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ABSTRACT
We consider here the general filtering problem for signals carried by
quantum mechanical fields. The continuous time, continuous quantum
measurement problem is formulated. Simple examples from quantum
optics illustrate the approach.

1. INTRODUCTION

Communication theory at optical frequencies requires quantum
mechanical description of the various relevant devices and fields in order
to analyze properly the phenomenon of 'quantum noise!. This is the type
of noise that appears when the carrier frequency is at the optical or higher
range of the spectrum, where thermal noise becomes negligible. For a
very nice description of 'juantum noise' we refer to [5]. Motivated by
detection, estimation problems in quantum optics one is lead to the
analysis of similar problems for signals carried by quantum field5 in
general. For a very comprehensive treatment of such problems we re-
fer to [4].

Recently in [1] - [3] the study of the problem of filtering a signal
carried by a quantum field was initiated. Due to the enormous com-
plexity and difficulty in the formulation of this problem several sim-
plifying assumptions were made to render the problem feasible. It is the
purpose of the present paper to introduce some initial efforts towards a
general quantum filtering theory, without the special assumptions of [1] -
[3]. We briefly describe the neces sary quantum mechanical framework
and we refer to [ 6] for further details. We are only interested in quantum
statistical mechanics. Let X be a complex Hilbert space with inner pro-
duct <-, ->. The state of the quantum system is a self-adjoint, non-
negative trace class operator of trace one, usually denoted by p. We let
75(}) denote the set of all self-adjoint trace class operators on X with the

trace norm
/2 _ 2 ,
/2.1 1)
n=1 o

% 2 -
where \p are the eignevalues of the compact operator (A"‘A)l/ . This is
a Banach space with positive cone J4(X)". Customarily a measurement is
represented by a self-adjoint operator on X, V, or with the associated
projection - valued measure Ey. If we let v denote the measurement out-

come then the probability distribution function of v is given by

[all = traxa)

F(8) = tr[p E (-=,§)] (2)

for §e R, Since this concept of 2 measurement proved to be restrictive
for estimation problems [1] - [4] the more general concept of a measure-
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ment represented by a positive operator valued measure was introduced.
A p.o.m. M is a map from the O -algebra of Borel sets 8 of R, to the
algebra Z(X) of all bounded operators on ¥, such that

i) M(B) is self-adjoint and 2 0 for every Beg”

ii) if {Bi}f 8" is a partition of R™ then T M(B,)=I (weakly). (3)

This a necessary concept for effectively handling vector signal processes
[2] - [4]. For more details and relations to Naimark's theorem as well
as interpretations in terms of approximate joint measurement of non-
compatible variables we refer to [4] and in particular to [7, ch. 3].

The measurement outcome v is in R2 now, and its statistics are dex
scribed by the probability measure

u B) = tr[ PM(B)], for BeB". (4)

In[1] - [3] we assumed that p, the state of the quantum field, depended
on a stochastic process x(t), thought as the information carrying signal.
To avoid complications, and in particular the time evolution of 0, it was
assumed that 0 does not depend explicitly on time. It was also assumed
that x(tpis a discrete time stochastic process. At discrete instants of
time t;, a measurement was performed on the system and gave outcome
v(t;). Both cases where x(t;), v(tj)e Ror R® were considered. Again, in
order to avoid complications arising from the time evolution of p and the
well-known interaction between the state of a quantum system and a
measurement [ 6] [7], it was assumed that the measurement outcomes
v(t;) conditioned upon the signal dequence x(t;) are independent from time
to time. This assumption leads to a factorization of the probability
distribution function:

=P

F F (5)

vit) it |X(t1)' rx(t)i=poviE) |X(ti)
A filtered estimator for x(tk) was formed
. k
= I
x(t)= I Clk)v(t) (6)
and the problem of selecting the nxn matrices C;(k) and p.o.m. My in
order to minimize the mean square error

M.S.E = E{llx(tk) - }E(tk)HRn} (7)

was solved. This is an example of a discrete time linear filteringprob-
lem with quantum measurements. The results obtained depend critically
on the assumptions made above.

