Efficient Algorithms For Control System Design Using Computer Algebra

by

Robert Lawrence Munach

Paper submitted to the Department of Mechanical Engineering
Graduate School in partial fulfillment of the
requirements for the degree of
Master of Science
1989

Advisor: Professor John S. Baras
Department of Electrical Engineering
Director, Systems Research Center

Introduction

The theory of polynomial matrices plays a key role in the design of multi-input multi-
output control and communication systems. Examples include coprime factorizations of
transfer function matrices, canonical realizations obtained from matrix fraction descrip-
tions, design of feedback compensators and convolutional coders. Typically, such prob-
lems abstract in a natural way to the need to solve systems of Diophantine Equations
(e.g., the so-called Bezout Equation). These and other problems involving polynomial
matrices require efficient polynomial matrix triangularization procedures, a result which
is not surprising given the importance of matrix triangularization techniques in numeri-
cal linear algebra. There, matrices with entries from a field can be triangularized using
Gaussian elimination. However, polynomial matrices have entries from a Euclidean ring,
an algebraic object for which Gaussian elimination is not defined. In a Euclidean ring,
triangularization is accomplished instead by Euclidean elimination. Unfortunately, the
numerical stability and sensitivity issues of Euclidean elimination are not well understood,
and a reliable numerical algorithm for this procedure does not exist at present.

This paper presents new algorithms which entirely circumvent these numerical sensi-
tivity issues through the use of exact, symbolic methods in computer algebra. The use of
such error-free algorithms guarantees that all calculations are exact and therefore accurate
to within the precision of the model data — the best that can be hoped. The emphasis will
be placed on efficient algorithms to compute ezact Hermite forms of polynomial matrices
because this procedure is central to a large variety of algorithms important in the design of
control and communication systems. Moreover, the triangular Hermite form is defined for
any matrix with entries from a principal ideal ring. Such matrices arise in many practical
problems in communications and control, for instance, the analysis of quantization effects
in linear systems and the design of convolutional coders. Due to their symbolic nature,
the algorithms apply equally well to such problems since the particular ring involved in a
particular problem can be itself considered as program input data.

We have implemented algorithms to compute the exact Hermite forms of polynomial
matrices in the MACSYMA and Mathematica computer algebra languages. A suite of

auxiliary programs which we have implemented will be discussed which call on these tri-

1

angularization procedures in order to perform more high-level tasks arising in the control

system design process.

Facts And Terminology of Polynomials and Polynomial Matrices

Denote by Q[s] the ring of polynomials in the indeterminant ‘s’ with coefficients drawn
from the field of rational numbers, Q. Z[s| is the subring of Q[s] formed when the poly-
nomial coefficients are restricted to lie in Z, the ring of integers.

The leading coefficient of a polynomial is the nonzero coefficient of its highest degree
term. By convention, the leading coefficient of the zero polynomial is defined to be one,
and its degree is taken to be —oo. If the leading coefficient of a polynomial is one, then
the polynomial is said to be monic. If a(s) € Q[s] is a polynomial of degree zero, then
a(s) is a unit of QJs] ; i.e., a—(l;)- € Q[s]. A polynomial p(s) € Z[s] is called primitive if its
coeflicients are relatively prime in Z, i.e., if the greatest common divisor of its coefficients
is a unit of Z, namely £1. For any p(s) € Z [sj,» there exists a non-zero scalar ¢ € Z, unique
up to a unit in Z, and a primative polynomial pp(s) € Z[s], such that p(s) = c pp(s); c is
called the content of p(s) and pp(s) is its primative. A collection of polynomials in Z[s]
having contents which are relatively prime is said to be relatively primitive.

A polynomial p(s) divides a polynomial ¢(s), p(s)|q(s), if there exists c(s) such that
p(s) c(s) = q(s). A common divisor, CD, ¢(s) of {pi(s) : i = 1,...,n} is a polynomial such
that c(s)|{pi(s)}. A greatest common divisor, GCD, g(s) of {p;(s)} is a CD of {p:(s)}
such that c(s)|g(s) for any other CD,¢(s), of {pi(s)}.

A common multiple, CM, c(s) of {pi(s)} is a polynomial such that {p;(s)}|c(s). A
least common multiple, LCM, I(s) of {pi(s)} is a GM of {pi(s)} such that I(s)|c(s) for
any other CM, c(s), of {pi(s)}.

