Paper Entitled

"Two Competing Queues with Linear Costs:
The u c-rule is Often Optimal”

From the Proceedings of

22nd IEEE Conference on Decision and Control
pp. 1173-1178, December 1983

AND

Advances in Applied Probability
pp. 186-209
1985

JB 83-02



Adv. Appl. Prob. 17, 186-209 (1985)
Printed in N. Ireland
© Applied Probability Trust 1985

TWO COMPETING QUEUES WITH LINEAR COSTS
AND GEOMETRIC SERVICE REQUIREMENTS:
THE uc-RULE IS OFTEN OPTIMAL

J. S. BARAS,* University of Maryland
A. J. DORSEY,** IBM—Federal Systems Division
A. M. MAKOWSKI* University of Maryland

Abstract

A discrete-time model is presented for a system of two queues competing
for the service attention of a single server with infinite buffer capacity. The
service requirements are geometrically distributed and independent from
customer to customer as well as from the arrivals. The allocation of service
attention is governed by feedback policies which are based on past decisions
and buffer content histories. The cost of operation per unit time is a linear
function of the queue sizes. Under the model assumptions, a fixed prioritiza-
tion scheme, known as the uc-rule, is shown to be optimal for the expected
long-run average criterion and for the expected discounted criterion, over both
finite and infinite horizons. Two different approaches are proposed for solving
these problems. One is based on the dynamic programming methodology for
Markov decision processes, and assumes the arrivals to be i.i.d. The other is
valid under no additional assumption on the arrival stream and uses direct
comparison arguments. In both cases, the sample path properties of the
adopted state-space model are exploited.

DISCRETE-TIME MODEL; SINGLE SERVER; INFINITE BUFFER; FEEDBACK; SAMPLE
PATHS

1. Introduction

Dynamic control of queueing systems is currently a subject of great interest,
due to potential applications in the design and performance evaluation of
computer systems and communication networks. Unfortunately, classical
queueing-theoretic methods typically treat static and/or steady-state situations,
and do not extend easily to the more complex queueing optimization models.
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During the past decade, however, progress has been made on specific dynamic
control problems through the use of a wide variety of techniques; examples are
found in the work of Ephremides, Varaiya and Walrand [9], Hajek [10],
Harrison [12], and Rosberg, Varaiya and Walrand [21].

For practical applications, it is highly desirable to isolate models for which
dynamical results can be obtained under as minimal a set of statistical
hypotheses as possible. In some sense, such studies can be viewed as contribu-
tions to the adaptive control of queues [2], [8] since quite often in practice, the
parameter values required to specify the queueing model fully are not known
exactly. A definite need thus exists for a better understanding of the sensitivity
of control results to statistical assumptions. This paper represents an effort in
this direction for the problem of dynamically controlling two queues that
compete for the service attention of a single server.

Motivation for studying this problem, as well as other similar questions of
dynamic priority assignment, can be found in a wide variety of application
areas ranging from urban traffic control to computer modelling to multi-user
communications. Typically, the search for modes of operation that resolve
and/or avoid conflict in resource-sharing environments can be formalized as
problems of dynamic priority assignment. The reader is referred for instance to
references [241-[26] where some prioritization schemes for multi-node packet-
radio networks are described. Mention should also be made of the monograph
by Kleinrock [15] for a variety of examples, and of the survey paper by Reiser
[20] for a discussion of polling schemes. An application to urban traffic control
is given by Baras and Dorsey in [1].

In more specific terms, the problem analyzed here is a dynamic priority
assignment problem with two classes of customer. A natural time unit is
postulated and used to divide the time axis into contiguous slots of unit length.
A single server is in attendance in the system and the buffer area has infinite
capacity. The service requirements, which are geometrically distributed with a
class dependent rate, are independent from customer to customer and from the
arrivals. Customers that enter the service facility during a time slot, join the
customers of their respective class which have not yet been serviced by the end
of the previous time slot and await service in the buffer. At the beginning of
each time slot, the queues compete for the server’s attention which is allocated
to one of the queues, for the duration of the slot, on the basis of past decisions
and buffer content histories. Once service attention has been given out, at most
one service completion will occur during that slot.

The incurred cost per unit time is assumed linear in the queue sizes; it
induces the three performance measures considered in this paper, namely the
discounted costs over the finite and infinite horizons and the expected long-run
average cost. The main result of this paper is that under no additional
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assumption on the arrival patterns, the so-called pc-rule is optimal for all three
criteria. The pc-rule is essentially a static prioritization of the two classes of
customers and is defined solely on the basis of service and cost parameters.
This result is remarkably simple and quite useful in practical applications, since
the often postulated Bernoulli assumption is not always justified and the
performance of a queueing system is commonly assessed by the combined use
of several objective functions.

The discounted finite-horizon problems are discussed first and two different
arguments are provided for establishing the optimality of the pc-rule. One of
the arguments follows the standard dynamic programming methodology for
Markov decision processes (under the additional assumption that the arrivals
are i.i.d.) and was given in the technical report [3] with different proofs, while
the other approach uses direct comparison arguments. An extension of this
result is given in the works of Baras, Ma and Makowski [4] and of Buyukkoc,
Varaiya and Walrand [6] for systems with an arbitrary number of customer
classes.

An interesting and somewhat novel feature of the work lies in the adopted
model. Here, the system evolution is given by explicit state-space dynamics,
and not through the prescription of transition probabilities as it is traditionally
done for Markov decision problems [16]. This sample path approach brings
about a simple cost transformation which is helpful in isolating the pc-rule as a
reasonable candidate for optimality and in by-passing the technical difficulties
associated with unbounded rewards [17]. Moreover, this cost transformation
sheds additional light on the nature of the solution by making contact with a
class of optimal stochastic control problems known as arm-acquiring bandit
problems [27].

