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SIMULTANEOUS DETECTION AND ESTIMATION FOR DIFFUSION PROCESS SIGNALS,
John S. Baras, Electrical Engineering Department, University of
Maryland, College Park, Maryland, 28742, (USA). We consider the
problem of simultaneous detection ~and estimation when the signals
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corresponding to the M different hypotheses can be modelled as outputs
of M distinct stochastic dynamical systems of the Ito type. Under
very mild assumptions on the models and on the cost structure we show
that there exist a set of sufficient statistics for the simultaneous
detection-estimation problem that can be computed recursively by
linear equations. Furthermore we show that the structure of the
detector and estimator is completely determined by the cost structure.
The methodology used employes recent advances in nonlinear filtering
and stochastic control of partially observed stochastic systems of the
Ito type. Specific examples and applications in radar tracking and
discrimination problems are given.

A PARAMETER ESTIMATION PROBLEM ON MANIFOLDS, S.K. Ng and P.E. Caines,
Department of Electrical Engineering, McGill University, H.F. Chen,
Institute of Systems Science, Academia Scinica, and Deptartment of
Electrical Engineering, McGill University, CANADA. Let ( ,F,P) be a
complete probability space. Let an observable process Yt evolve in a

differentiable manifold M of dimension m and be governed by the
following diffusion law:
m
k

dYt = Ao(t,e,Yt)dt + kil Ak(t,Yt) o dwt
where for each parameter ¢ taking 1its value 1in a manifoLi@D, Ak’
k=0,...,m are C” vector fields on M and wt
cesses, We assume that for each x ¢ M, Ak(t,x), k=1l,...,m form a
basis of TxM. The aim of this note is to derive a linlihood function
of 9. First we note that we can write Ao in the form Ao(t,e,x) =

are independent Wiener pro-

m

z ak(t,e,x)Ak(t,x), X € M where @, are smooth (w.r.t. x) scalar
k=1 ‘
m

functions, Let X, be a process in M satisfies dX r A (t,X )odwk.

t t k=1 k r t

Let C([4,T], M) be the space of continuous functions on [8,T] taking
values in M. Let g be the ¢g—-algebra of Borel sets in C([O,T], M).
Let My and My be respectively the measures on (C([4,T],M),8) induced

by ¥ = {YS, 0 < s T} and X = {Xs, P < s&Th. Then by the Girsanov
theorem we have u_~ p_ and

Yy X
duy T 1 T
an (p)=Elexp (S _<a(s,8,X;),dw > — 5 f <a(s,e,X )> _ds)|X=p]
X R R
=: E[M,]|X=p] p e C ([8,T] M)
T
where a:=(a,eecesa )T, We=(W, ye0e,W )T and <,> stands for the
m 1 m ="
;] m
standard inner product in R". Let Af:= = ¢ AAf + A £ for
2 k=1 k' k o



SIMULTANEOUS DETECTION AND ESTIMATION FOR DIFFUSION PROCESS SIGNALS

by
John S. Baras
Electrical Engineering Department
University of Maryland
Col%ege Park, Maryland 20742
ABSTRACT
We consider the problem of simultaneous detection and estimatioﬂ when the

signals corresponding to the M different hypotheses can be modelled as outputs of #
distinct stochastic dynamical systems of_the Ito type. Undef very wmild assumptions
on the models and on the cost structure we show that there exist a set of sufficient
statistics for the simultaneous de;ection"estimation problem that can be computed
recursively by linear equations. Furthermore we show ﬁhat the structure of the
detector and estimator is completely determined by the cost structure. The wethodo-
logy used employes recént advanées in nonlinear filtering and stochastic control of

partially observed stochastic systems of the Ito type. Specific examples and appli-

cations 1y radar trackiﬁg and discrimination problems are given.



1. INTRODUCTION

In a typical present day radar enviroﬁment, the radar receiver is sub-
jected to rqdiation from various sources. A very important function of the
radar receiver is its ability to discriminate between the various waveforms
received and select the desired one for furthér processing. Furtherﬁore an
equally important function of the receiver is to estimate important parametefg
of the radiating source from the received waveforms. Thus the féceiver is
required often tprbérform a "combined detection and estimation" function. fng
our research effort we concentrated on problems of this kind arising in vradar
receivers, as well as other typés of receivers employed by s@aft sensors.