In this paper we want to formulate a general filtering problem, with-
out making use of the assumptions used in [1] - [3]. In particular we
want to bring into the formulation the time evolution of ¢ and theinter-
action between state propagation in quantum systems and quantum
measurements. We shall denote by =€s(3C) the space of all self-adjoint
bounded operators on X with positive cone is(ﬁf)+ .

2. STOCHASTIC EVOLUTION OF STATES

If H is the Hamiltonian operator of a closed quantum system [7], it
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is a consequence of the Schrddinger equation that the state p(t) evolves
according to the evolution equation in -7'8(3{):

a.
g(tt) = - i[H, p(t)] (8)

or in integrated form

-iHt iHt

Ot—Tt(o)-e' pe y
where we assumed H is time-independent. The interpretation of (8)
depends on the particular representation of the Hilbert space ¥, but
usually H is an unbounded self.-adjoint operator. T in (9) is a strongly
continuous group of isometries and for more details on this subject we
refer to [7]. Quite often, and, as we shall see shortly, in particular
for us, it is necessary to consider equations, like (8) where H depends
on a stochastic process x(t). Then (8) becomes a stochastic evolution
equation which is quite difficult and yet not known how to handle in this
generality. For 'nice'' states we have shown in [8] that (8) reduces to
a stochastic partial differential equation, typically of the Fokker-Planck
type, which can be handled quite satisfactorily. In particular we singled
out the case where H depends linearly on a stochastic process, since
this is frequently the case for common modulation schemes of laser
beams [8] [9]. For example electrooptic amplitude modulation of a
single mode laser can be modeled by the interaction Hamiltonian

(9

H = -igx(t) [a - 2'1, (10)

while electrooptic phase modulation can be modeled by
H, = g x(t) aa , : (11)
where a, a™ are the photon annihilation and creation operators of the
mode [ 6], and g a coupling constant. Then the total Hamiltonian of the
laser mode is

H=wa a+ H, . (12)
where W is the carrier frequency and is clearly linear in the signal
process x(t). For stochastic excitations x(t) with piecewise continuously
differentiable sample paths equations like (8) can be handled rather
satisfactorily whenever H is linear in the process x(t). In particular if

H(t) = H + x(t)B » ‘ (13)

where H is self-adjoint, unbounded and generates a unitary group, while
Be£ (H) (8) has been studied in [13], with stochastic inputs x(t). This
case however exludes hamiltonians arising from Boson quantum fields
(such as from lasers), because then the operator B is unbounded. In-
deed since a,a  are unbounded for Boson fields (10 and (11) provide such
examples., Fortunately in the most usual cases B is quadratic in 2 and
a” and then one can still study (8) quite satisfactorily, see [8] and [12]
[13]. The same is expected to be true for unbounded operators B which
are polynomials in a,a . These are the only cases we consider here.
Clearly in the case of a vector stochastic signal the term x(t)B in (13)
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should be replaced by a term .1}1"__: x.l(t) Bi' where the component processes
x;(t) and operators B; have simillar properties. In general therefore the
modulation process (i.e. the injection of the signal to the quantum field)
is described by the stochastic evolution equation :

3p .
at(t) = - i[HeM] - 1 Z) x0[B, )] o

via (14) p(t) becomes 4n operator-valued stochastic process.

After modulation the quantum field is transmitted, and therefore inter-
acts with the external world. We model this by a reservoir with hamilton-
jan Hg and 2n interaction Hamiltonian gH;, where g is again a coupling
constant. Let Hs(t)be the Hamiltonian in (14), then the total system is
represented on X @ & (¥ the Hilbert space of the reservoir) by the total
state p. which satisfied the equation

1
e} Ol(t)
aar-venniniie i [Hl(t),ol(t)] (15)
where
Hl(;) = HT(t)®I + I®HR + gHI (16)

Then one employes Master equations methods (i.e. tracing over the re-
servoir variables) [7] to obtain the stochastic evolution of the state p of
the quantum field including transmission effects.