The module of m X n matrices with entries from Q[s] is denoted by M(Q[s]). Similarly,
M (Z][s]) is the subset of M(Q[s]) when the entries are resticted to lie in Z[s]. P(s) €
M(Qls]) is called a polynomial matriz. Letting R[s] denote either Z[s] or Q[s] or, in
fact, any commutative polynomial ring, P(s) € M(R|s]) is said to be nonsingular if P(s)
is square and det P(s) is not identically zero. A nomnsingular polynomial matrix, W{(s) €

M(R|s]) is unimodular if its determinant is a unit of R[s] . In this case, therefore, W(s)™! =

2

Adj W (s)/ det W(s) is itself a polynomial matrix and therefore a unit of M(R[s]).

P(s) € M(Z[s]) is said to be row (left) primitive, if the polynomial entries in cach
row are relatively primitive. For any A(s) € M(Z[s]), there exists a diagonal matrix
Ly € M(Z) and a row primitive matrix P4(s) € M(Z][s]) such that A(s) = L Pa(s).
This is known as a left conteht-primitive factorization of A(s). The diagonal elements of
L 4 are called the row contents of the respective rows of A(s). Similar statements can be
made about column (right) primitive matrices.

Polynomial vectors are linearly dependent if they can be made proportional to each
other with scalars from the field of rational fractions a(s)/b(s) (i.e., p1(s) and p2(s) are
linearly dependent if p;(s) — a(s)/b(s) pa(s) = 0). This can be simplified by writing
b(s) p1(s) — a(s) p2(s) = 0 leading to the fact that polynomial vectors are dependent
over the field of rational functions if they can be made dependent using only polynomial
coefficients. With this in mind, the elementary row and column operations for polynomial
matrices over Q[s] will have the form.)

1. multiplication of a row (column) by a unit of Q[s], i.e., any nonzero rational.

2. add to any row (column) a polynomial multiple of any other row (column) where

the polynomial p(s) € QJs]

3. interchange any two rows (columns)
Performing any of the above operations on an identity matrix results in an elementary
matrix F(s) over Q[s]. Clearly, each such E(s) is unimodular and its inverse is also -an
elementary matrix. In fact, every unimodular matrix is a product of elementary matrices.
Two polynomial matrices A(s) and B(s) are said to be row equivalent if each can be
obtained from the other using a finite sequence of elementary row operations. In other
words, they are related by left multiplication by a unimodular matrix U(s) such that
B(s) = U(s) A(s) or A(s) =U~1(s) B(s).

Any m x n polynomial matrix A(s) € M(Q[s]) of rank r > 1 is row cquivalent
to an upper triangular (or trapezoidal, if m # n) form. Thercfore, it can be reduced
by a sequence of elementary row operations to an upper triangular (trapezoidal) matrix
T(s) € M(Q[s]). Said another way, there exists a unimodular matrix U(s) such that

U(s) A(s) = T(s) with T(s) € M(Q([s]) upper triangular. If T(s) € M(Q[s]) satisfics the

3

following conditions, it is said to be in its unique column Hermite form.

1. If m > r then the last m — r rows are identically zcro

2. Each diagonal entry is monic

3. Each diagonal entry has degree greater than the entrics above it. »
The pseudo-column Hermite form for A(s) € M(Q[s]) can be defined in terms of its
Hermite form, H4(s), by multiplying each row of H4(s) with the smallest positive integer
such that the matrix H';(s) so obtained satisfies H);(s) € M(Z]s]). Conversely, Ha(s) can
be obtained from H)(s) by dividing each row of H/;(s) by the leading coefficient of the
polynomial on the diagonal of the respective row. If the row is identically zero, do nothing.

The notion of pseudo-column Hermite form gives a canonic triangular form in M(Z[s]) for

each matrix in M(Q/s]).

Triangularizing Polynomial Matrices

The upper triangularization of matrices with entries from a field using a sequence of
non-singular elementary row operations plays a key role in the theory of vector spaces.
Likewise, the upper triangularization of matrices with entries from a ring using a sequence
of unimodular elementary row operations plays a key role in the theory of matrix modules.