An abstraét formulation of:the combined detection and estimation prob1qm
in the language of statistical decision theory has been deve]oped.by Middleton
and Esposito in [1]. They correctly point out fhat optimal processing in such

problems often requires the mutual coupling of the detection and estimation

algorithms. Although from the mathematica].point of view estimatibn may be
cons1dered as a genera11zed detection problem from an operational po1nt of |
view the two procedures are d1fferent e.g. one usually selects different
cost functions for each and obtains different data processors as a result.
It is then correct]y argued in [1] that it is pract1ca11y appropriate to reta1n
the usual distinction between detection and estimation. P1ctor1a11y the s1mu1—
taneous detection-estimation prob1em is described by figure 1 from [1].

There are various ways that the detector and estimator can be coupledA
1eéd1ng to a hierarchy of cémp]ex processors. We describe here some important
cases. | | |

Detection-directed gstimation: Hére the detection opekation is"optimizéd

with a priori know]edgé of the existence of an estimator.following it The

estimator is dependent on the detector's decision by being gated on only if
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' L Detection.
' S Detector output
Signal ) ' ‘f/
depending 519Qal combined
on_payrameters <y with noise
| i ‘ Estimation
| Estimator |—p—uw— Sutput

Fig. 1 General block diagram for simul taneous
detection-estimation, from [1].

the detector decides that the desired signal is present. The problems of interest
to us need a significant extension beyond the results in [1] because here we

seek to discriminate between various signals and not simply between "signal

plus noise" and "noise alone". The block diagram for this problem is shown

in figure 2 below. Here the coupling is via cost terms that assess the performance

= . accept

d//// Detector
)
Signal depending Signal combined , :

|
on .parameters with noise _ , Y
v - reject

AN ' r; {E%:}-{(l//4’+ Estimator

FigJ 2 Detection-directed estimation.
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deterioration when the estimator is turned off while the signal is present

C or the estimator is turned on when the signal is not present Ce 0 There-

e,l’
fore the average risks corresponding to the operations of detection and estima-
tion can be minimized separately. This leads to a detectien test that is a
modified generalized 1likelihood test. If the cost terms Ce,l’ Ce,O-are constant
the Coup]ing just reduces to a modification of the threshold [i]. Since the
detector's decision rule does not depend on the estimate, the structure of

the optimal estimator is not a function of the data region specified by the

decision rule of the detector's operation, when the detector's decision is

 to accept the signal. In practical terms this means that we can’choose to

estimate only when the detector has decised that the desired signal is present.

Coupied detection-estimation with decision rejection: Here detection

and estimation run in parallel and are followed by rejection of the estimate
if the detector's decision is not to accept the signal. Here the detector's

cost depends on the value of the estimate. The block diagram is shown in figure

3 below.
hgccept' N
Detector reject ‘f
i "?

Signal with - Signal and ‘ i |
Parametersglf;?\ noise # cost dependence | accept

E e _only V? ¥

1 D

reject i [

& o,

Estimator ——

Fig. 3 Coupled detection-estimation with
decision rejection. .-
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Typically one solves the detection problem knowing the estimator. Then a second
optjmization is performed over all estimators. This case usually results in
relatively simple estimators and complex highly nonlinear detectors [1].

We have éna]yzed both cases in this report. Other structures appear to
be interesting problems for further research. We first discuss the detection
problem for sjgnaTs of the diffusion type and then the estimation problem.for
such signals. We then treat the detectioﬁ problem for radar returns modeled
by such signals. Motivation for these problems stems from distributed target
problems, see in particular [2]—[5}.

In both cases we accept that for practical implementation the detector
will havé a multistage structure with each level controlling the subsequent
stages totally. Decisions at each stage do not depend on decision at later
stages. The reason ié rather clear from the intended applications. For exampie,
considering distributed targets, it is well known that they are charactefized
(among other things) by their range and Doppler extents. Quite often these
are remarkably different for two different distributed targets. Moreover if
we are interestedianly in the range or Doppler extent of a.target, there exist
~several practical means of. estimating them ratﬁer accurately from the received
signals [7]. It would thus be very inefficient to initialize a more sophistiégted
dgscrimination procedure if a very good decision can Be obtained quickly by
a simple and practical detector stage. For example, often the Doppler extent
frgm chaff clouds is markedly greater than the Doppler extent of typical ships
or armored vehicles (typical case when relative]y'strong local winds prevail).
A sihp]e,Dopp]er discriminator would work correcf1y in such a case. Another
: examp]evis provided by fhe fading nature of the range extent of chaff clouds
versus the fixed range extent of éhips or armored vehicles. Two other important
chara;teristigs of returns from dfstributed targets are: the long time fluctu-

