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ABSTRACT

We consider the problem of simultaneous
detection and estimation when the
signals corresponding to the M different
hypotheses can be modelled as outputs of
M distinct stochastic dynamical systems
of the Ito type. Under very mild
assumptions on the models and on the
cost structure we show that there exist
a set of sufficient statistics for the
simultaneous detection-estimation
problem that can be computed recursively
by linear equations. Furthermore we
show that the structure of the detector
and estimator is completely determined
by the cost structure. The methodology
used employes recent advances in nonli-
near filtering and stochastic control of
partially observed stochastic systems of
the Ito type. Specific examples and
applications in radar tracking and
discrimination problems are discussed.
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INTRODUCTION

In a typical present day radar environment, the
radar receiver 1s subjected to radiation from
various sources. A very important function of the
radar receiver is its ability to discriminate bet-
ween the various waveforms received and select the
desired one for further processing. Furthermore
an equally important function of the receiver is
to estimate important parameters of the radiating
source from the received waveforms. Thus the
receiver is required often to perform a “combined
detection and estimation” function.

An abstract formulation of the combined detection
and estimation problem in the language of sta-
tistical decision theory has been developed by
Middleton and Esposito in [12]. They correctly
point out that optimal processing in such problems
often requires the mutual coupling of the detec-
tion and estimation algorithms. Although from the
mathematical point of view estimation may be con-
sidered as a generalized detection problem, from
an operational point of view the two procedures
are different: e.g. one usually selects different
cost functions for each and obtains different data
processors as a result. It is then correctly
argued in [12] that it is practically appropriate
to retain the usual distinction between detection
and estimation. Pictorially the simultaneocus
detection-estimation problem is described by
figure 1 from [}2].

5.

R DIFFUSION PROCESS SIGNALS

There are various ways that the detector and esti-
mator can be coupled leading to a hierarchy of
complex processors. We describe here some impor-
tant cases.

Detection—directed estimation

Here the detection operation is optimized with a
priori knowledge of the existence of an estimator
following it. The estimator is dependent on the
detector's decision by being gated on only if
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Fig. l. General block diagram for simultaneous
detection-estimation, from [12].

the detector decides that the desired signal is
present, The problems of interest to us need a
significant extension beyond the results in [12]
because here we seek to discriminate between
various signals and not simply between "signal plus
nolse” and "noise alone”. The block diagram for
this problem i{s shown in Figure 2 below. Here the
coupling is via cost terms that assess the
performance
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deterioration when the estimator is turned off
while the signal is present Ce 1> °F the estimator
» -

is turned on when the signal is not present Ce 0°
’

Therefore the average risks correspoading to the
operations of detection and estimation can be
minimized separately. This leads to a detection
test that is a modified generalized likelihood
test. 1f the cost terms C , C are coastant
e,l e,0
the coupling just reduces to a modification of the
threshold [121. Since the detector's decision rule
does not depend on the estimate, the structure of
the optimal estimator is not a function of the
data region specified by the decision rule of the
detector's operation, when the detector's decision
is to accept the signal. In practical terms this
means that we can choose to 5 estimate ounly when the
detector has decided that the desired signal 1s
present.

Coupled detection—estimation with decision
rajection

Here detcction and estimation run in parallel and
are followed by rejection of the estimate if the
detector's decision is not to accept the signal.
Here the detector's cost depends on the value of
the estimate. The block diagram is shown in
figure 3 below.

Signal and
notse

Fig. 3.

Coupled detection-estimation with deci-
sion rejection.

Typically, one solves the detection problem
knowing the estimator. Then a second optimization
is performed over all estimators. This case
usually results in relatively simple estimators
and complex highly nonlinear detectors [12].

Motivation for the problems studied stems from
distributed target discrimination [2]—[3]. We
concentrate in this paper on a two hypothesis
detection formulatiom, but it is clear that the
methods can be easily extended to M—ary detection
problems. The two hypotheses are Ho = the

received signal is a process Yoe plus noise, Hl =
the received signal is a process Yie (different

from yOt) plus noise. Both processes are modeled
as outputs of stochastic dynamical systems of the
diffusion type. The noise is the same in both
cases, Due to this fact we can in_assume that noise
is eliminated from the mathematical formulation of
the problem of detection, while as we shall see
its presence may be crucial for the estimation
problem.

We did not study detectors with “learning” and we
suggest this as a promising extension of the
results reported here. We note however, that our
formalism includes general “"learning” algorithms.
Most of the work on detectors with “learning” is
problem specific and does not utilize dynamical
system models for the signals as we do.

