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Abstract

We analyze here the problem of estimating
a member of a vector discrete time process
.utilizing past and present quantum mechanical
‘measurements. The minimum variance linear
estimator based on optimal present measure-
ment selection combined with optimal linear
processing of past measurements is studied. A
necessary condition for the optimal extended
measurement and the optimal coefficient matri-
ces is given which leads to the generation of
several more specialized necessary conditions.
Certain operator equations related to these
necessary conditions are studied and it is found
that the conditions are necessary and sufficient
in the commutative case. Finally when the
average quantum measurement is linear in the
random signal and the signal process is pair
wise Gaussian, the filter separates: the optimal
measurement can be taken the same as the
optimal measurement with no regard to past
data and the past and present data are processed
‘elassically. The results are illustrated by
considering the estimator of the amplitude and
phase of a laser received in a single-mode ca-
vity along with thermal noise; when the random
signal sequence satisfies a linear recursion, the
estimate can be computed recursively.

Introduction

Detection and estimation problems have
recently been studied [1, 2, 3] employing mea-
surement models correctly incorporating quan-
‘tum mechanics. Such work applies directly,
e.g., to establishing fundamental limitations in
optical communication systems [4]. More
recently the analogue of filtering a random
fsigna.l sequence has been considered [5,6,13,14];
'ihere the problem of estimating Xk' a member
Eof a "signal' sequence {XO, )&1, cees Xk' .. )} of
‘vector random variables is considered; the pa-
irameter k is conveniently regarded as discrete
%time. To be chosen is the ''best! measurement
iat time k and the '"best" linear combination of .
lpresent and past measurements at times k' =
10,1,...,k-1. The random sequence so obtained,
hsjg.ﬁned,p:e;,is ely below but is _simply. de=
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'scribed in the optical communication setting as
follows.

At time k a laser modulated in some fash-
ion by Xk is received in a cavity containing
otherwise only an electromagnetic field due to
thermal noise: the total field is in a state de-
scribedby a density operator ¢ (Xk) that depends
on X. (but not otherwise onk). If X is a sca-
lar, kthe measurement (whose outcome is
denoted v, ) at time k will correspond to a self-
adjoint operator V, [7]; if X, is a vector the
essential quantum problem of simultaneous
measurement arises and a more general concept
of measurement [1, 2,8, 9] must be resorted to.

By "best" is meant "minimum mean-
square error'; the implied average is over the
("classical') distributions of {X, } and the

distributions due to quantum mechanical mea-
surement.

An ultimate objective would include effi-
cient computation; e.g., suppose that Xk is a
“dynamical state' generated by the recursive
equation

X1 - A%ty
)

where {Cpk} is a sequence of matrices and {Wk’
is a sequence of independent, Gaussian random

.vectors, with zero mean and covariance matrix
Q. : solutions in a form that compute recursively
‘the best estimate and measurement at time k

would be highly desirable. In a specific situa-

‘tion below this is achieved.

1. Extended quantum measurements

Following Holevo [1,2] let X be a Hilbert
space and A& the algebra of all bounded oper-
ators on X. An extended (quantum) state is the

linear functional p: &£ - R' such that, ¥ Ace &,
5(A)=Tr{p A } and is positive and normed

(f()=1); here p is the d.o. corresponding to the

;state f) An extended measurement M:B -+ &

N

'_(BN the Borel o0 -algebra of R ) is such that:

i
1

i
i

N

(i) ¥Be B ', M(B)=20;




|
'that is, an extended measurement is a positive ;
|

ioperator valued measure. Given an extended
‘state, an extended measurerﬁent 1ndu&es a
‘probability measure 4 on B : ¥BeB , p(B) = ‘
p[M(B)]=TrlpoM(B)}. :

(ii) ¥ partition {Bi} of IRN,BieBN, EM(Bi)=I;
i

As pointed out by Holevo [2], this extension
is justified in view of Nalmark's theorem: 3
‘a Hilbert space '\-Ce a state p on A& (H o) and a
simple measurement My, in K®3‘(‘ such that,
¥BeB = and ¥¢ on KL (),

PIM (B)] = (p® b )[ M (B)]. |

Now let X be a vector r.v. on (Q,?‘, P) on
which the extended state 6 depends: then u
becom?\? a conditional probability measure and,
V¥ BeB

u(B|X)= p[M(B)X] = Trip (X)M(B)}. (1)

Then the unconditional measure would be

u(B)= [ TrlpxM(B)] F o (aX).