3. QUANTUM MEASUREMENT PROCESSES

After modulation and transmission the information carrying quantum
field reaches the receiver where measurements are made. Suppose we
first make a measurement represented by the self-adjoint operator Y, or
the projection valued measure Ey which is discrete (i.e. Y has discrete
spectrum). If yj is an eigenvalue of Y, it is conventionally supposed that
a measurement which gives the value yj transforms the original state P
to the state

P.oP.
i i

tr{ p P.l] (A7)

where P, is the corresponding eigen projection [7]. For convenience one
does not consider the normalization factors and constructs the transfor-
mation

pb—> I P,pP, (18)
i:l 1 1

which describes the effect on p when Y is measured. .This is a con-
ditional expectation in the sense of Umegaki [15] which cannot be gen-
eralized however to ‘non discrete observables. It is strongly related to
von Neuman's repeatability hypothesis and the related difficulties with
continuum spectrum. It is this interaction between states and measu-
rement that was bypassed by the various assumptions in {1] - [3]. In

[ 16] this interaction is considered when measurements are made in dis-
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crete instants of time and the underlying quantum states are Gaussian.
Here we follow and extend the general approach of Davies [ 7], [10] - [14]
who considered quantum stochastic processes which are the appropriate
generalization of marked point-processes. If B is a self-adjointoperator
with spectral measure Ep, one defines in thé same spirit as (18) the ob-
servable conditioned by the measurement of Y by

EglylF) = 1)“1 P,E,(F)P,, for Fe 8 , (19)

Note that EB!Y is a p.o.m and not a projection-valued measure. More-
over the joint measurement of Y and B is characterized by the p.o.m

Ey g(FxE)=T . P.EL(F)P, . (20)
v€

In [14] Davies and Lewis defined the proper generalizations of these ideas
by introducing the concept of an instrument. LetY be a setand 8 a 0-
algebra of subsets of . An instrument with values in Y% is a map € from
8 into 27 (V) (the space of bounded positive linear maps of ¥ into ¥ where
V.= I, )) such that

i) E(E)2E(4) =0, for EcB

ii) if {Ei?c £ is a countable collection of disjoint sets in 8 then

(U E, )- T S(E ) (strongly.) (21)
i=1 i=1

iii) tr[EWY)e] = tr[ 7
for all Defs(}c) .

This corresponds to the idea that an instrument accepts a state p and
produces a measurement outcome and a new state conditional on the
measurement outcome. Typically for us ¥ will be either a finite set, or
R™, By employing the fact that £ ;) is the dual of 7 (5) we have [7 ][14]
that to every instrument on (¥, 8) there corresponds a unique p. o. m. M
(3) such that

tr[€(E)p] = tr[M(E)p] for ped (X) . ' (22)

We call M the measurement performed by the instrument €. Conversely
given a measurement M on (¥,8), choose a partition {El" of Y and a
sequence of states p;, with tr[ Di] = 1. Then the formula

-]

E(E)p ='_2 tr[M(EnEi) D]oi (23)

defines an instrument on (%,8) Wh1ch performs the measurement M. Sup-
pose el €2 are instruments on (';/ 8ly, ('{/2 B2) with '2/1 Y complete sep-

arable metric spaces, then there is a umque instrument € , called the
composition of €“following & 1 on '{/ ';,z such that
1,2 2 1
e =
(E, xE,) 0 =€ (E)E (E)r (24)

1 2
for all Ele ®°, E2€ 8-, oe -7'5(3‘C). Then if Ml’ M, are the measurements
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performed by 81, 82, the p.o.m.
1, 1 = 2
My, (F) = & (%) M,(F), Fef (25)

is the measurement M3 conditioned by the measurement M. Moreover
the joint statistics of the two measurements are given by the probability
measure