The major criticism for the work of Middleton and
Esposito [12] i{s that although they used a Bayesia
approach to the estimation problem, they considered
nonrecursive solutions and detection was coupled to
estimation through cost structure which explicitly
considers coupling of the detection and estimation
costs. Clearly nonrecursive solutions are not
appropriate for advanced sensors employed in guided
platforms. Furthermore it would be unrealistic to
assume that the designer has such explicit
knowledge of the functional couplings between
detection and estimation costs.

Several other authors have analyzed the problem.
Scharf and Lytle [13] studied detection problems
{nvolving Gaussian noise of unknown level, thus
fncﬁuding noise parameters in the problem. As in

12},
ses on the existence of uniformly most powerful
tests. Jaffer and Gupta [10}, [11] consider the
recursive Bayesian problem using a quadratic cost,
Gauss-Markov processes and estimating only signal
parameters.

Birdsall and Gobien [6] considered the problem of
simultaneous detection and estimation from a
Bayesian viewpoint., This work is close in spirit
with our approach, although the class of problems
we can analyze by our methods is significantly
wider. We also follow a Bayesian methodology
during the initial phase of analysis. It becomes
clear that using Bayesian methods one can analyze
the problems under consideration in an inherently
intuitive, simple conceptually manner which can be
easily obscured in highly structured methodologies
utilizing specific detector structures and cost
relationships.

results reported in [6] are limited by two impor-
tant assumptions: (a) the observed data have den-
sities that display finite dimensional sufficient
statistics under both hypotheses for the unknown
parameters and (b) the unknown parameters form a
finite—dimensional vector. Both nonsequential and
sequentlal problems are analyzed in [6] The most
important result of [6] is the proof that through
a Bayesian approach both estimation and detection

occur simultaneously, with the detector using the a

posteriori densities generated by two separate
estimators, one for each hypothesis. A par-

ticularly attractive feature is that no assumptions

are made on the estimation criterion and very
flexible assumptions are made on the detecction
criterion.
tistics exist the optimum processor partitions
naturally into three parts: a “primary” processor
which is totally independent of a priori distribu-
tions on the parameters, a “secondary” processor
which modifies the output according to the priors
and solves the detection problem, and an estimator
which uses the output of the other two in esti-
mating the unknown parameters. Only the estimator
structure depends on cost functionals.

Since dynamical system models are not utilized to
represent signals in [6], there is great dif-
ficulty in analyzing the far more interesting
sequential problem. It is for this reason that
one is forced to make the limiting assumptions
mentioned above., In our approach we consider dif-
fusion type models for the signals and we utilize
modern methods from nonlinear filtering and

their solution is also nonrecursive, and focu-

As a result one can analyze the spe-
:clal problems described in figures 2 and 3 as spe-
cializations of a wider picture and framework. The

When finite-dimensional sufficient sta-
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Tera mernods from nonlinear filtering and
“chascic control to analyze the problem |7 |-18].
2sponding results for Markov chain models can
v. ::3ily obtained, but we only give brief com-
for such problems here.
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NOMENCLATURE AND FORMULATION OF THE
SEQUENTIAL PROBLEM

Ia this section we present a general formulation
for the continuous time, sequential, simultaneous
detection and estimation problem when the signals
can be represented as outputs of diffusion type
processes [1&]. To simplify notation, terminology
3ad subsequent computations we consider only the
scalar observation case here. All results extend
to vector observations in a straight-forward
-anner. The observed data y(t) constitute there-
fore a real~valued scalar stochastic process.

The statistics of y(+) are not completely known.
wore specifically they depend on some parameters
and some hypotheses. For simplicity we shall con-
sider here only the binary hypotheses detection
problem. Extensions to M-ary detection are tri-
vial., We shall denote by HO, Hl the two mutually
exclusive and exhaustive hypotheses.

tnder hypothese H., the received data y(t) can be

0

represented as

ay(e) = 0%y, 8%dr + av(e)
(1)
axce) = £2x%ey,0%ar + g%lcey, 6%anlce)

where 00 is a vector-valued unknown parameter that
nmay be assumed fixed or random throughout the
problem. Here v(+), w(+) are independent,
l-dimensional and no-dimensional respectively

standard Wiener processes [18]. In other words
when hypothesis Ho is true the received data can

be thought of as the output of a stochastic dyna-
mical system, corrupted by white Gaussian noise.
ho, fo, go, 00 parameterize the nonlinear
stochastic system.