W 11 11 tri K
e shall call the triple { o pe,MV} a

realization of the measurement represented by
the p.o.m. M. The physical motivation for
this is well known; see [ 2] [9].

We consider now a sequence of measure-
ments represented by the p.o.m. M The
outcome of each measurement whlch is made at
time i, will be an N-vector v(i). Considering
the d.o. p(X(0))B...@p(X(k)) on the Hilbert
space X QK ®,,.® we have that the proba-
bility measure characterizing the outcome of
the first k +1 measuring experiments is given
by '
Q[BO)x B x weex BO)I=ovs [uoety [ BN K] -

FX(O), X () (dX(0), ...dX (k)]
where uk,[B(k')lX(k')] is given by (1) and Bfi)e
BN , i=0,...k. This is due to the conditional
(on the signal) independence of the measurement
outcomes [ 6,13,14]. The (unconditional) density

function is 3
!

i H
| F(a(0), w2l [ooe Tr o R0 (=02 N]

(dX(0) . . . dX (i) (2)

5 Fx0) - x®
[where by (-=,a(k')] A (-=,a (k V% oo x (=, aN(k )]

2. Formulation of the filtering problem
and ex15tence of the optlmal l1near f1lte r.
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‘ In this paper our objective is to find a
o

[

|

and NXN matrices Ck'(k) k'=0,1,.
s0 tha'{ if we let
k
‘ X(k) =z C  (K)v(k") (3)
1 k'=0

‘the mean square error

MsE = £l [x09-%00l | N} (4)
.is minimized. The 1nterpretation of (3) (gen-
eralizing [13],{14])is that at each time the
optimal estimator is computed as a linear func-
tion of current and past measurement outcomes
v(k'),k'=0,...k. The average in (4) is over
‘the distribution (2). Due to space limitations we
will describe the main results here with only a
sketch of the proofs. A detailed description of
the results will be given in [16]. In the sequel
we will use the notion of the integral and trace-
integral with respect to a positive operator
valued measure developed by Holevo [2, pp.
354-361]. Following [ 2] we let 77 h denote the
set of all trace-class (finite trace) selfadjoint
(hermitean) operators on a Hilbert space X.
Then we shall denote by

<F,X> (5)

A
N
the trace integral over AR of the ,?“h -

valued function F with respect to the p.o.m. X.
In all cases described in this paper F will be
of the form
%
Fu)= £ K.g.(u) (6)
i=} 1

where K. € 2. and g. are continuous real valued

i i
functions. Then [2, p. 356], for such F the
trace integral always exists and

<F,X>,= zijAgi(u)TrKiX(du) 7)

After some calculations {which we omit) the
ZM S E can be written as

t

M S E =E{(X(k)- z: C.  {K)v(k")) (X(k) -

=0 k'
-z ck.(k)v<k'»}
k'=0
=E JUIxm0-C 0] [X
| t k-1

- - 2[X(k)-C (k)v(k)] 25 S (k)E[v(l)lX(ﬂ] }-

-C [K)v(k)] -

| -Trp(X(k))Mk(dv(k)) + ¢ .t

| v v C,(k)

, [{0) .(0) .0

| k)]E : : oy (8)
| v(k-1)2* v(k-1) Ck-l(k ﬁ

iwhere tr denotes the trace of matrices !
i
L(whxle Tr. denoctes the trace of operators). Let.