ations and the short time fluctuations. The former are expressed by the one
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dfmensiona] probability density of the pulse to pulse return while the latter
are captured by the pulse to pulse covariance of the return. For example ships
tend to f]uctuate}according to a Tognormal process at certain aspects [2] while
chaff has always an exponential process as a model [6]. Thus this discrimina-
tion problem can be easily resolved by (among other methods) an adaptive
Ko]mogoroy—Smyrnov tvpe test.

In this mu1ti—stagé detector approach, later stages are aqtivated only
when the current stage cannot decisively result in one of two decisions, i.e.
when the current stage gives én fambfguous“ indication. A possible- implementation

suggested by this hierarchical detector is shown in figure 4 below.

Decide H, or H

0 1
F* S
Doppler . . '
extent :
Hiscriminator ambiguous
| {
o Decide Hy or H,
Range extent
idiscriminator
ambiguous
.V ..
: o Decide Hy or H
Probability '
o~ density
discriminator .
ambiguous
WY
Advanced .
Detector ___f,_.__DeC1de HO
or H1

Fig. 4 MuTti—stage detector for distributed target discrﬁmination.
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>

We concentrate in this report on a two hypothesis detection formulation,
but ft is clear that the methods can be easily extended to M-ary deteétion
' prdb]ems. The twg hypotheses are HO = the received signal is a process Yot
p1ds noise, H1 = the reteivéd signal is a process Y1t (different from yOt)
plus noise. Both processes are modeled as outputs of stochastic dynamical

systems of the diffusion type. The noise is the same in both cases. Due

to this fact we canassume that noise is eliminated %rom the mathematdéal formu-
latjon of the prdbjem of~detecfion, while as we shall see its preéenée may
be crucial for the-estimation problem.

~We did not'study detectors with "learning”" and we suggest this as a promis-

‘ 169 extension ofjthe resu]té_reported here. We note hoWever, that our férﬁa]ism‘
includes general }1eafn1ng” algorithms. For example our methods can be applied
to‘pnoblems analogous to those studied in [8]-[12]. Most of the work on detectors
Qith ”]earning” is problem specific and does not utilize dynamical system models
for the signals as we do.

The major criticism for the work of Middleton and Esposito [1], is that
although they used a Bayesian approach to the estimation problem, they considered
nonrecursive solutionsand detection wa§ coupled to estimation through cost
structure which explicitly considers coupling of the detection and estimation:
costs. Clearly nonrecursive solutions are not appropriate for advanced sensors
employed in guided p]atformg; Furthermore it would be unrealistic to assume
that the designer has such explicit knowledge of the functional couplings between
detection and estimation costs. , | , |

Several other authors have analyzed the problem. Scharf and Lytle [13]
studied detection'probTems involving Gaussian noise oflunknoﬁn level, thus
including noise parameters in the problem. Asrin (1], theﬁr solution is also -
nbnreéursive, ana focuses on the existence of uniformly most powerful tests.

Spooner [14],[15] considered in detail unknown parameters in the noise model:.
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Jaffer and Gupta [16][17] consider the recursive Bayesian problem using a quadratic
cost, Gauss-Markov processes and estimating only signal parameters.

Birdsall and Gobien [18] considered the problem of simultaneous detection
and estimation from a Bayesian viewpoint. This work is close in spirit with.
our approach, although the class of problems we can analyze by our methods
is significantly wider. We also follow a.Bayesian methodolegy during the initial
| phase of analysis. It becomes clear that using Bayesian methods one can analyze
the broblems under consideration in an inherently intuitive, simplé conceptuaj1y
manner which can be easi1yvobscufed in highly structufed methodologies utifizing
specific .detector structures and cost re]ationships. As a result one can analyze
the Specia] problems described in figures 2 and 3 as sbecia]izations of a wider
picture and framework. The results reported in [18] are limited by two important
assumptions: (a) the observed data have densities that display finite dimensional
sufficient statistics under both hypotheses for the unknown parameters and
(b) the unknown parameters form a finite-dimensional vector. Both nonsequential
and sequential problems are analyzed in [18]. The most importént result of
[18] is the proof that through a Bayesian approach both estimation and detection
occur sfmu1taneous]y, with the detector using the a posteriori densities generated
by two separaie estimators, one for each hypothesis. A particu]ar]y attractive
feature is that no assumptions afe made on the estimation criterion and very
flexib]e assumptions are made on the detection criterion. When finite-dimensional
sufficient»statisticsexist the optimum processor partitions hatura]]y inté
three parts: a "primary" processor which is totally independent of a priori
distributions on the parameters, a "secondary" processor which modifies the
oﬁtput according to the priors and solves the detection problem, and an estimator
which uses the output of the other two in estimating the unknown parameters.