Priority assignment problems have received considerable attention over the
years, as already evidenced by the thorough exposition of Jaiswal [13] on
priority queues. However, the bulk of this work deals with continuous-time
models, in contrast with the discrete-time situation studied here and in [1}H{4],
[6], [8]. An early discussion on a related static priority assignment problem was
given by Cox and Smith [7] for the average waiting-time criterion at steady-
state. They considered a single-server queueing system fed by different classes
of customers with independent Poissonian arrivals; within each class, service
times were modelled by independent identically distributed random variables
with a general class-dependent probability distribution function. The optimal
static strategy was identified in [7] to be a fixed work-conserving prioritization
scheme of the customer classes known as the wc-rule. Extension to this work
was given by Rykov and Lembert [23] and by Kakalik [14]; they showed that
the wc-rule is also optimal even amongst all feedback rules, i.e., rules that
allow the controller knowledge of queue sizes at each decision epoch.
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Harrison [11], [12] studied the model of Cox and Smith [7] with the objective
of maximizing the expected net present value of service rewards received minus
holding costs incurred over an infinite planning horizon and discounted at a
positive rate. There again, a very special type of priority assignment, called a
modified static policy, was shown to be optimal in the class of all feedback
policies based on queue size histories. This particular rule provides a fixed
prioritization of customer classes, which is explicitly computable by a finite-step
algorithm [12].

The paper is organized as follows. The mathematical model of a discrete-
time system with two competing queues is developed in Section 2 and the
various control problems associated with it are described in Section 3. Aux-
iliary discounted problems with bounded cost per unit time are then introduced
in Section 4 via a simple cost transformation. The optimality of the wc-rule is
established in Section 5 in two simple situations, so as to add plausibility to the
general result. Section 6 contains a discussion of the optimality results of this
paper. The dynamic programming arguments are given in Section 7 while the
direct comparison arguments are presented in Section 8.

Finaily, to fix the notation, the set of all non-negative integers and the set of
all real numbers are denoted by N and R, respectively.

2. The model

In this section a simple discrete-time model is formulated to capture the
evolution of the system with two competing queues loosely described in the
introduction.

To describe the model, an underlying probability triple (£}, %, P) is assumed
that simultaneously carries an NZ-valued random variable E, a sequence
{A (D} of N*-valued random variables and a sequence {B(t)}g of {0, 1}*-valued
random variables. As a notational convention, the first and second components
of an N?-valued random variable (or element of N?, respectively) are always
denoted by the same symbol as the random variable (or element) but sub-
scripted by 1 and 2, respectively.

The random variable =, represents the initial size of the first queue, the
random variable A,(t) quantifies the arrivals to this queue during the time slot
[t, t+1) whereas B,(t) records completion of service during that time period.
The random variables E,, A,(t) and B,(t) receive identical interpretations in
the context of the second queue.

The assignment of service attention in the slot [t, 1+ 1) is based on know-
ledge of past queue sizes and control decisions. An admissible control policy
is thus understood to be any collection {m}5 of mappings m from NZX
(N?x{0, 1})" into {0, 1}, with the convention that the domain of 7, is simply
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the Cartesian product N2. The collection of all such admissible policies is
denoted by 2.

For any admissible policy 7 in %, the sequences of random variables
{X™ (1)} and {U™ (1)} represent the queue sizes and control sequences as-
sociated with (or generated by) the admissible policy . They take values in N 2
and {0, 1}, respectively, and satisfy the following state dynamics: set
X™(0):=E, U™(0):=m(X"(0)) and for all t in N, define

X7(t+1):= X7(0)+ A (1) — UXT(O)YU™ () By(1)

(2.1

) X7(t+1):= X3(1) + Ax () — UXZ(0)(1 — U™ (1))Bo(1),
with
(2.2) U™(t+1):= . (X™(0), -, X" (t+1); U(0),- -, U™(1)).

In (2.1) and throughout the discussion, 1(n) is defined for all n in N to be
1(n)=1if n#0 and by 1(n)=0if n=0.

Some technical assumptions are needed. They are motivated by the fact that
the service requirements should be geometrically distributed and independent
from customer to customer. Moreover, they serve as a means to validate a
useful cost transformation forthcoming in Section 3. Thus, the following
assumptions are postulated and enforced throughout this paper.

(A1) The sequence {B(t)}; and {A(1)};, and the random variable = are
mutually independent.
(A2) The sequences {B;(t)}s and {B,(1)}; are independent Bernoulli sequences
with known parameter w, and w,, respectively.

To fix the terminology, an admissible policy 7 in @ is said to be (of)
non-idling or work-conserving (type) if both conditions

(X7()=0 and X3(t)>0) imply U"(t)=0
(X3(t)=0 and X7(t)>0) imply U"(t)=1

(2.3)

hold true for all ¢ in N. An admissible policy 7 which is not of non-idling type
is said to be of idling type. The constraint (2.3) on a policy 7 has a simple
interpretation; it is imposed to avoid waste of the system resources by prevent-
ing an empty queue from receiving service attention in a slot during which the
other queue contains a customer.

For obvious practical reasons, it is often necessary to consider admissible
policies that depend in a memoryless fashion on the observed past. In accor-
dance with the standard terminology [16], [22], an admissible policy in P is
said to be (of) Markov (type) if for all ¢ in N, the corresponding mappings
reduce to mappings from N? into {0, 1}. In that case, the control sequence

-—
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{UT(1)}3 is given by U7 (t) =, (X™(t)) for all ¢t in N. Moreover, if the admiss-
ible policy = is Markov and all its mappings 7, are identical, the policy  is
said to be stationary [16], [22]. By convention, the same symbol will be used
throughout to denote both any such Markov stationary policy and the mapping
from N? into {0, 1} that generates it. The collection of all such Markov (or
Markov stationary) policies is denoted by 4 (or &, respectively).

3. The optimal control problems

Simple measures of performance are associated with the operation of this
two-queue system by imposing an instantaneous cost proportional to queue
sizes. Specifically, if ¢, and ¢, are two positive constants held fixed hereafter,
the cost per slot is given as the mapping ¢ from N? into R, where

(3.1 c(x):=cix+cx,

for every x in N”. For every admissible policy 7 in &, three measures of
system performance are associated with (3.1) by setting

3.2) Ja,t(w):=E[Z'j BSc(X“(s))],
s=0
(3.3) Jﬁ(w):zlligl JB,,(’TT):E[i BSC(X””(S))]
and
(3.4 Jo(m):=liminf——J, ()~ lim in E[L 5 c(X“(s))]
: A A oo 1+t =, ’

where B is a discount factor in [0, 1], ¢t is in N and the random variables
{X™(s)}5 are generated via the dynamics (2.1)-(2.2). The quantities Jg () and
J () are the expected B-discounted costs associated with the admissible policy
m in P over the finite horizon [0, t] and the infinite horizon [0, ), respectively,
whereas J, () is the corresponding expected long-run average cost.