Q +tr[C(k)...C

eiger. e

e
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{:15 define the followmg operators

et

A (9= [% 00" X () (X () F

x 1 9% ) o

| |
(9= [o(x 10 Py (@X() 10)

? 6i(k)=IXi(k)p(X(k))F (@X(K)izl, ... N (11)

X(k)

By 8(k) we understand the N-vector of operators
with components &(k). Consider also (in obvious
notation) the N-vector of operators

¢, 0= [E[VOIXE P ENF

and the NXN matrix of operators

(dX(k)) (12)

F |
Tk, 1)= [XEE[ v X(H)] p (XENF  (dX(K).(13)

X(k)
Then as shown in [16] lettm% Ck [C (k
(k)] and v(0,k)=[v(0)", ... v(k- 1) £
we have.

MSE & J(C(x), M )= < ?c(k),Mk> Nt

R
+ trC(k)Ev(O,k)v(O,k)tC( )t (14)

where g'c(k)(v(k))ﬂ\(k)-ZVl(( )1C (k)é(k) +

+v('c, (0'e, fvion (+3Z w15, (e 10 €, 1) -
k-1

-2% txC (1) T, 1) (15)
.

In (15) we use the notation that vectors and
matrices over R and vectors and matrices of
operators are multiplied in a formal fashion.

It is easily seen [16] that 2' k) (v(k)) is of the
type described in (6).

Now let JT6 (k) be the setofl\fx o.m. on'!'Ck

which is convex [2]. Let rY denote the
set of NxN matrices. Then our problem can be
formulated as follows:
. ” NxN .
Find Ci(k)e R , i=0 .k, and Mkem (k)
to minimize (14). Generahzmg the work of
Holevo we have then:

~

Theorem 1l: There exist p.o.m. and matri-
(k), i=0,...k , wh1ch minimize J(C(k),

M'k) over IRN Nx...x Nx N x I (k).

-{The proof is samewhat lengthy and is given in {16].

3. Necessary Conditions g

We can think of J1t (k) as embedded in the

|vector space of operator measures (not positive).

i Then the minimization problem of the previous
.section can be solved by a standard application
lof Gateaux differentials, see [11, p. 178]: _
n |
&, (k) and My |

; , : B e ey
‘be the optimal p.o.m. at time k and the opti-
imal processmg coefficient matrlces Then !

Ni(k) > ., ¥XeM(k
1)<3‘C(k) IR2<? )IR eM(k)
1
E(v(0>v(0)) E(v(ow(k)t) <“:0<k)t ] Egv(O)X&)t)
EGH) vio)) .. EGRTW) & (e E({ X))

Proof: We only sketch the proof. The details
are in [16]. We compute the Gateaux differen-
tial of J( <) at é M and let us denote it by
f).’,r(C(k),Mk A, X). Then from [11 p- 178]
‘must necessarily have 6J(C(k) Mk A- C(k },X - Mk)
20 for all k+1 tuples of Nx N matrices A and
all p.o.m. X. W"1tt1ng down this condition and
taking first A= C( } and then X—Mk result in i), ii).
Two important observations
should be emphasized: a) notice that ii) is just
‘the normal equations for the minimum variance
linear estimate of X(k) based on the random
variables v(0),..v(k-1), ¢(k). The optimum
measurement M_lijenters through the statistics of
¥(k). b)Notic at i) states that minimizes
the linear functional < &’a

C(k) X>IRN (where

é(k) are the optimal matrices) over % (k). This

problem has been investigated by Holevo and
thus we can utilize his results [2, p. 368-371].

Notice that without loss of generality we can

assume that ék(k)=1N (identity on IRN).