The transformation to an upper triangular (trapezoidal) form using elementary opera-
tions can be performed on any matrix with entries from a Euclidean ring of which M(Q(s])
is one exaﬁple. The key feature that Euclidean rings enjoy is the Euclidean division prop-
erty. Given two polynomials a(s),b(s) € Q[s], where degb(s) > dega(s), there exist two
polynomials, the quotient, g(s) and the remainder, 7(s), such that b(s) = q(s) a(s) + r(s)
where r(s) = 0 or deg7(s) < dega(s). The fact that the inequality on the degrees is strict
allows one to introduce a zero into a polynomial matrix using elementary operations. As
an example, consider an attempt to introduce a zero into the (2,1) position of a 2 x 2
polynomial matrix. Suppose one has found ¢(s) and r(s) such that b(s) = q(s) a(s) +(s)

and then computes,

(ca0 1) G 80) = () a0 200e0)

using an obviously unimodular pre-multiplication. By interchanging the rows, the same
procedure can now be repeated on the resulting matrix and iterated, cach step reducing
the degree of the (2,1) entry in view of the strict degree inequality. Clearly, the process
cannot continue indefinitely without yielding a constant. If the constant is not zero, one
final row excha;nge and the proper elementary row operation will introduce a zero into the
(2,1) position. It is not difficult to see that resulting polynomial in the (1,1) position will
be the GCD of the original polynomials a(s) and b(s). This process is called Euclidean

elimination by analogy with Gaussian elimination.

Integer vs Rational Arithmetic

The above example also serves to illustrate that rational arithmetic is costly. For

instance, to calculate the coefficients of polynomials of the form

d(s) —q(s) c(s) ¢ d,q € Qs]

one encounters the generic computation a + 8 v «a,8,7 € Q. If these are expressed as

. . -] B ¥
ratios of integers a = %—;—, B = %, v = %, all reduced to lowest terms, then

N2 DB DY + NP NY D«
De DB D7

a+yé=

This computation requires six integer multiplications, one integer addition and the calcu-
lation of a GCD. Although there are more efficient methods (see Knuth V2 pg. 313), it
remains a fact that rational arithmetic is computationally expensive, due in large part to
the need for GCD calculations. On the other hand, if-it can be arranged so that «, § and
v are all integers, then the same computation obviously requires only two integer mul-
tiplications, one integer addition and no GCD calculation. Clearly, by multiplying each
row of any A(s) € M(Q|s]) by a large enough integer, the denominators of every coeffi-
cient of every entry of A(s) can be cancelled and such a diagonal operation is certainly
unimodular in M(Q[s]). Because this involves a fixed overhead, assume, for convenicnce,
that A(s) € M(Z][s]). This still creates difficulties because Z[s] is not a Euclidcan ring,.

For instance, it is easy to see that the remainder of two polynomials € Q[s] with integer

5

coefficients has, in general, rational coeflicients; consider the remainder of 2s after division
by 3s — 1. In other words, Euclidean division is not defined for Z[s]. However, Z[s] is
an instance of a unique factorization domain (UFD) and there exists a procedure called
Pseudo-division which is defined for polynomials with coefficients in a UFD and which

avoids rational arithmetic altogether.

Pseudo-division Lemma

Given polynomials a(s),b(s) € Z[s] with degb(s) > dega(s), there exist polynomials
r(s), N(s) € Z[s] and a positive integer D such that

D b(s) = N(s) a(s) + r(s)

with either r(s) = 0 or degr(s) < dega(s). Furthermore, D is the smallest such
integer, i.e., for any other triple (v'(s), N'(s), D’) satisfying the above, it follows that
D < D'. Tt also follows that D < I¥ where k = degb(s) — dega(s)+ 1 with [, denoting

the leading coefficient of a.
Proof

In division of polynomials b(s) and a(s) over Q, explicit division of /, is performed k
times. Thus, if b(s) and a(s) start off with integer coefficients, then the only denom-
inators which appear in the coeflicients of the quotient ¢(s) and remainder r(s) are
divisors of I¥. This suggests that it is possible to find polynomials ¢(s), r(s) € Z[s]
such that If b(s) = g(s) a(s) + r(s) (see Knuth V2 pg. 407). Denote I*¥ by D’ and
q(s) by N'(s). Write

r'(s) = D" b(s) - N'(s) a(s) = ¢' r(s) = g'(D b(s) ~ N(s) a(s))

where ¢' = GCD{D',N},...,N} _,.}. Clearly (r(s),N(s),D) € Z[s] and D < D' o
Algorithm D - Pseudo-division of Polynomials