Similarly when hypothesis Hl is true, the received
data y(t) can be modeled as

dy() = hi(xt(e),0t)de + dv(e)
(2)
dxl(e) = £1¢ey,0hae + glexl(ey,ahyawl (o)

where now x1 is n -dimensional,

1 The vector para-—

meters 00,01 may have common components. For
instance, in the classical "noise or signal-plus—
noise” problem any noise parameters clearly appear
in both hypotheses and would thus be common to

80 ol,

We note that we have the same “"observation noise”
v(+) under both hypotheses. This is clearly the
case in radar applications. On the other hand when
one is faced with state and parameter dependent
observation noises, a simple transformation
translates the two models in the form (1) (2). We

shall assume that h f ,g , 1=0,1, have sufficient
properties to guarantee existence and uniqueness of
probability distribution functions for y(+) under
either hypothesis. As a minimal hypothesis we
assume that the martingale problems for (1) and (2)

0,1

are well posed,[lh] for all values of 67,8  in
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appropriate compact sets O0 01 respectively.
Furthermore neither (1) nor (2) exhibit esplosions
Llé] for any value of the parameters. Often we
shall make stronger assumptions such as existence
of strong solutions to (1) (2), or smoothness of

1 1.1 :
£7,27,h7, 1=0,1, or existence of classical probabi-
lity densities for y under either hypothesis.

We shall denote by pi(-,:lei), 1=0,1, the probabi-

l1ity density of y(t) under hypothesis H1 and when
L3

the parameter obtains the value 6i i=0,1. We

shall denote the probability measures corresponding
0 1 0 1 .

to y under H or H by u  and u~ respectively. As

is well known these are measures on the space of

continuous functions [14].

Finally we note that although we have assumed time
invariant stochastic models in (1), (2) the results
extend easily to the time varying case.

Following a Bayesian approach we assume a priori

1

densities for the two parameters 80,5 which will

be denoted by pi(',O), i=0,1 respectively.
Similarly initial densities for xO(O) and xl(O) are

assumed known and independent of 00,91 respectively

They will be denoted by pi(',O). The choice of
these a priori densities, is frequently a very
interesting problem in applicztions, as they repre-—
sent the designer’'s a priori knowledge about the
models used,

With these preliminaries we can now formulate the

problem. Let yt denote as usual the portion of the

observedﬂsample path "up to time t", i.e. yt =
{y(s),;ﬁ;}. Given the observed data yc, we wish to
design a processor which at time t will optimally
select simultaneously which of the two hypotheses
HO ot H1 is true, and optimal estimates for the
parameters 00 and 01. Moreover the processor
should operate recursively so as to permit real-

time implementation.

To complete the problem formulation we need to
specify costs for detection and estimation. Let

ci(ﬁi(t),oi), i=0,1 be the penalty for

"estimating” 91, by Oi(t) at time t. If ey is
quadratic we have the well known minimum variance
estimates. Similarly let Y(t) denote the deci-
sion, at time t, of whether we declare hypothesis
Ho or Hl to hold. Then k(Y(t), 1), i=0,1 will
denote the penalty when the true hypothesis {is

H, and we decide Y(t), at time t. Obviously there
are infinitely many variations on the possible
choice for a cost function. We shall coansider

only two possibilities in this report. Finite
time average integral cost
3¢ = E{f 2 leg0%),eOx{e, v(e)=0]
0 ® 1]
(3)

c1<81(:),el)x{:,y(:>-1}d: A k(r(e),1)d|

and infinite time average discounted cost.



—at 1

ol de} %)

,K)e

J, = E{f c(y,8",
d 5

where C(Y,eo,el,x) is the integrand in (3) and a
the discount rate, Ae,Ad are weights, The

reasons for the characteristic functions appearing
in (3), (4) are rather obvious. The estimator
will contribute cost only when utilized, and it

will be utilized for 80 only when' Y(t)=0, We
would like to point out that this does not
preclude both estimators from ruaning con-
tinuously. This scheme is used only to assess
costs properly.

The appropriate formulation of the problem is as a
partially observable stochastic coatrol problem.
The admissible controls are

Y : R~ {0,1}

8°: R+ 0 (5)

where all functions are nonanticipative with

respect to y; i.e. measurable w.r. to Fz:
a a1l
¥(+),8%C),6MCyer? Q)

The cost is either (3) or (4). For the system
dynamics we proceed as follows, The state
equations are mixed consisting of the continuous
components

ax’(e) = 26 ey, 0% )ar + g2y, 8% e)yaudce)
axle) = £hxlce),8lcey yae + gr(xl(e), 8 (e))awl(ey
a0%c) = 0 7
dael(e) = o

and the discrete component z(t) which can take

only the values 0 or 1 and is constant, The ini-
. 0. 1 0,1

tial densities for x X ,87,8" have already been

described. The fnitial probability vector for

z(t) (which tracks which hypothesis is true) is

Pr{z(0) = o} = P0

(8)
Pr{z(0) = 1} = P

The observations are

dy(0)=(1-2(2 )0 0(e), 8% de+z(ernlx (e, 8 yaeav(e)
%)

Since (7) are degenerate, there are some technical
minor difficulties, which can be circumvented
however using recent techniques. This completes
the formulation of the problem.