Only the estimator structure depends on cost functionals.
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Sinée dynamical system models are not utilized to represent signals in
[18], there is great difficulty in analyzing the far more interesting sequential
problem. It is for this reason that one is forced to make the 11hiting assump-
tions mentioned above} In our approach we céhsiden diffusion type models for
‘the signals and wevut11ize modern methods from nonlinear filtering and stochastic
control to analyze the probiem [19]5[23]. Corresponding results for Markov
chain models can be easily obtained, 5ut we only give brﬁef comments for such

problems hefe. 
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2. NOMENCLATURE AND FORMULATION OF THE
' SEQUENTJAL PROBLEM

In this section we present a general formulation for the continuous time,
sequentia]; simu]ﬁaneous detection and estimation problem when the signals
can be represented as outputs of diffusion type processes [20]. To simplify
Vnotation, termino1ogy and‘;ubsequent éomputations we consider on]y the scalar
observation case here. All results extend to vector observations in a straight-
éorward manner. The observed data y(t) conétitute therefore a real-valued
scalar stochastic process. ‘

The statistics of y(-) are not completely known. More specifically they
:depend_qn some parameters and some hypotheses. For simplicity we shal] consider
- " here onlyAthe binary hypotheses detection problem. Extensions to M-ary detec-
tion are trivial. Wevsha11 denote by HO’ H1 the two mutually exclusive and
exhaustive hypotheses.

Under hypothese HO, the received data y(t) can be represented as

dy(t) = ho(x°(t),68°%)dt + dv(t) ,
dx®(t) = fO(x°(t),8°)dt + g®(x°(t),6°)dw’(t) W
.wherg 8% is a vector—va]ued unknown parameter that may be assumed fixed or
random throughout the problem. Here v(-), w (-) are independent, 1-dimensional
and no-dimensional respectively standard Wiener processes [20]. In other words
when hypothesis HO is true the received data can‘be thought of as the output
of a stochastic dynamical system, corrupted by white Gaussian noise. h?®, f9,
g%, 6°parameterize the nonlinear stochastic systeml
Similarly when hypothesis H1 is true, the received data y(t) can be modeled
as

dy(t) = hi(x}(t),8%)dt + dv(t) _

_ (2
CdxP(t) = FH(x(t),61)dt + gt (X (t),61)dwi(t) )
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where now x* is n,-dimensional.. The vector parametefé 6,0 may have common
components.b For instance, in the classical "noise or signal-plus-noise" problem
any noise parameters clearly appear in both hypotheses and would thus be common
to 6°%,0°%. |

We note that we have the same "observation noise" v(-) under both hypotheses.
This is-c]ear]y‘thefcase in radar applications (see [6]). On the other hand
when one 1is faced with state and parameter dépendent oBservation noises, a
simple transformation translates the two models in the: form (1)(2). We shall
aésume that hi,fi,gi, i=0,1, have sufficient‘prppertieé to guarantée existence
and uniqueness of probability distributjon functions for y(-) under either
hypothesis. As a minimal hypothesis we éssume that the martingale préb]ems
for (1) and (2) are well posed [24] for all vaiues oF 6°,0% in appropriate
compact sets 00,0 respectively. Furthermore neither (1) nor (2) exhibit explo-
sions [24] for any value of the parameters. Often we shall make stronger assump-
tidns such as ekistence of strong solutions to (1)(2), or smoothness of fj,gi,hi,
i=0,1, or existence of classical probability densities for y under either hypothesi
- We shall denote by p;(-,t]ei), i=0,1, the probabj]ity density of y(t)
' undér hypothesis Hi and when the parameter obtains the value ei, i=0,1. We

1

shall denote the probability measures corresponding to y under'HO or H™ by

1

Yy
of continuous functions [24].

u& and p! respectively. As is well known these are measures on the space

Fina11y we note'thatja1though we have assumed timé invariant stochastic
models in (1),(2) the results extend easily to the time varying case.