We derive here new necessary conditions
for the problem stated in i) of Theorem 2,
which include those of Holevo [ 2, p.368]. Re-
call that since & a is of the type described
in (6) above its trace integral exists with
respect to any p.o.m. X. Suppose in addition
that & & is integrable with respect to M

C(k) k

and let

Then <‘?‘é(k) IR NZ< z&(k ]RN for any
X in M6 (k) implies
, N
I Tr( Q”C(k) be g X(@v) 205 ¥AeBT.  (7)
V) i}
Now T -ne (k))M @) =0 (18)

N
and I(;Z‘C(k) Aa(k))Mk(dv) =0, VAeB : (19)

for if J A(-:BN such that I éu)() Ac (k))Mk(dv) <0

;Thenf'rr(;‘c((k) c(k))Mk(dv) <0 which is

ia contradiction to (17). But then (18) and (19)
limply that

_The_q_;"elimr.hz_:_ Let éo(k), él(k), e
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(Z'A(v) b8 ))r&k(dv) —o VAGBN (20
i
;We have thus:
‘“Theorem 3: Let} ‘ka and C (k) C (k), ék l(k) be

"the optimal p.o.m. and the opt1ma1 processing
coefficient matrices at time k. Then if 2' & (k)
. ~ An J‘ ,\(V) ~
is Mk integrable and C(k) Tc(k)Mk(dv)
b [(F2 8, W dw)  =0;¥ AeBN |
i) _[A(?C(k) o Md(® =0V Ac

ii) the normal equations of Theorem 2 are
satisfied.

4. Average observation linear in the signal

To obtain more detailed results about the
structure of the optimal filter we assume that
the signal process is pair wise Gaussian. Thus
we obtain a generalization in the multiparameter
case of some of the results of [14]. Following
Holevo [ 2, p. 356] we shall consider only p.o.m.
that have a base. This class is very important
for applications (cf. P- representations). A
p.o.m. X is a p.o.m. measure with base y if
there exist a positive 1\?erator valued function P

such that for every

and a measure d on B
BE:BN we have

x(8) = | Pluia (21)

where the integral is the Bochner £ -integral.
For such p.o.m. our necessary condition be-
comes

(Ta(k) g POV 20 weae.  (22)

Clearly from the form of TC(k , see (Eq. 15),

Ie(k) is differentiable as an operator valued
function. Let us assume that P is continuous,
and then from (22) we have ;
P(u)(Z“C(k)u) Z” fVIPEI=0 1.ae. (23)
Dividing by u-v and taking the limit as u-v = 0
we recapture the necessary condition originally
due to Holevo [2, Th. 9.2]:

? (k)

Y
‘We want now to compare the optimal filter that
iutilizes past measurements with the one that
'utilizes only present measurements. Let Z
\be the optimal measurements for the latter. A11
p.o m. considered are p.o.m. with a base and

with continuous densities (i.e. P). Then from l
L(24L(1“1 we have that M _satisfies i

'P(u) P(v)= 0; £=1,...N, t.a.e.  (24)

A

i-1 N
P(u)(é(l) un (i)- ZOCj(i)Q(i,j))Pi(v)=0',ui.a.e. (zg)

Notice that the optimal measurements for the
filter without post processing satisfy (set
Cj(i)=0 in (25) ) the necessary condition:

.él(z)(é(i)-zﬂ(i))fll(z')=0;via.e. (26)
‘where Zi= Jﬁl(z) \)i(dz). (27)

‘Let us denote by z(i) the outcomes of the mea-
‘surement represented by Z(i). Suppose that

there exists matrices I (i) such that E[ z(i) \X(1)]—

l1"(1)}((1). Certainly this is so whenever{z(i), X(i))
\are jointly Gaussian. On the other hand since

X(k'),X( ) are jointly Gaussian, there ex1sts
matrices A(k’, k) such that E[ X (k") X(k
Ak’, k)X(k).

Clearly 7 satisfies also the necessary
condition (25) ?or the optimal measurement of
the filter with post processing. Now define a
new measure M1 via the equation

N | N
M, (A)=Z (87 °(A)), YAEB (28)

where B (X)= B(L)X and B(1)=1N-60(1)1‘(0)A(0,1).

