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Abstract

We consider the nonlinear filtering problem of a vector
difussion process, when several noisy vector observations
" with possibly different dimension of their range space are
available. At each time any number of these observations

(or sensors) can be utilized in the signal processing per- .

formed by the nonlinear filter. The problem considered is
the optimal selection of a schedule of these sensors from
the available set, so as to optimally estimate a function of
the state at the final time. Optimality is measured by a
combined performance measure that allocates penalties for
errors in estimation, for switching between sensor sched-
ules and for running a sensor. The solution is obtained in
the form of a system of quasi-variational inequalities in the
space of solutions of certain Zakai equations.

1. Introduction

The problem considered is as follows. A signal (or state)
process z(-) is given, modelled by the diffusion

dz(t) F(z(t))dt + g(z(t))dw(?) (1.1)
EUR

in R". We further consider M noisy observations of z(-),
described by

dy'd) = hi(zt))dt+ RV dvi(t), (1.2)
¥ (0) =0

with values in R%.- Here w(-), v'(-) are independent, stan-
dard, Wiener processes in. R”, R% respectively, and R; =

] R,—T > 0 are d; X d; matrices. Let us consider a finite time
horizon [0,T}. To formulate the problem of determining
an - optimal utilization schedule for the available sensors, so
as to simultaneously minimize the cost of errors in estimat-
ing a function of z(:) and the costs of using as well as of
switching between various sensors, we need to specify these
costs. To this end, let ¢;{z) denote the cost per unit time
when using sensor i, and the state of the system is z; kio(z),
k.i(z) denote the cost for turning off, respectively on, the
ith sensor when the state of the system is z. The objective
of the perforrr}ed signal processing is to compute, at time T,
an estimate ¢(T') of a given function ¢(z(T')) of the state.
Penalties for errors in estimation are assesed according to
the cost function

E{c(¢(=(T)) - (1))} == E{|¢(=(T)) - 4(T)} (1.3)
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We consider next, the set of all possible sensor activation
configurations, denoted here by /. An element v € N is a
word of length M from the alphabet {0,1}. If the £** position
is occupied by an 1, the £th sensor is activated (used), if by
a 0 the %% sensor is off. There are N = 2 elements in V.
A schedule of sensors is then a piecewise constant function
u(+) : [0,T] = N. We let 7; € [0,T] denote the instants
of changing schedule; i. e. , the moments when at least one
sensor is turned on or off. At such a switching moment,
suppose the schedule before is characterized by » € N, and -
after by ' € N. Then the switching cost associated with

such a scheduling change will be

k()= Y kle)+ Y kej(a). (1.4)

{iev}Higv'} {igvHijev'}

The total running cost, associated with schedule v € N
will be

e(o) = T fa) (1)
{ijev}
In (1.4), (1.5), the symbol {1 € v} denotes the set of all
indices (from the set {1,2,..., M} which are occupied by an
1 in v (i. e. the indices corresponding to the sensors which
are on); similarly the symbol {i ¢ v} denotes the set of
indices corresponding to sensors that are off.
Using the above notation the available observations, un-
der sensor schedule u(-) are described by

dy(t,u(t)) := h(z(t), u(t))dt + r(u(t))dv(t), (1.6)

where it is apparent that the available observations depend
explicitly on the sensor schedule u(-). In (1.6), for z € R",
veN,

R (z)x (1)
hz,v) = | B@xl@) | w7
WM () (M)

a block column vector, where in standard notation

occupied by an 1

1, if the :* position in the word v is
X(e) =
0, otherwise

(1.8)
Similarly for v € N



r(v) := Block diagonal{R}nx{,,}(i)}, 1.9)

where R; are the symmetric, positive matrices defined above.
Finally

vi(t)
v(t):= | : (1.10)

oM(t)

is a higher dimensional standard Wiener process.

Following established terminology we see that a sensor
scheduling strategy is defined by an increasing sequence of
switching times 7; € [0, T] and the corresponding sequence
v; € N of sensor activation configurations. We shall denote
such a strategy by u(-), where

“(t) =Vj, te [ijTf+1); .7 = 1527" . (111)

As stated earlier we are interested in the simultaneous
minimization of costs due to estimation errors as well as sen-
sor scheduling. We shall therefore consider joint estimation
and sensor scheduling strategies. Such a strategy consists
of two parts: the sensor scheduling strategy u (see (1.11))
and the estimator <2> The set of admissible strategies U,q is
the customary set of strategies adapted to the sequence of

' o-algebras

FHO) = o fy(s,u(-)), s < t}. (1.12)

That is, we consider strict sense admissible controls in the

sense of [4]. For the problem under investigation this last
statement must be interpreted very carefully.
Given such a strategy the corresponding cost is

J(u(),9) = B{l$(=(T)) - 4TI
+ A T (2(t), u(t)dt
+ ;k(f(t)#(n—l),u(fj))}-
Here for z € R*, v,v' €N
c(z,v) := (), (1.14)
(cf. Eq. (1.5)), and
k(z,v, V') = kyw(2), (1.15)

(cf. Eq. (1.4)).
The optimal sensor scheduling in nonlinear filtering is
thus formulated as the determination of a strategy achieving

inf J(u(-),9) (1.16)
()¢
among all admissible strategies. To simplify the notation
a little, let us order the elements of N according to the
numbers they represent in binary form.
More details of the results can be found in [8].