, 2
b8y =tr[el fBre) [ exl0], Ackl x 8% (26)
1,2
For our purposes we need a more general concept. Namely a one
arameter family of instruments: a'quantum process'. Davies in [ 7]

and [10-12] developed such a concept, but for measurements with out-
comes forming a point process. As a generalization we introduce a
quantum measurement process. Let Y a comglete separable metric
space and 8 the Borel 0 -algebra of %Y. Let ¥~ be the set of all measur-
able functions from [0,t] into Y with the usual o - algebra. Givens, t=0
there is a one-one Borel map ¢ of Y° x ¥ " onto %St T defined by con-
catenation

wS(ry ,0S5T7<s

C(‘”s.wt)('r)=(ws°wt)(”={wt(r-s) sST<t+s (27)

. . . t t
A quantum measurement process is 2 family of instruments € on¥Y for
t2 0 such that

i) lim 5t('§/t) p=p, for ped ()
t= 0 s
ii) for Defs(}C)and s,t20

t s s+t (28)
eYFIET(E) p= & (c(BxF )P

for Fe 0 -algebra of 'Vt, Ee 0-algebra of '{ls

According to the desirable prope rties of the measurement outcome pro-
cess, additional assumptions on ';/t can be made which will give (28) more
structure (such as : continuous, square integrable, mark point processes).
In this generality we do not know as yet how to characterize the process.
Davies has studied extensively such processes when Y = {(y.,t.): 1=i=n,
n arbitrary] . If we let z denote the empty sample path, he énalyzed
processes with bounded interaction rate in the sense that

erf ety - (2h o] S Ketx[p]. (29)
Defining the two semigroups on 7, (3)
t .t )
T (o) =& (¥)P (30)
t
s (p)y=¢€({z} )0 (31)
and assuming that S; has the form
St(o)= B, B, ) (32)

where Bt a strongly continuous contraction semigroup on ¥, be showed
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that they are uniquely characterized by the infinitesimal generator Y of B
and a positive map valued measure on ¥, g (i.e. which satisfies (21) with
iii) replaced by tr[g (¥)p) = K tr [p]) and are related by:

tr[g (%) |b><b|] = - 2Re<¥Db,b> (33)

for all be 8 (Y). Arimportant role in the anlysis is played by the total
interaction rate of the process R defined by

¢r[Ro] = tr{g(¥)0] . (34)

Then it can be shown that if H(t) is the Hamiltonian of the quantum system
before interacting with measurements the state obeys the differential
equation

=)
2 - s [H(e), 0] + g ()0 (35)

-—21-{Ro+ PR}

see [7][13] for details. This has also been established for Boson fields
with photon counters as measurements in [12] [13], which are processes
with unbounded interaction rates.

4. QUANTUM FILTERING

We are now ready to formulate the general quantum filtering problem.
Let p(t, xt) be the state of the quantum system at timet, which depends on
the sample path ¥ of the signalup to time t. This'is obtained from sections
2 and 3 above assuming 2 ''modulating' interaction Hamiltonian linear in
x(t). More complicated dependence, including memory is clearly pos-
sible. Given a class C of quantum measurement processes we have avail-
able from each the classical process y(t) which denotes the measurement
out comes. The general filtering problem is: Choose the quantum
measurement process et from C and functionals f, measurable with re-

spect to @ (ys, s<t) suchthat
2(t) = £y, s=t) . ' (36)

is the minimum variance estimator of x(t).

Motivated by the work of Davies [13] we consider the question: Does
there exist a family of quanturn measurement processes in C, paramet-
rized by the sample paths xt of the signal process on yt '

ef(x', E)p (o) (37)
such that
o(t) = €5x%, 95 (o) ' (38)

satisfies an equation like (35)? In what sense? Once this is established
further progress can be made, since then the probability measure

u x5, E) = tr[ €8x, E)o (0)] (39)
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characterizes the statistics of the classical measurement process y(t)
given the classical signal process x(t). We now give two simple examples
to illustrate the approach.