Without loss of generality (as will be explained
later) we can assume that B(l) is nonsingular.
Then from (26) we have

£ (2)(B1)® (1)-B1)z n(1)E (21205 v 2. e. (29)

‘But from (12) [(1,0)= E [E[v (0)|X(0)]o(X(1)]=

= 1“(O)EX[E[X(O)\X(l)] 0 (X(1))]=T(0)A(0,1)8(1) (30)

o (29) rea.ds
El(z)(5(1 1)C (1, 0)-B(1)zn(l ))TEI( I)=0;\)1a.e. (31)

A -1
Lettin%u=B(1)z, pl(u)=$1(B(1)u) and i, (du) =

"VI(B(I)- du) we see that (31) reduces to

% Pl(u)(é(l)-Co(l
‘and therefore the p.o.m. M1 defined in (28) has
a base and satisfies the necessary condition for
the optimal measurements of the filter with
_postprocessing. The physical meaning of the
yrelatlon between 2. and M, is illustrated below:

)T, 0)-un (DR (vV=0; uja.e.  (32)

1 1

5 r Realization ;;' R - T T T _‘ 1

) @ ain matvix :
K Redlization| eutcomes cultc-omes
' £ é —3> R b—>—o
N R z(1) V1)

! |
N |

e o e em e e e — - — —

Fig. 1: Relation between the p.o.m_ Z _and M1
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iRepeating the same process we have:

iTheorem 4: Consider a sequence of measure-
‘ments 7. that satisfy the necessary conditions
.(26), for1 the optimal filter without postproces- ’
-smg Suppose the signal process is pairwise i
Gaussian and that the average observation from'
the measurement 7. is linear in the signal (i.e.

E{z(i) lX ()] r(l)X(l) for some matrices ['(i)).

Let the matrices B(k) be defined recursively v1a

k-1
B(k)=IN-k'zj.=0Ck,(k) B (k)T (k')A (K’ k) B(O)=L, (33)
and define the sequence of p.o.m.
~ ‘1
M;(A)=2,(5 (A) VAeB, (34)

where B(X)=B(i)X. Then the p.o.m. M, have
base and satisfy the necessary conditions (25)
for the optimal measurements of the filter with
postprocessing.

Proof: The only thing we need to complete the
proof is the inductive step. Assume that the
theorem is true at time k-1. Then for j=0,... k-1
we have

L= EJE[v(IX ) oK)= BGIEL= ()X (G )p (X (k)] =

=B(HI(GIAGK) (k) (35)

From the necessary condition for Z, we get

k

&‘L(z)(am6(k)-B<k>zn(k>rfk<z')=o; Va.e (36)

k

Therefore letting B, (u)=% (B(k) "u) and {4 (du) =
Yk(B(k) du) we havke 3:1( g
k-1

Pk(u)(é(k)-kzoék,( C (i, K -un(k) B (v)=0; by 2. (37)

and therefore the theorem holds at time k.

In view of Theorem 4 and the discussion
that preceded it,the optimal estimator takes the
form

k-1.
(k) v(k)+Z C ,(k)v(k) B(k)z(k)+2 Ck(k)B(k)z(k)
k=0 k=0 (38)

where the vector random variables {z(k’)} result
‘from the measurements represented by the
p.o.m.'s [Zk} The normal equations of
Theorem (2) then become

-B(O)E[z(O)z(O)ﬁ B(O) B(O)E[z(O)z(k)]B(k Cﬂ<5

BOJE[z(0/]80) .. . BIOE[Mz( 1B ‘L‘k)

I

t N
B El2(0)X(k) ]
=\ ¢ (39
BHE[K)X(k) |

proe e
Without loss of generality we can assume B(k )

non51ngular, for if for anyk B(k') is singular,
B(k) may be restricted to the complement of its
,null space without effecting either X(k) or the
normal equations (39). Hence the normal
jequations may be written