Given two polynomials b(s) = bps™ +b1s™ 1 +... + by, a(s) = ags™ +a;s™ ' +... +a,, €

Z[s] with n > m and a(s) # 0, this algorithm computes the smallest pscudo-remainder

6

D and the pseudo-quotient N(S) defined above. This algorithm computes D and N(s)
directly instead of computing D’ and N’(s) and then finding ¢’. Direct calculation of D
and N(s) involves computing GCD’s on the fly which involve smaller numbers than thosc
used to compute g’. Bigger numbers cost more in GCD calculations and given the size of
the integers encountered in polynomial matrix computations, e.g., easily greater than 1000

digits, this algorithm can save a substantial amount of time.

mnm « min (m,n —m)
g — GCD(bgy,ap)
de—ag/g
De—d
bo — bo/g
For 1 =1 thru n —m Do
For j =i thrun—m Do .
bj «—bj*d
EndDo
For j = 1 thru min (mnm,n —m — i+ 1) Do
bii-1 — bjpic1 —a;xb;
EndDo
g < GCD(bi,a0)
d«—ao/yg
D—Dxd
bi — bi/g
EndDo

The algorithm terminates with the first n —m +1 coeflicients of b(s) overwritten according
to {bOabl’- v abn—-m} & {No) Nla* .. ,Nn-—m}-
Introducton of a zero in the (2,1) position of the matrix in the 2 x 2 example can now

be performed using the Pseudo-division algorithm. This freedom from rational arithmetic

7

is not without it’s drawbacks, however. Consider triangularizing the matrix:

1 S s
45s ~10s—10 3s24s+10
7-5s 6s2-1 4s%* - 10

Triangularization with Pseudo-division yields:

—T577325 0 135175553 — 137394052 + 51025505 + 7152750
0 —89145 4360553 — 77103s% + 2341895 + 35190
0 0 —3706425s* + 5202000s% — 1853212552 — 156710255 — 7152750

This illustrates the main disadvantage of triangularization over M(Z[s]) — the coefficient
growth of the polynomials. As the number of rows and columns in the matrix increases, this
" coefficient growth continues unabated and begins to erode the advantage of using integer
arithmetic. One approach to handle this coefficient growth is to remove the content of the
current row after a zero is introduced. Factoring the above matrix into its left content-

primitive form R A(s) yields:

765 0 0 -9905 0 176753 — 179652 + 66705 + 9350
R A(s) = 0 9 0 0 —9905 4845s% — 8567s? + 26021s + 3910

0 0 65025 0 0 —57s* + 80s% — 285s% — 2415 — 110

The superfluous left content of this matrix can then be discarded since this is equivalent
to multiplying A(s) by a unimodular matrix R~1 thereby keeping the coeffcient size to a
minimum. Note that the above polynomial matrix A(s) is in pseudo-column Hermite form

and that the column Hermite form of A(s) is:

(1 0 _ 1767 + 17965 _ 1334s _ 1870
9905 9905 1081 1981

969s® | 8567s® _ 26021s 782
0 1 + 5905 9905 ~ 1981

\0 0 st 802 4552 4 2le g 10

Algorithms for Triangularizing Polynomial Matrices
Algorithm T - Column Oriented Triangularization of Polynomial Matrices

Given an N x N nonsingular matrix A € M(Z[s]), this algorithm overwrites A with a
triangular form obtained by a sequence of unimodular, elementary row opcrations. It avoids
rational arithmetic by using Pseudo-Euclidean division. In addition, it inhibits cocflicient
growth by dividing the current row (the row affected by the preceding elementary row
operation step) by its row content. This algorithm operates in a column oriented fashion
by successively zeroing out the entries in each column below the diagonal. This is shown

pictorially below.