2. The Stochastic Control Formulation

For the dynamical system described in 1, we consider
now the cost functional (1.13) where the underlying prob-
ability measure is P*(). As indicated in the introduction,
the general problem where the function ¢ will be in a nice
class, e.g., bounded C?, or polynomial, or C* can be treated
along identical lines. To simplify the notation we have cho-
sen to formulate the problem for ¢(z) = x. The technical

(1.13) |
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difficulties for this case are identical to the ones in the more
general cases discussed above, particularly since this ¢(-)
is unbounded on R™. For this choice the selection of the
optimal estimator ¢(T) is the conditional mean

HT) = E*O{o(T) | FE), (21)

. where E*) denotes expectation with respect to P*(). Let

u(u,t) denote the conditional probability measure of z(t),
given FYO¥) on R™. It is convenient to express (2.17) as

a vector valued functional of p(u, 1)

HT) = 0(u(wT) = [ zduw D). (22)
We shall further assume that the running and switching

cost functions ¢;(+), ki;(),

i,j € {1,...,N}, introduced in (1.4) and (1.5) have the

following regularity

¢i(*),kij(-) arein Cy(IR™) (i. e. bounded and continuous)
(2.3)

As a result of this simple transformation we can rewrite
the cost as a function of the impulsive control u(-) only (i.e.
the selection of ¢(-) has been eliminated):

T
() = EOfa(T) - e(u(w, THI* + [ cla(t), u(t)dt

+ 3 ke ulria) u()xmer),  (24)

=1

where X, <7 is the characteristic function of the Q-set {w; =

" (w) < T}. We further assume that the switching costs are

uniformly bounded below

k(2,4,5) > koy T ER®, 4, j €{L,...,N} (2.5)

with kg a positive constant. Note that as a consequence if for
some admissible u(-) with positive probability, the number

infinite. Therefore for T finite the optimal policy will exhibit
a finite number of sensor switchings. E

The optimal sensor selection problem can now be stated
precisely as the optimization problem

P : Find an admissible impulsive control u*(-) such that
Ju*(-)) = inf  J(u(")),
()=, it ()

where Uy a,ré all impulsive control strategies adapted to
Fv), or equivalently satisfying. Problem P 'is a non-

. of times 7; < T is infinite, then the cost J(u(-)) will be :

(26) .

standard stochastic control problem of a partially observed -

diffusion.

In this section we transform the problem to a fully ob-
served stochastic control problem, by introducing appropri-
ate Zakai equations. As is customary in the theory of non- .

linear filtering [1], [2], [3], [4], let us introduce the operator

P(u(),1)($) = E{CW(() | 7D} (27)
for each impulsive control u(-). It is the unnormalized con-
ditional probability measure of z(t) given FEO) 1], [2.

With the help of these measures we can rewrite the var-
ious cost terms as follows:



E*Nla(T) ~ 8(u(u, D)I*} = EQU(p(u(), T))} (28)

where ¥ is the functional on finite measures on R” defined

by

_leGol?
#1)

where x*(z) = ||z||?, z € R™, and g is any finite measure

on R" such that the quantities u(x?) and u(x) make sense.
Next define

¥(u) = u(x?) (2.9)

C(w) = ey (), w € {1,2,...,N}.  (2.10)

and
K(u;,u;) = kui,uj(')7

u, u; € {1,2,...,N}, (2.11)

We can rewrite the cost (2.4) as follows

J(u()) = E{¥(p(u(-),T))+ fuT(p(U(J,t),C(U(t)))dt
+ P xaalou(), ) K u))} (212
Letting
Ry (2)x (1)
8(s,0) = | B R(@)xin ) (213) -
Ry M (@) (M)
the system dynamics are
dp(u(-),t) = L*p(u(-),t)dt + p(u(-), t)8(, u(t)) dy(t, ("))
p(u(),0) = po, (2.14)

where y(t,u(t)) is defined in (1.6). This makes precise the '
construction of a Zakai equation driven by “controlled” ob-
- servations alluded to in the introduction.