Three families of optimal control problems (Pg,), (P;) and (P,,) are studied
in this paper. They are simultaneously defined below as problem (P), with the
convention that J(1r) represents any one of the cost functions (3.2)-(3.4) and
that in each case, the parameter range is the one for the corresponding cost
function.

(P): Minimize J(1) over the class P of all admissible control policies .

The discounted problems are studied first, for they provide the key to solving
the long-run average problem. Conditions under which these discounted prob-
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lems are meaningfully defined are easily obtained. To this end, define the
quantities Qz, and Qg by

(3.5) Qu=ELc@]+B ¥, BEL(AM)]
and »
(3.6) Qy:=lim Oy, = E[c(E)]+8 L FElc(A())]

for all B in [0,1] and t in N, with the convention that Qg ,:= E[c(E)]. For
every admissible policy 7 in %, the bounds

Qp,-
and
Q
(3.8) 0=Jg(m= 1_‘33

hold true with 8 in [0, 1) and t in N. Indeed, the state dynamics (2.1) readily
implies the inequalities

t
(3.9) 0=c(X"(t+1)=c(E)+ Y, c(A®s))
s=0
for all ¢ in N. Substitution of (3.9) into (3.2) and (3.3) and use of the monotone
convergence theorem vyield (3.7) and (3.8) after routine calculations.
As a result of the bound (3.7) and of (2.1), each one of the problems (Pg,),
B in [0, 1) and t in N, is thus well defined if and only if the finiteness condition

(3.10) Qg1 <

holds, since E[c(E)]=J,,(7). Observe that if (3.10) fails to hold, then the cost
functional Jg (1) is infinite for every policy = in ?. Similarly, the bound (3.8)
shows that problem (Pg) is well defined if and only if the more constraining
finiteness condition

(3.11) 0y <o

holds. Similar comments can be made for the undiscounted problems (P, ), t in
N, and (P,).

Parts of the discussion presented in this paper will be given under an
additional assumption (A3).

(A3) The random variables {A (1)} form a sequence of independent and identi-
cally distributed random variables.
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It should be emphasized that the sequences {A,(t)}; and {A,(1)}5 are not
necessarily mutually independent, nor are the random variables A,(t) and
A,(1) independent of each other at each time t.

4. A cost transformation and the corresponding auxiliary problems

Under the statistical assumptions (A1)-(A3) introduced earlier, all three
problems become problems in the theory of Markov decision processes as
discussed for instance in the monographs of Bertsekas [5], Kushner [16] and
Ross [22], Chapter 6. However, for the problems studied here, the cost per
unit time is not a bounded function of its arguments (since linear) and the basic
approach via the functional equation(s) of dynamic programming is much more
cumbersome. Although this unboundedness could be handled by a modified
dynamic programming methodology due to Lippman [17], this technical diffi-
culty motivated an alternate and simpler line of argumentation which is
believed to shed some light on the problem. The approach consists of relating
the discounted problems formulated in Section 3 to auxiliary problems of the
same type for which the cost per unit time is now a bounded function of its
arguments; in fact, problem (Pg) will turn out to be equivalent to a correspond-
ing infinite-horizon discounted problem and Markov decision theory need only
be used (when applicable) in its elementary form to yield the various conclu-
sions of Sections 6 and 7.

This equivalence is brought about by a simple cost transformation given in
Proposition 4.1 and is made possible by directly using the sample path nature
of the state dynamics (2.1)—(2.2). This model description represents a departure
from the more traditional approach to Markov decision problems, where the
state evolution is usually specified through state transition probabilities.

To proceed with the discussion, a mapping ¢ is defined from {0, 1} x N? into
R by

4.1 c(u, x)3:M1C1ﬂ(xx)u‘*'lizczﬂ(xz)(l_u)

with u in {0,1} and x in N?. Two quantities are associated with every
admissible policy 7 in & by setting

@2) Toum:=E| 3 g, x|
and .
@3) Jo(m):=tim o (m) = E[ £ 8607 (9, X(5) ]

where B is a discount factor in [0, 1] and ¢ is in N. The corresponding cost per
unit time ¢ is now a bounded function of its arguments, with the obvious
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bounds
(4.4) Ogé(u, x)§M1C1+[L2C2

valid for every u in {0, 1} and every x in N2
These auxiliary costs are related to the original cost functionals in the
following manner.

Proposition 4.1. For any discount factor 8 in [0,1) and any t in N, both
relations

(45) JB,t+1(7T) = QB,: + BJB,t (77) - BjBt('n')

(4‘6) 13(77) = QB +B]B(7T)_Bj3(77)

hold true for any admissible policy = in P, with Qg and Qg given by (3.5) and
(3.6), respectively.

Proof. In view of (4.4), the uniform bound

4.7) 0=J, (m)=J,(m) gﬁ—l%f—g—zﬁ

is obtained for all 7 in ? and all t in N, whence only (4.5) needs to be

established as (4.6) will follow by a simple limiting argument.
To establish (4.5), observe from (2.1) that for every admissible policy 7 in 2,

(4.8) E[c(X™(s+1)]=E[c(X"(s)]+ E[c(A(s))]
—E[c,UXT(sHUT(s)By(s) + 2 UXF(s))(1 = U (s))Bs(s)]

as s ranges over N. Under the statistical assumptions (A1)-(A2), the random
variables B,(s) and B,(s) are independent of the random variables X7 (s) and
U~™(s) for all s in N and the equality

(4.9)  E[c,1(X7(s)U"(s)Bi(s) + 2 1(X5(s))(1 — U™ (5))Ba(s)]
= E[&(U"(s), X" (s))]

follows by an easy conditioning argument. Substitution of (4.9) in (4.8) readily
implies that

B E[c(X™(s+1))]= B E[c(X(s)]+B* " E[c(A(s))]

(4.10)
=B E[E(UT(s), X7 (s))]

for all s in N. Now summing (4.10) over s ranging from 0 to t and regrouping
corresponding terms in the resulting expression yields the desired result (4.5)
after routine calculations.
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The form of (4.5) and (4.6) naturally suggests the introduction of the
auxiliary control problems (13,3,,) and (133) that correspond to the cost function-
als (4.2) and (4.3). These problems are defined simultaneously below as
problem (P) with the convention that J(w) represents any one of these cost
functions and that in each case, the parameter’s range is the one for the
corresponding cost function.