:E[.z(O)z(Oﬂ...E[z(O)z(kS] [c ()8 0)]

.E[z(k)z(k)t] [(“:k'_l(k)}s(k-l)]t

E[2(0)X(k)t]
- | (40)

E[z()X(k)']

E[n(00)2(0)] . -

Comparing equations (38) and (40) we have:

Theorem 5: Let the assumptions of Theorem 4
hold. Then the measurements z(kNk'=0,1,...k,
represented from the p.o.m. 's {Zk,,k'=0, 1,...k}

area sufficient statistic for the L. M. V.E. of X(k).

Proof: The only thing needed to complete the
proof is certain sufficiency results that will be
given in [16], and which we omit from here due
to space limitations.

Notice that Theorem 5 establishes the
"separation' of the filter (c.f. [14]).

5. Recursive filtering and examples

The advantage gained with the result
‘described in Theorem 5 of the previous section
is that whenever the signal process X(k) allows
a recursive solution for (40), we will obtain a
truly recursive filter. The measurements

should be thought of as intrinsic to the
quantum field at hand and can be found apr1or1
Another advantage is that this "separation
‘produces a considerable reduction on the number
of measuring devices needed. Whenever X(k)
satisfies a recursion of the type

X (kt+1)= ¢ (k)X (k) W(k) (41)

‘where ¢ (k) is a sequence of NxN matrices and
W(k) is a sequence of independent, zero mean
Gaussian random vectors with covariance ma-
trices Q(k) the processing coefficient matrices
jcan be computed recursively. Kalman Bucy
‘f11termg [11] may be directly used on the obser-
ivations to obtain a recursive filtering: such an
‘example follows.

Example: Suppose that the two dimensional
dynamical state X(k) is transmitted as the in-
.phase X (k) and quadrature X (k) amplitudes of
la laser (assumed monochromat1c) and received,

along with thermal noise, in a single mode cavity
on which an optimal extended measurement is
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‘to be made. The d.o. in the coherent state,
or P-, representation is then [1]

| 1 ¢ -l oKX ] %/n
p(X (k)= A

0 i
!Assume for simplicity that X (k) and X (k) are

Ola>< of 4%«

independent, zero mean Gaus sian random vari-
ables with identical variances A(k). The solu-
tion to (26) are known to be [8,9,12] the p.o.m,
Z, ,where

’ e o
T k)= [Re a B aa)=Dlk) —5— T f10= [imaZ, (do) =
a -at
= D) S D(k);%i;—‘(lk—);—l, (42)
0

{
which has a base with continuous density. The
outcome of this measurement, assuming fixed
X(k),are independent Gaussian random variables
with means X, (k) and X, (k), resp. and variances
(ng/2+1/2) and is realized by heterodyning[12].
Also [1,8, 9] the extended measurement is
realized by simultaneously measurlng the com-
mutmg operators [(ak+ at)/2- (@ tag )/2] and
[(ak-ak)/21 t (2gk- aek)/Zl] on the H11bert
space 3‘%{8’3{ for the receiver cavity adjoined
by an harmomc oscillator in the ground state
lOe >< Oel . Then Theorem 5 applies here with
the 2x2 matrix ['(k)=D(k)I, and the outcome of
the measurement are proportional to the out-
come Y(k) of the extended measurement rep-

+ +
+ - . .
resented by ((ak ak)/Z, (ak ak)/Zl) that is
structurally independent of k: only one type of
device is required - an important practical
simplification. But then the estimator R (k)

b
ecomes k-1

X (k)= B(k)D(k)Y(kag Oc“k,(k)BmD(k’)m’) (43)

‘where the coefficient matrices [é YB(0)D(0),

.. »B(k)D(k)] satisfy the normal equations for

the L. M.V.E of X(k) based on Y(0)... Y(k).
However [12] the outcomes Y(K) are statistically
equivalent to the following fictitious observation
process :