T T T T X T T T T I T T T T T
T r T x X 0 z = =z «z 0 =z =z =z =z
z z z z xz|—-|0 z z z =z =10 0 z z =«
I T T T T 0 z 2z z =« 0 0 0 =z =«
T T T T Z 0 z =z z =z 0 0 0 0 =z

Assume there exists a pre-defined function
MinimumDegreelndex(A, k) := arg min{deg A; x,...,deg An 1}

which returns the index of the row of A whose k** entry is a non-zero polynomial of lowest
degree among the rows {k,k+1,...,N} If Axi(s) = Ary1.4(s) = Ani(s) = 0, then it

returns —oo

For k = 1 thru N-1 Do
indexr «— MinimumDegreeIndex(A, k)
If index # —oc Then
Ag,. & Aindes, (exchange rows k and index)
For n =k +1 thru N Do (zero out all entries in column & below Ay 1)
EndlessLoop
num « pseudo — quotient(An, k, Ak i)
denom « pseudo — remainder(Ay, i, Ar i)

Ay, —denom x A, —num* Ay,

9

A, — A, /GCD{content(An1),...,content(A, n)}
If A, x = 0 then exit EndlessLoop
Ap, & Ag,
End EndlessLoop
EndDo
EndIf
End

It is emphasized that this is a ‘paper’ algorithm. In fact, the working code based on the
above is more efficient and can handle singular and non-square matrices and the entries
can initially belong to Q[s]. However, these considerations just complicate matters and

obscure the basic operation.
Algorithm M - Minor Oriented Triangularization of Polynomial Matrices

This algorithm is similar to the one above except it performs the zeroing procéss in a
leading principal minor oriented fashion so that the algorithm consists of N — 1 stages
where the k£ x k leading principal submatrﬁ is in a triangular form by the end of the
kth stage. Furthermore, the algorithm employs an additional substage which reduces the
degrees of the polynomial entries above the diagonal on the fly using Pseudo-Euclidean
division. The order in which the degrees are reduced is important and is based upon
notions from the integer case contained in Kannan and Bachem, 1979. The ordef is shown
pictorially below. The output matrix is in its unique Pseudo-Hermite form, not simply
triangularized, i.e., it is a triangular matrix with entries above the diagonal of degree less
than the diagonal entry. It is technically not in Herﬁite form since the diagonal entries
are not monic. But this form is easily obtained by left multiplication with the appropriate

diagonal matrix of rational numbers, a unimodular matrix with respect to Q[s].

8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
1
8 8 8 o8
8 8 8 8 ~
8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
!
8 8 coR
H 8 O8 W
8 8 8 — w
SIS SR SRS

z 4 5 6 =z T T T T I
0 =z 2 3 = 0 =z =z =z «
— 0 0 =z 1 =x = |0 0 z z =z
0 0 0 zz =z 0 0 0 2 =z
T T T I x 0 0 0 0 =z

For k = 2 thru N Do
For n =1 thru £ —1 Do (triangularize the k x k** leading principal minor)
if deg A, > deg Ay Then Ay & A,
EndlessLoop
num — pseudoquotient(Ag n, An.n)
denom « pseudoremainder(Ag n, Ann)
Ak, « denom x A, —num x A,
Ay, — Ap,./GCD{content(Ag,1),...,content(Ar n)}
If Agn # 0 then Ay — A, else Exit EndlessLoop
End EndlessLoop
End Do
For i = —1 thru —k+1 step —1 Do (reduce degs of abv diag polys in k x k** minor)
For j =i+ 1 thru 0 Do
If deg Ak4ik+; = deg Ag4jk+; Then
num « pseudoquotient(Ay i k+j, Akk+5,kk+5)
denom «— pseudoremainder(Ak+ik+j> Akk+jkk+j)
Apyi, — denom x Apy,, — UM * Agyj,.
Akti, & Apti, [GCD{content(Agti1),...,content(Ary: n)}
EndIf
EndDo
EndDo
EndDo

11

Simulation Results

MACSYMA is a Lisp based system for performing formal, symbolic calculations using
both error-free and arbitrary artihmetic. Since it is Lisp based, MACSYMA runs the fastest
on Lisp machines - computers which have which have the Lisp instructions hard-coded into
their microprocessors, such as the Texas Instruments Explorer II. Mathematica is a new
computer algebra system which has similar capabilities of MACSYMA, but is written in
‘C’. We have been running Mathematica on the NeXT Machine, but its relatively slow
microprocessor and small memory severly limit its performance.