STRUCTURE OF THE OPTIMAL PROCESSOR

Following recent results [7]—[8] in stochastic
optimal control theory we have obtained first the
following results that reduce the partially
observed stochastic control problem described in
section 2 to an equivalent, infinite dimensional
fully observed problem.

Theorem 1l: There exist optimal Y,ao,al for the
stochastic optimal control problem (3)-(9).
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Proof: This follows from the results of Fleming
and Pardoux [8] and Bismut [7]. The only dif-
ference is that due to the structure of the dyna-

mics here (i.e. they do not depend on the controlg

Y,97,8") we can show that optimal controls exist in
the class of strict sense controls as specified iy,

section 2 (i.e. Y§t),80(t),31(t) are measurable
with respect to Ft .

We then introduce as in Fleming and Pardoux [8]
the associated "separated” stochastic control
problem. 1In the separated stochastic control
problem the state at time t is a measure At on

RN (where N = n0+n1+2), which is an unnormalized
conditional distribution of the state
x(e)4[xo(e) ,x) (£),8,(6),8 (£),2(e) 1T of the problen

formulated in section 2. The dynamics of the
measure-valued process At obey the Zakai equation

of nonlinear filtering [7].

In the sequel we assume that all functions
appearing in (1)-(9) are bounded and continuous and

that go,fo,gl,f1 are Lipschitz in xO,GO,xl,Gl,
respectively. Due to the discrete component z(t)

of the state x(t) we have to consider a two dimen~
sional measure valued process AO,AI, where AL is

the unnormalized conditional distribution of the
state x(t)g[xo(t),xl(t),SO(C),Gl(t)] (slight abuse

of notation here) when hypothesis Hi is true,

i=0,1. We further assume that for 1=0,1 the

corresponding Zakai equation has a unique solution

which is absolutely continuous with respect to

Lebesque measure; i.e. we assume the existence of

conditional unnormalized probability densities for
LN t

x(t)eR" given y . For results on this see [4]. -

Let ui(x,t) denote the conditional probability den-

sity of x(t) given yt when hypothesis H, holds.

Then u™(-,+) satisfies the Zakai equation
*

da’ = Ltae + ayoontel, 1-0,1 (10)

*
where L is the formal adjoint to the infinitesti-
mal generator of (7)

p N 3?2 N 3
=5 I a, . (x) + I b (x) = (11) -
2 1,j=1 ij xixj j=p 1 exi 3
and ’ ﬂ
=
a = ccT ';‘
0 .
g ,0 z
g = g (12) i
0 0 B
0
jFi
0 L0 i
b= £ (13) 4
0 0
0

It is clear, due to the diagonal form of a, b and
the degeneracy in the driving term of (10), that
equivalently we can consider the two stochastic
partial differential equations

sl s 5 e g8 | o

e
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t L fufae + dy(ontt, 1=0,1 (14)
1

du

Jhere L* is the formal adjoint to the infinitesi-

aal generator of the ith component of (7); i.e. it

e form (11) with a,b replaced by ai,bi,

Here

has th
1=0,1.

T
‘1 - ci(ci)

1
g 0
o = (15)
0 0
g
bt -
0 0

To complete the description of the "separated”

stochastic control problem, let c(Y,eO,el,x)
denote the integrand in the cost definition (3).
then if we let

0
u (xo,eo,t)

ulx,t) =|
u (xl,el,t)

(16)
we can rewrite the cost (3) as

T P
0 2 0

Je(n) = E {rf cty,8%, 8,0 [(x,0)T Jdxde}
770 P,

(17)
vhere T is the policy corresponding to a par-
ticular selection of Y(°), 60(-), 91(-), and E 1is
expectation with respect to y. Note that u
depends explicitly on y.

The separated problem is to choose a policy 7
which is a function of uo, u1 to minimize (17).
This 1s a fully observed problem since uo,

1
u" satisfy (14) and enter directly into (17). We
then have the following very important result:

Theorem 23 Under the above assumptions the optimal

20 71
Y,6°,8 (which exist according to theorem 1) are

functions of uo,u1 only. That is they depend on y:
only through the unnormalized conditional densities
uo,ul.