Y (k)=X (KM U (X)), ¥=0,1,...k (44)
where U(k') is a white, zero mean Gaussian
Irandom vector sequence, with covariance ma-
tr1x (n{2+1/2)I,. If farther the sequence X(k')
‘satisfies (41) then the optimal estimator is
given through the well known Kalman Bucy
;filtering equations for the classical problem
(41), (44); |
}X(k) ¢ (k- 1)X(k-1 HK(k) [Y(k)1 <p(k-1{X(k -1)] (45)
where K(k)=P(k)[P{k}+ (‘z‘+*z)12)

Pk)= ¢ k-1)(P(k-1)-K(k-1)Pk-1 Nok-1) +Q(k 1)} (46)

i

Yo, —— s X®

rveceived -
fletd |optical
o~ | hetecodyning]
NN
NS

Flgure 2: Illustrating the form of the filter in
this example.

References

1. A.S. Holevo, '"Statistical Problems in Quan-
tum Physics', Proceedings of 1972 Soviet-
Japanese Symposium on Probability.

2. A.S. Holevo, "Statistical Decision Theory for
Quantum Systems ", Journal of Multivariate
Analysis, Vol. 3, pp. 337-394, 1973.

3, C.W. Helstrom, '"Detection Theory and Quan-
tum Mechanics ', Information & Control,
Vol.10, pp. 254-291, March 1967.

4, C.W. Helstrom, J.W. Liu and J. P. Gordon,
YQuantum Mechanical Communication Theory',
Proceedings of the IEEE, Vol. 58, pp. 1578-
1598, October 1970,

5. Y.H. Park, '"Quantum Linear Recursive
Minimum Mean Square-Error Estimation’,
Ph.D. Thesis, Univ. of Md., August 1974.

6. J.S. Baras, R.O. Harger and A. Ephremides,
"Recursive Filtering of Operator-valued
Proc esses in Quantum Estimation'!, presented
at 1974 Intern'l. Sympos ium on Information
Theory, South Bend, Indiana, October 1974.

7. E. Prugovecki, Quantum Mechanics in Hilbert
Space. New York: Academic Press, 1971.

8., H.P. Yuen and M. Lax, ''Multiple~-Parameter
Quantum Estimation and Measurement of Non-
selfadjoint Observables', IEEE Trans. on
Info. Th., Vol. IT-19, pp.740-749, Nov. 1973.

‘9, C.W. Helstrom and R.S. Kennedy, '"Non-

' commuting Observables in Quantum Detection
and Estimation Theory', IEEE Trans. on
Info. Th., Vol. IT-20, pp. 16-24, Jan. 1974.

10. J. M. Jauch, Foundations of Quantum Mechan-
ics. Reading: Addison-Wesley, 1968.

11. D.G. Luenberger, Optimization by Vector
:  Space Methods. New York:John Wiley & Sons,
1969.

12. S.D. Personick, ""Application of Quantum

‘ Estimation Theory to Analog Communication
Over Quantum Channels', IEEE Trans. on
Info. Th., Vol. IT-17, pp. 240-246, May 1971,

Random Signals Ba.sed on Quantum Mechan-

i
%13. J.S. Baras and Y.H, Park, "Estimation of
! ical Measurements', Proceedings of Eighth_

183




15,

16.

17.

Asilomar Conference on Circuits, Systems,’
and Computers, December, 1974, pp.533-533

J.S. Baras, R.O. Harger and Y.H. Park, |
"Quantum Mechanical Linear Filtering of
Random Signal Sequences', submitted for
publication, December 1974, i

S.K. Berberian, Notes on Spectral Theory.
New York: D, Van Nostrand, 1966.

J.S. Baras and R.O. Harger, "Quantum
Mechanical Linear Filtering of Vector
Signal Processes', in preparation.

E. Hille and R.S. Phillips, Functional
Analysis and Semi-groups, A.M.S.
Colloquium Publication, 1957.

184