The first is similar to that of Davies [13]. We consider an amplitude
rmodulated single mode laser with the class C consisting of photon count-
ers. The Hamiltonian before measurement is given by (10) (12). We let
X be the Boson Fock space for a single mode [7]1[8]. The coherent
states |d><cr| with |°f>an eigenvector of the annihilation operator a play
an important role in the sequel since they provide good models for lasers
above threshold and their linear span is dense in 7 (X). Here ¥ col-
lapses to a single point. If we start at a state |a'>s< @| a measurement of
a photon will reduce the number of photons by 1 and therefore the new
state will be a |a> < ala™. So the instrument is described by

Eo=apa =gop. (40)
From (34) R = a*a. So (35) gives

3p(t # *
g( ) . -iwfa a,p(t)] - gx(t)[a-2a ,p(t)]
t
1 . = : * * (41)
--2-[a ap(t)+ p(t)a a] + ap(t)a
If we work with classical states,i.e. p =J' la><eo lP(OI)dza (42)

we can translate (41) into a p.d.e. for P [8]. We obtain

3P(a,t) - )
3t -1(1)( - * - 3% Q)P(a’t)
d )
- gx(t) (W‘L ?—)P(Q,t)
o
1 — 9. 3 -1 -
-E[Zaa-a—aa-ga_;P(or.t)+aorP(a.t). (43)

or if @ = C+ i§ we have the Fokker-Planck equation

OP((,E,t) 3 3
T"w( —a_g-ga—§>P(C’§;t)

o \
N IS ) (44)
2( ag ag ’ ’ .

This is easily seen to correspond to the linear stochastic differential
equation: .

d ¢ (t) = w e .
= ! +ogx(t)| (45)

d § (t) -0 -3 € (t)

Again since (44) is a degenerate Fokker-Planck equation we see in the
Same fashion as in [ 8] that if we start at a coherent state
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p(0) =la0><cvo|

we will end at the coherent state
p(t) = le(t)> < o (t) (46)

where &(t) = §(t) + iE (t) is computed from (45) or from

da(t) _ <;iw -IE> a(t) + gx(t)

at (47)

&(0) = ao .
Now in this case the classical measurement process is a point process

Y (t). Let N denote the corresponding counting process [18]. The most
relevant quantity is the rate process

A Wl . -
t(Nt,wl,.. W ;x(s), s< t)

1 ¢ . (48)
= lim At Pr(Nt’ H_At=lth;wl;. .. ;WN (X))
At=0 t

where w_,...wy are the occurence times.- It can be seen through the
construction of © €t [13] that in this case

kt = tr[#p(t)] = tr [ald(t) >< a(t)]a*]

t .
ta@lP=lg [ e RIS g2
s=0

This has now been reduced to a classical problem which can be solved.
Notice that no measurement optimization was involved here.

In the second example we consider a2 monochromatic laser beamn
operating above threshold which carries a two dimensional real signal as
its in phase and quadrature amplitudes xl(t), xz(t). The received field's
state has a P-representation with 2
‘ o- xl(t)+ix2(t)(

=g e | J
Pla,t) = 7= exp - = (50)
[2]. We assume the signals are generated according to a linear sto-
chastic differential equation

d xl(t) ‘
It ) xl(t) dwl(t)

dxz(t) = A(t) [xz(t) dt + B(t) dwzt (51)
dt

where wl(t), wz(t) are Wiener processes. We conjecture that the optimal
quantum measurement process is one which performs the measurement

M(s) = f la><alda

A
for all times. Then the classical measurement process can be repre-
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sented by

y(t) = x(t) + v(t) _ (52)
where v(t) is a white noise process with mean zero and variance r;‘ 1 .
(51) and (52) define a classical filtering problem.
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