(P) Maximize J(r) over the class P of all admissible control policies .

The relation (4.6) easily implies the following conclusion which is now stated
as a corollary.

Corollary 4.1. For any discount factor 3 in [0, 1), the optimization problems
(Pg) and (133) are equivalent in the sense that they have the same extremizers,
provided the finiteness condition (3.11) holds.

A similar result holds for the problems (P;,) and (f’B,t) as will be seen from
the forthcoming analysis given in Section 6. However, Corollary 4.1 already
provides the motivation for studying the auxiliary problems and, as it is now
pointed out, significant advantages can be gained from doing so.

First, the suggestive form of the costs (4.2) and (4.3) naturally points to the
so-called pc-rule as a reasonable candidate for optimality. For future refer-
ence, the pc-rule is defined as the Markov stationary policy u™* given by

(4.11) W)= {1—11(x2) i e = pacs
1 (xl) lf [.L2C2§ 1€y

for all x in N2. This is an example of myopic optimization since the cost (4.1)
per unit time is maximized at every stage by (4.11), in contrast with global
optimality as required in the formulation of both (P;) and (f’B). In the context
of problem (P;), the pc-rule can be interpreted as a fixed prioritization scheme
that maximizes the expected cost decrease per time slot.

Second, the cost transformation implicit in Proposition 4.1 sheds some light
on the control problems and the structure of their solution. Indeed, the
auxiliary problems (PBJ) and (136) are distributionally equivalent to arm-
acquiring bandit problems on which a huge literature is available; the reader is
referred to the recent work of Varaiyva, Walrand and Buyukkoc [27] and
references therein for additional information on this class of problems. Prob-
lems (133,,) and (f)s) would be genuine bandit problems, as defined in [27],
provided the dynamics (2.1) were replaced by

XTt+D=XT7()+ A, () — 1XTO)U™()B,(N7(1)+ 1)

(4.12)
X3(t+1) = X35(0) + Ax(t) = UXZ(0)(A =~ U™ (1)) Bo(N3(1) + 1)
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for all t in N. Here, the random variable NT(¢) (or N3(t)) counts the number of
slots over the horizon [0, t) during which the first (or second) queue is
non-empty and is given service attention according to the admissible policy
in 2. The solution of many bandit problems is by now well understood and can
be characterized by a dynamic allocation index, of which the uc-rule is a very
simple example.

5. Optimality of the uc-rule: Two simple cases

The remainder of this paper discusses the optimality of the wc-rule for the
problems (133‘,) and (133) under the assumptions (A1)-(A2). To familiarize the
reader with the general result, this section investigates two special versions of
the problem for which this optimality is very easily established when
®1C1 F maC,. The discussion assumes p,c¢, < ¢y, with the understanding that
the symmetrical case can be treated similarly.

5.1. Uninterrupted arrivals. Here only, assume that the arrival process {A (1)}5
satisfies the additional condition that P[A(t) #0]=P[A,(t)=0] #1 for all ¢ in
N. Under this assumption, for any admissible policy 7 in &, each queue is
empty at most once and this necessarily occurs at the starting time ¢ =0, owing
to the dynamical equations (2.1). Hence, for all {#0 in N

5.1 EU™(), X (1)) =[m1¢1— 2o ]JU™ (1) + ez,

and after a simple substitution in (4.2), it follows that for all ¢ in N,

jﬁ,:(’ﬂ') = E[E(’TTO(E), E)]+ [H«lcl - P«zcz]E[ i U‘"(S)BS]

t

5.2)

R 18 B,

whenever B# 1. Since ¢, — wC, is positive, the cost (5.2) is maximized by
selecting 7™ such that U™ (s)=1 for all 1=s=t in N and such that
é(m¥(B), B) is maximum. The uc-rule given by (4.11) meets these require-
ments and is therefore optimal for problems (f’BV,) for all values of the discount
factor B in [0, 1), under the additional constraint of uninterrupted arrival
streams, i.e., at least one customer joins each queue in any given time slot.

5.2. First-order analysis for small discount factors. To obtain yet another
situation where the optimality of the pc-rule is readily established, consider
problem (133‘,) for some t in N, with 0< g8 < 1. Observe that for any admissible
policy 7 in ? and for all 0=s <t, the decomposition

(53) 3 BEU™(n), X™(1) = BE(U™(s), X™(s)+ Y. BEU™(), X™()

r=s+1
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obviously holds, and the bounds

t—s

(5.4) 0= Z BEU™(r), X™ (1) = (1101 + pracy) B BB

B
are satisfied uniformly in the policy m, as a result of (4.4).

Now fix a policy 7 in ? and s in N with 0=s<t. A new policy # ={m 1
may then be defined from 7 by setting #,:= 7, for all r#s in N and o=
The policies 7 and 7r agree except that at time s, the latter operates according
to the wc-rule and produces the control action p*(X7(s)).

The contribution of &(U™(s), X™(s)) to the cost function jB,[(’TT) may be one
of at most three values, namely u,¢,, ws¢, and 0, depending on the value of the
random variables X7(s) and U7 (s). As a result, a direct inspection of (5.3) and
(5.4) easily indicates, owing to the noted uniformity, that for 8 small enough (to
be made precise in a moment) in [0, 1), the policy # incurs a better cost than
policy 7 on the horizon [0, t], i.e., fB,,(w)éfB,,(q'r). This will happen if 8 is
selected in [0, 1) such that the condition

t—s

1-8

(5.5) (M|C1+H~2C2)B B° <min{w,¢; — mrCs, m2Ca}B*
holds. As expected, this condition is most constraining on 8 at s = 0, where the
corresponding condition reads

t

1- .
(5.6) (micy+ pacs) % B <min {w;c; — s, paCs}

From the discussion given earlier, the pc-rule u* is easily seen to be optimal
for problem (PB,) under the condition (5.6) on the discount factor . This
follows by an easy inductive argument from the fact that condition (5.6) implies
(5.5) for all 0=s<t and from the myopic optimality of the uc-rule (for s =1)
discussed in Section 4.