Simulations were performed to determine the average time required to triangularize
square polynomial matrices and the maximum coefficient length using both Algorithm
T and Algorithm M (see attached graphs). Each matrix had polynomial cntrics with
randomly generated 1-2 digit coefficients. Runs were parameterized by the degree of the
polynomial, which ranged from 1 to 6, and the dimension of the matrix, which ranged form
2 to 16.

These simulations were run on a Texas Intruments Explorer II with 16 mb of physical
memory and 128 mb of virtual memory using the MACSYMA version of our algorithms.
The graphs represent the results of the simulations averaged over 7 runs. The results
indicate that Algorithm T was moderately faster than Algorithm M in triangularizing
matrices up to 9x 9. At that point Algorithm T was still faster for triangularizing matrices
with lower degree polynomials, but slower in the higher degree polynomials. This can be
attributed to the fact that Algorithm M requires less memory during computations due to
its substage which reduces the degrees of the polynomials above the diagonal on the fly.
Therefore costly garbage collections, a technique of freeing dynamically allocated memory,
are reduced. This is further shown by the fact that Algorithm T ran out of memory
while attempting to triangularize a 13 x 13 matrix with degree 6 polynomial cntries while
Algorithm M completed a 16 x 16 matrix with degree 6 entrics.

It appears that both of these algorithms run close to exponential time. The slopes
of the semi-log plots of the timings increase slightly with increasing polynomial degree.
The maximum coefficient length was approximately the same for cach algorithm and the

cocflicient growth appears to be sub-exponential with increasing matrix dimension. A

12

16 x 16 matrix with degree 6 polynomials is the largest that has been attempted with
Algorithm M. It required 40 hours to triangularize with the resulting matrix having a
maximum coefficient length of 2115 digits.

Although Algorithm T was faster than Algorithm M on the smaller matrices, it did
not have the overhead of putting the matrix in a canonic form in the process. Algorithm
M leaves the matrix in a unique Pseudo-Hermite form as described earlier. The output
matrix of Algorithm T requires the application of an additional algorithm to reduce the

degree of its above diagonal polynomials in order to put it in a Pseudo-Hermite form.

13

1000000

100000

Time to Triangularize (sec) - Column Oriented Algorithm
Polynomial Degrees 1 thru 6

100 hours

e

.\ "
e— | X-Estimated value_|

Ran out of memory—

Ti Explorer II;

16 mb physical memory—j

128 mb virtual memory |

i I R

6 7 8 9 10 11 12 13 14 15 16

Square Matrix Dimension

Time to Triangularize (sec) - Minor Oriented Algorithm

Polynomial Degrees 1 thru 6

1000000
o ——
100000 \x._”
\D‘\ ‘\\mu
\] \ \.
e P : =K
ol T — -—
== ———" —°
1000 P =1 —% ¢
e —— ==
P —atiorm “ i “ <~ g 1 ’\
100 . l_—
=
P« N | - —
\\\uw \o\\ -
0 e
, Aﬂ‘\\ T Explorer i
m 8= 16 mb physical memory
. m\\ 128 mb virtual memory
e t 1 m m
3 4 5 6 7 8 9 10 11 12 13 14 15 16

Square Matrix Dimension

Maximum Coefficient Length (# of digits) - Column Oriented Algorithm

Polynomial Degrees 1 thru 6

10000

X-Estimated value—
ut of memory—

16 mb physical memory—
128 mb virt

TI Explorer i

ual memory
i

3 4 5 6 7 8 9 10 11 12
Square Matrix Dimension

13 14 15

16

Maximum Coefficient Length (# of digits) - Minor Oriented Algorithm
Polynomial Degrees 1 thru 6

10000

2115 digits T ——__]
|

1000

100

10

TI Explorer i
16 mb physical memory—

128 mb virtual memory
1 m m f

3 4 5 6 7 8 9 10 11 12 13 14 15 16
Square Matrix Dimension

Summary of Functions

The following is a summary of the high-level auxiliary programs which we have to

date implemented in MACSYMA and Mathematica. They perform most of the common,

high-level tasks arising in the control system design process.