- Proof:

The proof follows from aspropriate modifi-

cations of the results in [7]—[8
elsewhere,

and will appear
The significance of the result is that it provides
the basic strbct re of the optimal processor by
identifying u”,u” as the sufficient statistics for
the original problem. Furthermore the result is

- free from structural assumptions on the detection

and estimation costs and can be established in far
greater generality than the results presented here
Bay {ndicate.

In figure 4 below we give a pictorial {llustration
gf the result. We basically have to rum two
filters” in parallel, one for each hypothesis.
The output of each filter (which by the way is

represented by the bilinear stochastic p.d.e. (14))
13 the unnormalized conditional probability density

{1l ler w
for H\J |

Estimator

Y(U) e

A,
Filtee o

tor 11y ———

.
Fig. 4. Illustrating the generic structure of the
~ optimal processor.

xl,el given HO or Hl. Each filter is driven
directly by the observations.

The estimator, detector and their coupling will
depend on the explicit cost structure., They are
problem dependent. Their explicit functioning can
be computed as our final result indicates.

Theorem gj The explicit dependence of Y (which is
discrete valued), © ,91 on uo,u1 can be determined
by solving a variacgonal inequality on the space of
solutions of (1l4).

Proof: The result is rather technical. A complete
proof will be given elsewhere. It follows by
appropriate modifications to the results of [5].

This result opens the way for promising electronic
implementation of the optimal processor by the
following steps: (1) solve numerically the
resulting variational inequality using the methods
of [9], (2) implement the resulting numerical
algorithm by a special purpose, multiprocessor,
VLST device along the lines of [1]. In simple
cost cases explicit solutions of the variatiomal
inequality can be obtained of course.

MOTIVATION AND EXAMPLES FROM RADAR
TRACKING LOOPS

The primary motivation for the mathematical problem
studied in section 3 comes from design con-
sideration of advanced (smart) sensors in guided
platforms. To be more specific let us consider
radar sensors. The radar return from a scatterer
carries (depending on the radar sophistication)
significant information about a scatterer. For
example range, Doppler extend, shape and extend,
motion, of a scatterer can be extracted from a

radar return by appropriate processing. In today's
dense environment a very important function of an
advanced processor is classification of scatterers.
This function is required for example by sensors
participating in a surveillance network (since
threats must be classified, so that appropriate
response can be applied), in electronic warfare
(since decoys and other countermeasures can be
designed to emulate target characteristics) and in
tracking radars (since the sensor often must deve-
lop a tracking path for a designated priority
target).

A related equally important function of a radar
receiver is the estimation of parameters embedded
in the return signal. For example pulse length,
pulse repetition frequency, amplitude scin-
tillation spectrum, conical scan frequency,
antenna pointing, surface roughness. The two
problems of detection and estimation are indeed
closely related, as explained earlier.

In our earlier work [2]-[3] we have developed sta-
tistical models for distributed scatterers which
can represent accurately phenomena characteristic
of distributed scatterer radar returns such as



amplitude scintillation and angle noise or glinct.
In addition we have developed similar statistical
" models for the effects of multipath on radar
returns, for sea clutter returns and for chaff
cloud returns.

The models developed in [2}-[3] are of the form

dx(t) = A(t,8)x(t)dt + B(r,8)dw(t)

. (18)
dy{(t) = h(t,x(t),0)dt + dv(t)
Furthermore A,B,h are piecewise constant with
respect to time since the models developed in
[2 [3] are piecewise stationary. For example in
[2 we used models like (18) to describe the RCS
scintillation for ships. The same type models can
be used for other distributed targets such as
tanks or armored vehicles. For example when the
return appears spiky, indicating higher probabi-
lity of strong return, an appropriate model is
provided by a lognormal process, where x(*) in
(18) is scalar and h is chosen to be an exponen-
tial function of x. For chaff clouds a more
appropriate model is provided by a Rayleigh pro-
cess, where x(+) is two dimensional, with the two
components being identically distributed, indepen-
dent Gaussian random processes and

h(t,x(t),8) = /xi(t) + x%(t).

Clearly then in target discrimination problems
with distributed targets of this type one encoun-
ters problems like those treated in section 3. It
is important to note that since the first of (18)
is linear the corresponding filtering and
stochastic control problems described in section 3
are definitely more tractable. For further
examples of this type we refer the reader to

(2]-[3].

Further research is needed to apply the powerful
results of section 3 to specific problems in order
to evaluate current design principles and more
importantly in order to suggest new electronic
implementations capable of performing in a dense,
hostile environment, In particular the methodo-
logy developed in 3 can be used to identify the
cost structures that lead to the specific
hierarchies suggested in figures 2-4.
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