It should be observed that the arguments presented here rely only on the
structure of the cost, and not on the statistical properties of the arrival streams.
In other words, for 8 small enough, the uc-rule is always optimal for problems
(Ps,) under no assumption on the arrival pattern. That this result holds for all
values of 3 when the arrivals are merely independent of the service streams,
constitutes the basic result of this paper. Extensions of this result to more than
two queues were subsequently given by Baras, Ma and Makowski [4] and
Buyukkoc, Varaiya and Walrand [6].
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6. Optimality of the iC-rule: the results

The optimality of the wc-rule can now be established for the various control
problems dicussed in earlier sections.
The finite-horizon discounted-cost problems (Pg,) are discussed first.

Theorem 6.1. Under the foregoing assumptions (A1)-(A2), the uc-rule is
optimal for each one of the problems (133,,), Bin [0,1] and tin N. For B in [0, 1),
the pc-rule is essentially the only optimal policy when w,c, # u,c,, whereas every
non-idling policy is optimal when @ ¢, = uCs.

Detailed proofs of this key result are given in the next two sections where
two different approaches are presented. The first derivation, discussed in
Section 7, was given originally by the authors in [3]; it requires the additional
assumption (A3) and uses the dynamic programming methodology for Markov
decision processes. As an alternative, Section 8 presents simple comparison
arguments to obtain the same result under the basic assumptions (A1)-(A2).
These ideas already appeared in a preliminary version of [6] and have been
used successfully to solve other questions of optimal priority assignment [18],
[19].

The remainder of this section explores the implications of Theorem 6.1, as
the desired optimality is first discussed for the infinite-horizon problems (136).

Theorem 6.2. Under the foregoing assumptions (A1)~(A2), the uc-rule is
optimal for each one of the problems (133), Bin [0, 1). If w,cq # waCo, the uc-rule
is essentially the only optimal policy, whereas if w,c, = u,c,, every non-idling
policy is optimal.

Proof. As a result of Theorem 6.1, the inequality

(6.1) Jou(m) = Jg (1¥)

holds for every admissible policy 7 in % and t ranging over N. A simple
application in (6.1) of the monotone convergence theorem shows that

(6.2) Jo(my=1im Jy (m) =lim Jg , (u*) = T, (n*)
tTee thee

for every admissible policy 7 in @, since the wc-rule w™* is in &; the pc-rule u*
is thus optimal for problem (13,3).

When picqy = usc,, all non-idling policies are clearly optimal for problem
(P,) by virtue of Theorem 6.1 and of the limiting argument giving (6.2).

To study the case w,c, # w»c,, observe that for every admissible policy
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in P,
(6.3) Js(m)= Y, BE[EU™ (1), X" (1))]

=0

with $ in its usual range [0, 1). From the bounds (4.4), it is easy to see that the
mapping [0,1) > R:8— fB('rr) is monotone increasing, strictly convex and
analytic throughout its domain.

Now, let 7 be an admissible policy in 2 optimal for problem (f)ﬁ) at some
value of B in (0, 1), say B,. The optimality of the wc-rule p* obtained earlier
implies that fB“('zr) = an(p,*), hence

(6-4) fB(W):jB(M*)

for all B in the interval [B,, 1), owing to the inequality (6.2) and to the strict
monotonicity and convexity of the mapping 8 — J;(ar). By analytic continua-
tion, (6.4) must also hold throughout the entire interval [0, 1) and the equalities

(6.5) E[e(U™ (1), X (t)]= E[&(U* (1), X*"(1))]

immediately result, with ¢ ranging in N. This now implies that ja,r('n') = j&,(u*)
for all t in N and 8 in (0, 1), and the policies 7 and u* necessarily coincide by
virtue of the uniqueness result stated in Theorem 6.1 for the finite-horizon
problems. This shows that the pc-rule is again the only optimal policy for the
infinite-horizon problems when ¢, # @,C.

Theorem 6.3. Under the foregoing assumptions (A1)—(A2), the we-rule is
optimal for each one of the problems (Pg,), B in [0, 1] and t in N.

Proof. The discussion need only be given in the case when the finiteness
assumption (3.10) holds for otherwise the result is obviously true; indeed, in
that case, the cost functional J; () is infinite for every policy 7 in @, as
pointed out in Section 3.

Under this finiteness condition, the first part of Proposition 4.1 implies that
for any admissible policy 7 in P,

(6-6) JB,I+1(7T) - ]B,t+ 1(M*) = B[J(s‘: (7"') - JB.: (H*)] + B[jﬁ,t(“'*) - je,:(ﬂ')]

whenever B is in [0, 1) and ¢ in N. From (6.1), it now follows that

(6.7) o1 () = Jg 101 (w™)]1Z Bl (1) — T ()]
for all t in N, and the inequality
(6-8) jg,z+1(77) - JB,:+](I-L*) = [B teeet BH]][JB,O(’“') “JB,O(IJ«*)]

readily results by a direct iteration argument. It is now easy to see that for
every policy 7 in P,

(69) JB,:+1(I~L*)§JB,1+1(7T)



200 J.S. BARAS, A. J. DORSEY AND A. M. MAKOWSKI

since Jyo(m) = E[c(B)]=Js0(n*), and the optimality of the uc-rule is thus
established for B# 1.

The case 8 =1 is obtained by a simple continuity argument since the uc-rule
w* does not depend on B. An application of the monotone convergence
theorem on (6.9) yields

(6.10) T (¥ =lim Jg (u*) =lim Jp (77) = Ty (77)
BTl B

for every policy 7 in 2.

The original infinite-horizon problems (Pg) are finally solved as follows.

Theorem 6.4. Under the foregoing assumptions (A1)-(A2), the pc-rule is
optimal for each one of the problems (Pg), B in [0, 1).

Proof. The limiting argument that gave Theorem 6.2 when applied to (6.1)
also establishes the optimality of the pc-rule for the problems (P;) when used
on (6.10). An alternate argument consists of combining Theorem 6.2 with
Corollary 4.1 and the closing remarks of Section 3.

