with | X |= g. We would like to construct a consistent estimator of
the order based on the compensated maximum likelihood. The HMC case is coniplicated by the
fact that our knowledge of the set of equivalent representations is only partial. To cope with this
difficulty we have to impose restrictions on the observed process Y; thus limiting the applicability
of the results. Fortunately all of the assumptions are satisfied by a generic HMC and therefore
the results are still widely applicable.

Assumption 5.1:
The observed process Y; is a HMC taking values in {1,2,---r}, of unknown order g;. One

representation of Y; is given by 8y = {qo, Ao, Bo} where 6 is a Petrie point of Ozo for some § > 0.

The class of parametric models that will be used is
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@ = UQl@:.

The results of Section 2 guarantee that @g contains no point equivalent to 8, if ¢ < go and a
finite number of points equivalent to §; if g = qo. For ¢ > go there are infinitely many points in

@g equivalent to §p.The compensated maximum log-likelihood is defined as:

C(g,n) 3= ~Lu(83(n)) + 6a(q)

where:

64(n) is the MLE of 96@2 based on n observations
Lo(8y(n)) = L 1og P, (¥)
6n(g) is a positive increasing function of ¢ and n to be determined.

The estimator of the order is defined by:

4(n) := min{argmin C(q, n)}
g1

The problem of order estimation can now be posed as follows.
Problem:

The HMC Y, satisfying Assumption 5.1 is observed. Find a compensator sequence 6,(q) such

that the estimator §(n) is strongly consistent i.c. § — gq a.s. Py, .

The analog of Theorem 3.4.2 of [8] is valid and we can easily give a sufficient condition on
6n(q) that avoids underestimation.
Theorem 5.1 (Compensators avoiding underestimation)[8]: Let Y; be a process satisfying As-
sumption 5.1. If limp—oo 6n(7) =0 (V g), then lim, . d(n) > q0 Ps, — a.s.

To estimate the rate of convergence in 930, we study next the rate of growth of the maximized
log-likelihood ratio (MLR)

Pé'o(n)(y?)

|
8 Pao(yi‘)

Since ¢ is fixed, éqo(n) will be denoted 9". We need one extra assumption on the HMC Y,
which will be in force through this section.
Assumption 5.2:

52
~ 557 116:(9) lo,> 0
Recall that: Hy,(6) := Eg,[log Pe(Ys | Y )]
After giving two preliminary results we will prove that the MLR is Oas(loglogn). Recall
that:
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bn = {808 ; Py(y7) = max Py(y1')}

and that in general §, is not a singleton. Our first preliminary result shows that it is always
possible to choose a convergent sequence é;,eén.

The second preliminary result establishes the following bound needed for the application of
the Law of Iterated Logarithm.

For some finite C, Vk, VI, V6:

a -
I gézlogpo(yk [y ™) |SC  as. Py,

We are now ready to study the rate of convergence.

Theorem 5.2(8]:

1 ny 1 n loglogn
;logPo"(yl)—-nlogPoo(yl)-i-Oa_.._( n )

We next use a result from Information Theory to get a useful bound on the MLR valid for
all values of ¢. Recall that by Pé'(n)(yl") we denoted the maximized probability Py(y!) for Py a
HMC with 96@2. We denote by Ppr, (Y7") the corresponding maximized probability when 0e0,.
The next result is crucial. A complete proof is to be found in Csiszar [6].

Theorem 5.3: There exists a probability measure Q on J°° such that

Pri,(yi) _ d(q)
R

where ¢ is a constant and d(q) := ¢(q +r — 2) As a sketch of the proof we observe first that:

logn—c¢ for all n and yJ

Pari,(07) = guax Po(uf) = max 3 Pa(y] | 27)Po(a])
)

< D_max Po(y} | 2f) - max Po(=})

n
*y

The proof proceeds by showing the existence of probability measures Q; and Q, such that:

max Po(y]' | 27) < Qu(uf | 2})nt" /2

max Py(z}) < Qa(af)nt=/2

Clearly Q(y{‘) 1= 3.0 Qi(y] | 27)Q2(z}) is a probability measure on Y and substituting
1
into completes the proof. The existence of Q; and Q; is proved directly by actually constructing

measures ¢; and Q, that satisfy the above.
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The following Theorem, based on Theorem 5.3, will be essential to finding estimators of the
order that avoid overestimation.

Theorem 5.4(8}:

Pi,m®) _ d(g)
Poo(y{l) -2

We are finally able to give a set of sufficient conditions on the compensators of the maximized

lim (logn)~! log +2 as. Py,

likelihood (the sequences 6,(q)) to avoid overestimation of the order. Theorem 5.5 is complemen-
tary to Theorem 5.1: together they allow us to construct compensators 6,(g) that guarantee
strong consistency of the order estimator ¢(n).

Theorem 5.5(Compensators avoiding overestimation){8]: Let Y; be a process satisfying Assump-

tions 5.1 and 5.2. If the compensator is of the form:

6n(q) == @(n)h(q)

where the function ¢ satisfies:

n

lim (bgn)"‘«p(n) >1

and the function h satisfics:

!
M) -h@) 2 8 o vy > 21

Then:

lim g(n) < qo a.s. Py,

The existence of a strongly consistent estimator §(n) of the order go will be established by
giving examples of functions h(-) and ¢(-) satisfying both the conditions imposed by Theorem 5.1
and Theorem 5.5.

Theorem 5.6[8]: The compensator

bala) = 242(0) 5"
n
produces a strongly consistent estimator g(n) of go.
Proof: Clearly lim6,(g) = 0 Vg thus satisfying the conditions of Theorem 5.1. The function
¢(n) := 2(logn/n) is such that lim (}282)~14(n) = 2 > 1 and therefore satisfies the condition
imposcd by Theorem 5.5. For the function A(q) := d?(g) we must check the condition:

»
h@) - k@) 2 8D 1o Vi1
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Recall that d(q) := q(q +r — 2). The condition to be verified is equivalent to:

A+ =2dd+r-2)= 31> Plg+r-2F +2

forall § > ¢ > 1. This is easily established observing that the left-hand side is increasing in
¢ and that for § = ¢+ 1 the inequality is verified.
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