3. The solution of the optimization
problem

Let us consider the Banach space H = L*(R"u) N
LY(R"; 1) and the metric space H* of positive elements of
H. Let

B := space of Borel measurable, bounded functions on H*

C :=

space of uniformly continuous, bounded functions
on H*. (3.1)

Let us now define semigroups ®;(t) on B or C as fol-

lows. Consider (2.14) with fixed schedule u(t) = j, and

" let p; denote the corresponding density p(,7). Then for
JE {1’2"'-,N}

dp; = L'p; dt + p;k7" da(t), ps(0) =7,  (3.2)
where . 5
B o= (-, 7). (3.3)
We set
3;(t)(F)(v) = E{F(p;«(t))}, FEB or C,  (34)
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where p;. indicates the solution of (3.2) with initial value
7. It is easy to see that ®; is a semigroup since p;(t) is
a Markov process with values in H*. It is also useful to
introduce the subspaces By and C; of functions such that

|F()|

e < 00
1 |f|

IF s sup. (3.5)

where || 7 |,=|| 7 Il (R",)- The spaces By and C; are
also Banach spaces. They are needed, because we shall en-
counter functionals with linear growth in the cost function
(2.24). To simplify the statement and analysis of the quasi-
variational inequalities that solve the optimization problem
considered here, we give the details for the case N =2 only
in the sequel. We shall insert remarks to indicate how the
results should be modified for the general case. Let us in-
troduce the notation

Ci = C(l,), 1=1,2,
K = K(1,2)
K = K(2,1). . (36)

Since Cy, C3, K1, K, are bounded functions, one can utilize
them to define elements of C; via (for example)

C\(r) = (Cyy7) 3.7

where a slight abuse of notation, in denoting the functional
and the function by the same symbol, has been allowed.
Similarly the functional on H+

= 2y _ "(W»X)HZ
¥() = (rx) - L2 )
belongs to C; since it is positive and
Y(x) < (m,x°) < Il (3.9)

Consider now the set of functionals Uy (r,t), Ua(w,t) such
that

U U: € C(0,T;Cy)
Ui(4)20,  Us(+2)>0
Ui(r,T) = Us(m,T) = ¥(x)
Ui(m,t) < ®i(s — t)Ui(m,s) + [q»,(x—t)c,(w)dx
Ua(m,t) < ®y(s — t)Us(m,s) + /"%(/\—t)Cg(w)d/\
Vs > ¢t
Ui(m,t) < Ki(r)+ Uy(n,t)
Up(m,t) < Ky(m)+ Uyp(m,t). (3.10)

In the sequel we will occasionally use the notation U(s)
(7) = Ui(m,s), i=1,2

We shall refer to (3.10) as the system of quasi-variational
inequalities (QVI). We first establish the following.
Theorem 3.1. We assume that the conditions on the data
f,9, k¢ introduced in section 2.1 hold. Then the set of func-
tionals Uy, U, satisfying (8.10) is non-empty and has a maz-
imum element, in the sense that if Uy, Uy denotes this maz-
imum element and Uy, U, satisfies (3.10), then

U, > Uy, 0 > U,

The proof is carried out in several steps.



Remark: The extension of this result to the general case
N # 2 is straightforward. The system (3.10) has N func-
tionals Uy, ...,Un. Everything in (3.10) is the same except
for the last two inequalities which are replaced by

Ui(r,t) < min (K (x) + Us(m,2)), i=1,...,N
j=]l?.£.'.,N ;
(3.11)
Next we show that the maximum element Uy, U; of the
QVI (3.10) provides the value function for the optimization
problem. Furthermore we want to show how an admissible
optimal sensor schedule is determined once the pair Uy, U,
is known.
We establish that
Ui(m,0) = u(ig;ii Ju(-), . i=12

p(0)=n

where 7 € H* satisfies (r,1) = 1. An optimal schedule will
be constructed as follows. Suppose, to fix ideas that ¢ = 1.
Then define

._ inf

nE T {Uh(ps(8),2) = K (p1(8))+Ua(m1 (2), 1)} (3.13)

where again p;(t) is the solution of (3.2). We write

PO=n), telrl (314)

Next define

= e < p W), = Kalpa(0) + Uit 0)
(3.15)

In (3.15), it must be kept in mind that p,(t) represents the
solution of (3.2) with j=2, starting at 7; with value p; (7).
We then define

P =m(), te[n,n] (3.16)
, Note that, unless 7} = T,
T > T, (3.17)
otherwise
Uip(m),m) = K(p(i) + Us(p(r), 77)
Uap(m)im) = Ka(pu(m)) + Ualpa(ri), 77) (3.18)

which is impossible since

Ki(p (7)) > 0, Ka(pa(7)) > 0

Similarly one proceeds to construct a sequence of 77 < 75 <
73 < ... and the process p*(-). We can then establish the
following. .

a.s.

(3.19)

Theorem 3.2. With the same assumptions as in Theorem
8.1 the sequence of stopping times 11,75,... defines an op-
timal admissible sensor schedule.

(3.12)
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