Following a Bayesian’approach we assume a priori densities for the two
parameterg 8°,8% which will be denoted by p;(l,O), i=0,1 respectively. Similarly
initial densities for x°(Q) and x*(0) are assumed known and independent of
‘e°,91 respectively. They will be dénofed byrpl(-,o). The choice of thes¢

a priori densities, is frequently a very interesting problem in applications,
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as they‘represent the designer's a prfori know]edgé about the models used.
With these pre]iminar%es we can now fcrmulate the problem. Let yt denote
as.usua1 the portion of the observed sample path "up to time t", i.e.
yt = {y(s), sst}. Given the observed data yt, we wish to design a processor
which at time t will optimally select simultaneously which of the two hypotheses
Hy or Hyis true, and optimal estimates for the parameters 6° andg’. Moreover |
the proéessor should operate recursively so as to permit real-time implementation.
To compiete ihe problem formulation we need to specify costs for detection
and egtimation. Let ci(ﬁi(t), ei), i=0,1 be the pené]ty for "estimating" si,
by éi(t) at'ﬁime t. If c, is quadratic we have the well known-minimumrvariance
estihates. Similarly let v(t) denote the decision, at time t, of whether we .

declare hypothesis H0 or H, to hold. Then k(y(t), i), i=0,1 will denote the

1
penalty when the true hypothesis is Hi and we decide y(t), at time t. Obviously
there are infinitely many variations on the possible choice for a cost function.
We shall consider only two possibilities in this report. Finite time average

integral cost

3¢ = EUALeo (8°(1),0° )X t,v{£)=0} + ca(B3(t),01)X(t,v(t)=1}]dt

| . (3)
+ xgk(y(t),1)dt}
and infinite time average discounted cost.
Jg = ELTC(v,89,8% x)e ™ tat) (a)

where C(y°,8°,8Lx) isthe 1ntegr?//jn (3) and o the discount rate. Ae;Ad are —

weights. The reasons for the characieristic functions appearing in (3),(4).
are rather obvfous. The estimator will contribute cost only when utilized,
and it will be utilized for 6° only when Y(tj=0 and for 8% only when v(t)=1.
We wod]d ]fke to point out that this does notiprec1ude both estimators from

running continuously. This scheme is used only to assess costs properly.
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The appropriaté formulation ofvfhe problem is as a partially observable
stochastic control problem.. The admissible controls are
| y : R~ {0,1}
8%: R = 0° (5)
ol: R > 0!
where all functiéns ére nonanticipativé with respect to y; i.e. measurable
w.r.to F{: |
| ¥(),8°(),00(:) e B (6
The cost is éither (3) or (4). For the system dynamicszwe proceed as follows.
The state equations are mixed consisting of the continuous components
G0 (1) = £9(x0(£),0°(£))dt + g7 (x"(£),6° () e (t)
dx*(t) = fH(x*(t),6*(t))dt + gt (x*(t),8 (t))dwt(t)
d8®(t) = 0 |
del(t) = 0
and the discrete component z(t) which can take only the values 0 or 1 and 1is
constant.. The initial dens{ties for x%,x1,6°,0% have already been described.

The initial probability vector for z(t) (which tracks which hypothesis is true)

is

It

1
Be

Pr{z(0) = 0}

"

)l
-

Priz(0) = 1} = P,

The observations are

dy(t) = (1-z(t))h%(x°(t),0°)dt + z(t)hl(kl(t),el)dt + dv(t) -(9)_
Since (7) are degenerate, there are some technical minor difficulties, which
can be, circumvented however using recent techniques. This chpletes the formu-

lation of the problem.
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3. STRUCTURE OF THE OPTIMAL PROCESSOR

Fo11owing recent results [25]-{29] in stochastic optimal control theory
we have obtained firét the following results that reduce the partially observed
~stochastic control problem described in section 2 to an équiva]ent, infin{te
dimensional fully observed problem.

fheorem 1: Thereexist optimal v,8%,8" for the stochastic optimal contro]
problem (3)-(9). |

Proof: This %o]]ows(from the results of Fleming andPardoux [27] and Bismut
{29]. The only di%ference is that due to the structure of the dyhamics here
(i.e. they do hOt depend on the controls v,06°,8) we can show that optimal
chntrois exist'iﬁ the class of strict sense.controls as specified in section

2 (i.e. y(t),é?(ﬁ),él(t) are measurable with réspect to F{).