The proof of Theorems 6.3 and 6.4 clearly show that for problems (P5,) and
(Pg) with B in [0, 1), the pc-rule is again the essentially unique optimal policy
when w,c; # u.c, whereas any non-idling policy is optimal when p,c; = u,c,
provided the finiteness assumptions (3.10) and (3.11) hold. The optimality
results concerning the long-run average-cost problem (P,) are also within
reach.

Theorem 6.5. Under the foregoing assumptions (Al)—(A2), the pc-rule is
optimal for the problem (P,,).

Proof. The result is immediate from (6.10) and the definition (3.4) of the cost
function J, ().

Obviously, this last result is still valid when the definition (3.4) of the
long-run average-cost function is changed to

1 1 ¢
. Jolar) =1 — =1 e G
(6.11) () clTrarol sup T Jy () [ITILI sup E[l p Sgo c(X (s))]

for any admissible policy 7 in 2.
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7. A proof of Theorem 6.1: The dynamic programming argument

This section discusses the optimality result of Theorem 6.1 by the dynamic
programming methodology for Markov decision processes, under the addi-
tional assumption (A3). Since only Markov control policies need to be consi-
dered in solving the problems (P,,) [16], pp. 139-143, the first step in
investigating optimality for these problems is to introduce the corresponding
Markovian value functions and to characterize optimality through the cel-
ebrated principle of optimality, a version of which is given below.

Specifically, for every discount factor B in [0, 1], every t in N and any
Markov policy w in J, the corresponding expected cost-to-go jg,:(M; x) and the
value function VB‘,(x) over the horizon [0, t+1) starting from state x in N° are
defined as

a1 Toulis 0= B . BE(U (), X*(5)] X*(0) =]
and
(7.2) Var(x):= sup Jy (n: x).

nweM

Owing to the time invariance of the cost (4.1) and to the statistical assump-
tions (A1)-(A3), the quantity 8"V, (x) is readily interpreted as the optimal
cost-to-go over the time horizon [t—n, t+1), 0=n={, starting in state x at
time t—n.

To simplify the notation in this section, let A;, A,, B, and B, denote any set
of four random variables which are generic members of the random sequences
{A(D)5, {A(0), {B(0)5 and {B,(t)}5, respectively, in the sense that the four
random variables (A, A,, By, B,) have the same joint statistics as the random
variables (A, (1), A,(t), B,(t), Bx(t)) for arbitrary ¢, as imposed by the assump-
tions (A1)-(A3). Now, introduce the corresponding one-step transitions as the
N?-valued random variables T"(x) defined by

(7.3) T“(x):=(x;+ A, —1(x)uB;, x,+ A, —1(x,)(1 —u)B,)

for all u in {0, 1} and x in N2

As customary with dynamic programming [5], [22], attention is given to the
contraction mapping naturally induced by the principle of optimality on the
space B(N?) of bounded mappings from N? into R. For each discount factor 8
in [0, 1], the mapping TB is defined formally by the relation

(7.4) (Taf)(x):= max {&(u, x)+BELF(T* (x))}

for all f in B(N?) and all x in N2 Owing to the bounds (4.4), the value
functions Vj,: ={V,,(x), x € N?} are elements of (N?) for all 8 in[0, 1] and all
tin N.
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Proposition 7.1. For the value function (7.2), the principle of optimality takes
the following form: for all x in N* and all t in N,

(7.5) Vawn(x) = Jmax {&(u, x)+ BE[V, (T ()t = (T Vg, )(x),

with ‘73,71 denoting the identically zero mapping 6 in B(N?), and any Markov
policy p ={u,}5 optimal for problem (P,,) is given by

(7.6) o (x) = Arg max {&(u, x) + BE[ V. (T* ()]}

ue{0, 1}
for all x in N? and 0=s=t.

The proof of this proposition is standard and is left as an exercise to the
interested reader. Proposition 7.1 indicates that the sequence {V; } of value
functions can be generated iteratively for all ¢ in N, by the formula

(7.7) Ve =Te Vs, =TS9,

where T§’ denotes the tth iterate of Tj. In view of this fact, it would thus be
helpful to find structural properties of the value functions which are invariant
under the action of TB, since a careful choice of such properties could lead to a
solution of the equations (7.5)—(7.6) by specifying how the various maxima are
achieved.

With this in mind, a set of properties is proposed that the value function Vﬁ‘,
is expected to possess if the wc-rule were indeed optimal for the problem
(f’s,:); a slightly stronger set of conditions is in fact introduced so as to obtain
the uniqueness result in Theorem 6.1. For the sake of clarity, the discussion is
given only in the case w,c,=w,¢,, a condition enforced for the remainder of
this section. The symmetrical case (p,c; = w,c,) can be treated along identical
lines with obvious modifications and the details are left to the interested
reader.

First, two auxiliary mappings U; and Uj; from @(N?) into itself are
introduced by setting

(7.8) (Uéf)(xla xz) e T BE[f(max{O, X +A— Bl}’ X+ Az)]
(7.9) (Uéf)(xl, X5) 1= s+ BE[f(x;+ A;, max {0, x,+ A, — By})]

for all f in B(N?) and all x in N2
Let &, 1 and 8 be three non-negative quantities. An element f in B(N?) is
then said to satisfy:

Property (PY) if for all x, and x, in N
(7.10) Bf (x1+1, x5) +n = Bf (x4, x2) +¢13



Optimality of the uc-rule 203

Property (P3) if for all x, and x, in N

(7.11) Bf (x1, X2+ 1)+ 8 = Bf (x4, x5) + a5
Property (P) if for all x, and x,=1 in N
(7.12) (UzH)(x1, x2) + & (U (%1, x2).

The conditions (7.10)—(7.12) have simple and natural interpretations when
n =0 =¢ =0, if f plays the role of the value function ([3], Proposition 6.1): the
conditions (7.10) and (7.11) induce the optimality of the wc-rule when exactly
one of the queues is empty, whereas condition (7.12) expresses this same fact
when both queues are non-empty since for every f in B(N?),

(7.13) (Taf)(x) = max{(ULf)(x), (Uf)(x)}

for all x in N*> with x;=1 and x,=1.
The next result describes the propagation of these structural conditions
under the action of the mapping Tj.