We thén introduce as in Fleming and Pardoux [27] the associated "separated"
stochastic control prob]em.' In the separated stochastic control problem the
§taté at time t.is a measure A on RN (where N = ny+n;+2), which is an unnormalized
conditional distribution of the state x(t) 8 [xo(t),xl(t)-,eo(t),el(t),z(t)]T
of the‘pr051em formulated in section 2. The dynamics of the measure-valued
‘process Ay obey the Zakai equation of ndn]inear filtering [26]-[31], and [20].

In the sequel we assume that all functions appearing in (1)-(9) are bounded
and continuous and that g°,f°,g%,f1 are Lipschitz in x°,0%,x%,0%, respectively.
.Due to the discrete component z(t) of the state-x(t) we have to consider a
two dimensional measure valued process AO,A%, where Al is the unnorma]ized
" conditional distribution of the state x(t) E [Xo(t),xl(t),eo(t),el(t)] (s]ight
abuse of notation here) when hypothesjs Hi is true, i=0,1. We further assume
that for i=0,1 the corresponding Zakai equation has a uniQue so]utioh which
is*gbsd]ute]y continuous with—respect'to Lebesdue measure; i.e. we assume the -
existence of cénditiona] unnormalized probability densities for x{(t) e RN given

- yt., For resu1ts on this see [30],[31].
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Let ui(x,t)'denote the conditional probébi]ity density of x(t) given yt

when hypothesis Hf holds. Then u1(-,') satisfies the Zakai equation

du' = r*u’ dt + dy( )h u' R (10)
i=0,1.
where I* is the formal adjoint to the infinitesimal generator of (7)
' : N 2 N '
=31 a (xS zb()ai | (11)
i,9=1 9 M =1 | :
and
a OOT
- g0 0 -
- gt ,
Y 0 0 (12)
— 0__
- £ 0 -
f1
b=10 0 : ‘ ‘ , (13)
0.

It is:c1ear due to the d1agoﬁé1 form of @, b and the degeneracy in the
driving term of (10), that equ1va1ent1y we can consider the two stochast1c
partial differential equations

dul = L*u lat + dy(t t)hiyl | ' (14)
i=0,1 |

where L§'is the formal adjoint to the infinitesimal.generator of the 1th com-

ponent of (7); i.e. it has the form (11) with a,b replaced by ai,bi, i=d,1.

Here
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To complete the description of the "separated" stochastic control problem,
1et>C(y,§°,61,x) denote the integrand in the cost definition (3). Then if

we let
. uO (Xano,t)— |
u(x,t) = { ' (16)

we can rewrite the cost (3) as

Jdxdt} C7)

9pr) = £ Tie 0,808 0 [t 5o
where 7 is the policy ébrresponding to a particular selection of ~(*), 6°("),
61(-), and Ey is exbec&ation with fespect to y. Note that u depends éxplicit]y
on y.. 7

fhe separated pﬁbblem is to choose a policy © which is a function of u?,
ul to minimize (17).-.Th15 is a fully observed problenm sinée u®, ul satisfy
(14) and enter directly into (17). We then have the following very important
result: |

Theorem 2: Under the above assumptions the optimal y,§°,61 (which exist
according to theorem 1) are functions of u®,u* only. That is they depend on
yt only through the unnormalized conditional densities u®, ul.

Proof: The proof follows from app?opriate modifications of the.resu1ts
in [25]-[29] and will appear elsewhere.

‘The significance of the result is that it provides the basic structure
of the optimal processor by identifying u®,u! as the sufficient statistics
for the original problem. Furthermore the result is free from structural assump-
tfons on the detection and estimation costs and can be established in far gfeater
generé]ity than the results presented here may indicate.

In figure 5 below we give a pictorial illustration of theiresu]t. We
basica]]y have to run two "filters" in paré]le], oﬁe for each hypothesis. The
output of each filter (which by the way is represented by the bilinear stochastic

0

p.d.e. (14)) is the unnormalized conditional probability density of x°, €% or
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) F . ‘ O . ~ )
f;ltﬁ; Y | Estimator e 00,81
), ( t) —-—;,—————Q/ . . \ ,
. o T
. 1 i-—?
l . i11ter ‘ n u ) Detector i
for H - o = Y

Fig. 5 TIllustrating the Qeneric strdcture
of the optimal processor.

x*,8% given H® or H!. Each filter is driven directly by the observations.