Theorem 7.2. Under the foregoing assumptions (A1)—(A3) with p,c, = ¢y,
if an element f in B(N?) satisfies the properties (PY), (P) and (PY), then g,:= T,f
satisfies the properties (PV), (P3) and (P5) with n:=(1—B)c,, 8:=(1-B)c, and
e:=(1-B)picy— p26s].

A proof of this key invariance result is available in [3], Appendix. The
dynamic programming argument for establishing the optimality of the uc-rule
for problem (f’B.,) can now be given, as follows.

Proof of Theorem 6.1. Since w,c,=p,c;, the identically zero mapping 6
obviously satisfies (P{), (P9) and (P%). Theorem 7.2 thus implies via (7.7) that
V.o satisfies (P7), (P3) and (P5) with m, 8 and ¢ as given there, whence (P9), PY)
and (P§) are satisfied. From Theorem 7.2 and the relation (7.7), it follows that
Vg1 also enjoys the properties (P7), (P3) and (P5) and thus necessarily the
properties (PY), (P9) and (P%). Inductive use of this argument easily establishes
that VB,, satisfies (P7), (P3) and (P5) for all t in N, i.e., for all x; and x,=1 in N,

(7.14) BVBJ(xﬁ— 1, x5)+m 53‘73,,()61, X))+ ¢y
(7.15) BV x1, o+ 1)+ 8 =BV, (x4, x2) + s
and

(7.16) (UaVa)(xy, )+ & (U Vg (x4, x5).

Now, direct inspection of (7.4) shows that for all ¢t in N,

(7.17) (TB VBJ)(XL’ 0) = max {( Uglg VB‘t)(xla 0), BE[VB,I(XT +A;, A)l}
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whenever x; =1 in N. Observe then from (7.8) that

(UpVe )(x1,0)— BE[ Vs (x;+ Ay, Ay)]
(7.18) =+ w1 BE[ Vi (x + A1 — 1, A)]— wBE[ Vi, (x, + Ay, Ay)]
(7.19) = Elle;+ BV (x;+ A =1, Al BV, (x;+ Ay, A))]

by a simple preconditioning argument making use of the mutual independence
of the random variables B; and {A,, A,}. The inequality (7.14) immediately
implies that

(7.20) UiV )(x1,0) = BE[Vy (x, + Ay, A)]Z pim
for all x;=1 in N and consequently,
(721)  BE[V,(xi+ Ay AN <(UgVe)(xi, 0)= TV, )(x1, 0)

as a result of (7.17) since c, is assumed strictly positive.
Identical arguments, using (7.15) this time, will show that

(7.22) (Ui V)0, x5) = BE[V (A4, xo+ Ay)]Z 128
for all x,=1 in N, with
(7-23) BE[VB.I(AD X+ Az)]< (Ué Ve,;)(O, xz) = (TB VB,I)(Oa xz)-

If the assumption p,c, <p,c; holds and 8 is in [0, 1), then the quantity € is
strictly positive and the inequality (7.16) easily implies the inequality

(7.24) (Uévﬁ,z)(xly X)) t+e <(Ué‘73,:)(x1, X3) = (TBVB,z)(xh X2)

for all x, and x,=1 in N, owing to the remark (7.13). Substitution of (7.21),
(7.23) and (7.24) into the dynamic programming equation (7.5) readily implies
the optimality of the wuc-rule for the problem (133‘,). Because of the strict
inequalities appearing in (7.21), (7.23) and (7.24), it follows from (7.6) that the
optimal policy is essentially unique since it is unequivocally determined on
N2\{(0, 0)}.

If on the other hand, the condition p,c; = u,c, holds with 8 in [0, 1), then
(7.24) has to be replaced for all ¢t in N by

(7.25) (Ugvﬁ,t)(xl’ xz) = (TBVB,t)(xb xz) = (UéVB,z)(xl» xz)

with x; and x,=1 in N. The reason for this modification is found in the proof
of Theorem 6.3 as given in the technical report [3], Appendix, Equations
(A.32) and (A.46), to which the reader is referred for details [3], Theorem 7.1.
From (7.21), (7.23) and (7.25), it is now easy to establish via Proposition 7.1
that any non-idling policy, and the wc-rule w™* in particular, is optimal for all
problems (Pg,).
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8. A proof of Theorem 6.1: The comparison arguments

The discussion of Theorem 6.1 given in this section is valid under the basic
model assumptions (A1)—-(A2) and uses comparison arguments often invoked
to solve other scheduling and priority assignment problems. Typical examples
can be found in the works of Meilijson and Yechiali [18], and of Pinedo [19].

Several auxiliary concepts are now introduced to facilitate the presentation
of the arguments of this section. For any admissible policy = in %, the policy
7 :={7®}, with s ranging in N, is defined as the concatenation at time s of
the policy 7 and of the pc-rule ™, where

(8.1) (s) {’n’, for 0=r<s
. =

w* for s=r

for all r in N. Clearly, (8.1) defines an admissible policy in 2.
Now, consider problem (P;,) for some B in (0, 1) and ¢ in N. For every s in
N with 0=s =1, define the quantities

82 To(sim = B[ gew o, x7()]

for all admissible policies 7 in P. The statement that the uc-rule u* is optimal
from time s onward in problem (13,3,,) for some 0 =s =1, is used below and has to
be understood as saying that

(8.3) fB,,(s; w)éfg‘[(s; )

for all non-idling policies 7 in 2.

Observe that the wpc-rule p* is always optimal from time t onward in
problem (13&,). The aim of the next proposition is to show that this property
propagates in time downward from, t.

Theorem 8.1. Consider problem (f’B,t) for some B in (0,1) and t in N. The
pc-rule u* is optimal from time t onward. If the pc-rule is optimal from time
s+1 onward with 0=s=t, then it is necessarily optimal from time s onward.

Proof. The first part of the proposition is obvious by virtue of the myopic
optimality of the uc-rule discussed in Section 4.

To establish the second part, there is no loss of generality in assuming
(1€ = pac,, a condition enforced throughout the proof. The linearity of the
expression (8.2) and the assumed optimality from time s+ 1 onward of the
pc-rule readily imply that only non-idling control policies 7 in ? with 7, = u*
for s+ 1=r=t need be considered in establishing (8.3).