The estimator, detector and their cdup]ing will depend on the explicit
cost structure. They are probTem dependent. 'Their explicit functioning can
be computed as our final result indicates.

Theorem 3: The explicit dependencg of v (which is discrete valued),

" 80,6, on u®,uy? can be determined by solving a variational inequality onjthe

space of solutions of (14). |

Proof: The result is rather technical. A complete proof will be given
elsewhere. It follows by appropriate modifications to the results of [26],[32].

This result opens the way for promising electronic implementation of the
optima] processor by the following steps: (1) solve numerically the resu]tﬁng
variational inequality using the methods of [33], (2) implement the resulting
numerical é]gorithm by a special purpose, multiprocessor, VLSI device along :
the Tines of [34]. ;In gimp]e cost cases explicit solutions of the variational .

inequality can be obtained of course.
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4. MOTIVATION AND EXAMPLES
'FROM_RADAR TRACKING LOOPS

The primary motivation for the mathematical problem studied in section 3
“comes from design consideration of advanced (smart) sensors in guided platforms.
To be'hore specific let us consider radar sensors. The radar return from a
scatterer cafries (depending on the radar sophistication) significant information
about a scatterer. For example rangé, Doppler extend, shape and extend, motion,
of a scaiterer can be extractea from a tadar return py appropriate processing.
In today}srdense environment a very importaht functibn of an advénced pfocessor
is classification of scatterers. This funct{on is required for example by
sensoré participating.in a sukvei11énée network (since threats must be classi-
fied, so that appropriaté response can be abp]ied); in electronic warfare (since
_decoys and other countermeasures can be designed to emulate target characteris-
tics) and in tracking radars (sfnce the sensor often must develop a tracking
bath»for a designated priority target).

A re]ated eqUa]1y important function of a radar receiver is the estimation
of parameters embedded in the return signal. For example pulse length, pulse
repetftion frequency, amplitude scintil]ationbspectrum, conical scan frequency,
antenna pointing, surface roughness. The two problems of detection and estima-
tion are indeed c]oseTy related, as explained earlier. ”

In our earlier work [2]-[5] we have deveToped statistical models for‘dis—
tributed scatterers which can represent accurately phenomena characteristic
of distributed scatterer radar returns such as amplitude scintillation and
angle noise or glint. In addition we have devé1oped similar statistical models
for the effects of multipath on radar returns, for sea clutter returns and

for_ chaff cloud returns.
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The models developed in [2]-[5] are of the form
ax(t) = A(t,0lx(t)dt + B(t,8)du(t)
(18)

dy(t) = h(t,x(t),0)dt + dv(t)
Furthermore A,B,h are piecewise constant with respect to time.since the models -
developed in [2]-[5] are piecewise stationary. For example in [2] we used
models like (18) to describe the RCS scintillation for ships. The same type
models can be used for other distributed targets such as tanks or armored vehicles.
For éxamp]e when the return appears spﬁky, indicating higher probability of
strong return, an appropriate model is pfovided by a Tognormal process, where
x(-) in (18) is'scaiar and ﬁ is chosen to be an exponential function of x.
For chaff‘clouds a more appropriate model is provided by a Rayleigh process,

where x(*) is two dimensional, with the two Components being identically distri-

buted, independent Gaussian random processes and

h(t,x(t),8) = %Xf(t) + xg(t).

Clearly then in target discriminatidn problems with distributed targets
of this type one encountersproblems 1ike those treated in section 3. It is
important to note that since the first of (18) is linear the corresponding
filtering and stochastic control problems described in sectwon 3 are def1n1te1y
more tractable. For further- examples of th1s type we refer the reader to [2]-
[5]. |

Further research is needed in order to apply the powerful results of section
3 to specific problems in order to evaluate current design principles and more.
importantiy in order tc suggest new eltectronic 1mp1ementation‘capab1e of performin:
in a dense, hostile environment. In parficu1ar the methodology developed in
3 can be used to identify thé cost structures that lead to the specific hier-

archies suggested 1in figures 2-4.
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