Now, for such an admissible policy 7 in %, define the event E™(s) to be

(8.4) E™(s):=[X7(s) # 0, X3(s) # 0, U"(s) = 0],
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and observe that only on this event does the policy 7r at time s act differently
from the pc-rule w*. In particular, the non-idling nature of = and its behavior
like the wc-rule from s+ 1 onward cause the second and first queues to be
given service attention at times s and s + 1, respectively, on the event E™(s).
Specifically, the dynamics (2.1) yield

(8.5) X7(s+1)=XT7(s)+ A (s), X3(s +1)= XT(s) + As(s) — By(s)
with a contribution w,c,B8* to the cost J, (), and

(8.6) XT(s+2)=XT(s)+ A(s)+ A (s+1)—By(s+1)

(8.7) X3(s+2)= X3(s)+ Ay(s)+ Ax(s + 1) — By(s)

with a contribution of w,c,8°"" to this cost.

The basic idea behind the proof is to construct a new policy 7 that reverses
the order of service on the event E™(s) such that jB,,(w)éfB,[(ﬁ). To this end,
define the admissible policy 7:={7,} in P as follows. For all r#s and r¥s+1
in N, pose 7,:=m, and define 7, and 7, ,, such that on the event Q\ E™(s),
U%(s)=U"(s) and U7 (s+1)=U"(s -+ 1) while on the event E™(s), U"(s)=1
and U7(s+1)=0. It is easy to see that 4 is non-idling and operates like the
wc-rule at time s. Now on the event E™(s), use of 7 gives

(8.8) X7 (s +1)=XT(s)+ Ay(s)— By(s), X3 (s + 1) = XF(s) + Ax(s)
with a contribution w,c;B8° to the cost fB.t(ﬁ), and

(8.9) X" (s+2)=XT(s)+ A (s)+A (s +1)—By(s)

(8.10) X7 (s+2)=X5(s) + Ax(s)+ Ax(s + 1) —Bs(s + 1)

with a contribution p,c,8°"* to the cost.

The random variables X™ (s +2) and X~ (s +2) agree on the event Q\ E™(s),
but it is clear by construction that X7 (s +2)# X™(s+2) in general on E™(s).
However, under the assumptions made, the random variables X™(s+2) and
X7(s+2) have the same distribution. As a result, since the policies 7 and 7
both operate like the uc-rule from time s+2 onward, it follows by direct
inspection, with a simple preconditioning argument, that

(8.11)  Jg,(s; @) —Ja(s; m) = B*[pic, — paco)(1— BYPLE™(5)]Z 0.

On the other hand, the assumed optimality of the wc-rule from time s+1
onward implies

(8.12) Jo(s; 7) = E[BE(U™(s), X" (sN]+ Ty, (s +1; 7)
(8.13) =E[BE(U™(s), X" ()] +Jg (s +1; #7Y)

since 7 is non-idling. But by construction the policy 7 operates like the

—_
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pc-rule at time s, whence 7 := #¢*" and (8.11) combines with (8.13) to give
(8.14) Jau(s; M=o (s; @) =Jg (55 7).

Obviously 7 = # and (8.14) thus shows that

(8.15) To(s; m)=sTg,(s; o)

for all non-idling policies 7 in @, i.e., the pc-rule u* is indeed optimal from
time s onward.

The next result is now a direct consequence of the induction argument
implicit in Theorem 8.1, when carried out to completion.

Theorem 8.2. Consider problem (Pg,) for some B in (0,1) and t in N. The
pc-rule u* minimizes (4.2) over the class of all non-idling policies in P.

Idling does not pay as is shown by the following result.

Theorem 8.3. Consider problem (f’e,:) for some B in (0, 1) and t in N. For any
admissible policy  in P, there exists a non-idling policy # in P such that

(8.16) Jo(m) =Ty, (#)

Proof. The argument is similar to the one used in Theorem 8.1 and will only
be sketched here for the sake of brevity. The basic idea was originally used in
[4] and amounts to embedding the system of two competing queues into one of
three competing queues. This third (somewhat fictitious) queue operates in
discrete time, initially contains a single customer and receives in each time slot
exactly one customer. The service requirements for customers in the third
queue are assumed infinite (i.e., geometrically distributed with parameter 0)
and completion of service thus never occurs in this queue which never empties.
In fact, the corresponding queue size sequence {X5(t)}5 is independent of the
service allocation policy and given by the recursion

(8.17) X+ 1) =X3(0+1

for all ¢ in N, with X5(0) = 1. Finally, assume that giving service attention to the
third queue incurs no cost.

To describe the embedding, let 7 be any admissible policy # in ? for the
two-queues system. In the context of the three-queues system, the server
operates under « by giving service attention to the original queues as before,
but to the third queue whenever the former are empty or the policy = is idling
in the original system. Observe that under this interpretation, any policy 7 in
P is translated into a non-idling policy for the three-queues systems, with the
same incurred cost J; (7).

The discussion can now proceed, as only the case of an idling policy 7 in P
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needs to be considered for otherwise (8.16) is trivially satisfied with 7 = . So
assume that the policy  is idling at some time s, with 0=s =t. The idea is to
construct a policy #* for the three-queues systems that incurs a larger cost
than J, (). The policy # ={#"'}; is defined to agree with 7 at all times but
r=s and r=s+ 1 when idling. Moreover, when idling at time s, #* is defined
at time s not to idle for the two-queues systems and at time s + 1 to give service
attention to the third queue. It is now a simple matter, via the arguments given
in Theorem 8.1, to check that the incurred cost for 4 is larger than for .
Again, an easy induction argument will yield (8.16) since the wpc-rule can
always be used at time ¢ to improve the cost.

A second proof of Theorem 6.1 can finally be given.

Proof of Theorem 6.1. Theorems 8.2 and 8.3 imply that for every admissible
policy 7 in P,

(8-18) jB,z(”T)§je,z(IL*)

with 8 in (0,1) and ¢t in N.

This establishes Theorem 6.1 for 8+ 1, with the uniqueness result following
readily from the relation (8.11) obtained in the proof of Theorem 8.1. The
optimality result is obtained for the case =1 by use of the monotone
convergence theorem in (8.18) with B going to 1 from below.
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