Right MatrizFraction(H(s))—Computes a right matrix fraction description of the
transfer function matrix H(s), i.e., computes the matrices N(s), D(s) such that H(s) =

N(s) D(s)~1. The LeftMatrixFraction description is analogously computed.

Bezout(N(s), D(s)) — Finds the homogenous and particular solutions to the Be-
zout equation, i.e., finds polynomial matrices Xp(s),Yp(s), Xh(s),Y h(s) such that
Xp(s) X(s)+Yp(s) N(s) =TI and Xh(s) X(s)+Yh(s) N(s) = 0. Used for designing

feedback compensators in the frequency domain.

ColumnReduce(D(s))—Column reduces the polynomial matrix D(s), i.e., multiplies
D(s) by an appropriate unimodular matrix such that the matrix of leading coefficients

of its entries is nonsingular. RowReduce is analogously computed.

Controller(H(s))—Finds a controller form realization of the transfer function ma-
trix H(s). Controllability, Observer and Observability realizations are analogously

computed.
Hermite(N(s))—Finds the Hermite form of the polynomial matrix N(s).

RightCoprime(N(s), D(s))—Determines the greatest common right divisor of the
polynomial matrices N(s) and D(s). If it is not unimodular, it is pulled out of both
matrices making them right coprime. Used for finding minimal rcalizations. LeftCo-

prime is analogously computed.

Smith(N(s))—Finds the Smith form of the polynomial matrix N(s). This is a

canonic, diagonal form of a polynomial matrix.

SmithMcMillan(H(s))—Finds the Smith-McMillan form of the transfer function ma-
trix H(s). This is a canonic, rational, diagonal form of a matrix whose entrics are

ratios of polynomials.

18

References and Bibliography

Bariess, E.H. “Computational Solutions of Matrix Problems over an Integral Domain”
J. Inst. Maths Applics V10, 69-104, 1972

Bariess, E.H. “Sylvester’s Identity and Multistep Intcger-Preserving Gaussian Elimi-
nation” Math. Comp. V22, 565-578, 1968

Brown, W.S. “On Euclid’s Algorithm and the Computation of Polynomial Greatest
Common Divisors” J. ACM V18 (4) 478-504 Oct 71

Brown, W.S. & J.F. Traub “On Euclid’s Algorithm and the Theory of Subresultants”
J. ACM V18 (4) 505-514 Oct 71

Chou, T.J. & G.E. Collins “Algorithms for the Solution of Systems of Lincar Dio-
phantine Equations” Siam. J. Comp. V11 (4) 687-708 Nov 82

Collins, G.E. “Subresultants and Reduced Polynomial Remainder Sequences” J. ACM
V14 (1) 128-142 Jan 67

Gantmakher, F.R. Theory of Matrices New York: Chelsea, 1959

Gregory, R.T., & E.V. Krishnamurthy Methods and Applications of Error-Free Com-
putation Berlin: Springer, 1984 |

Hartley, B. & T.O. Hawkes Rings, Modules and Linear Algebra London: Chapman
and Hall, 1970

Hungerford, T.W. Algebra Berlin: Springer, 1974

Kailath, T. Linear Systems Englewood Cliffs: Prentice-Hall, 1980

Kannan, R. “Solving Systems of Linear Equations over Polynomials” Report CMU-
C8-83-165, Dept. of Comp. Sci., Carnegie-Mellon University, Pittsburgh, 1983
Kannan, R. & A. Bachem ”Polynomial Algorithms for Computing the Smith and
Hermite Normal Forms of an Integer Matrix” Siam. J. Comp. V8 (4) 499-507 Nov 79
Keng, H.L. Introduction to Number Theory Berlin: Springer, 1982

Knuth, D.E. The Art of Computer Programming, Vol. 2 Reading, Mass.:Addison
Wesley,1981

Krishnamurthy, E.V. Error-Free Polynomial Matrix Computations Berlin: Springer,
1985

19

Lipson, J.D. Elements of Algebra and Algebraic Computing Reading: Addison-Wesley,
1981

MacDuftee, C.C. The Theory of Matrices New York: Chelsea, 1950

McClellan, M.T. “The Exact Solution of Systems of Lincar Equations with Polynomial
Coeflicients” J. ACM V20 (4) 563-588 Oct 73

Newman, M. Integral Matrices New York: Academic Press, 1972

Vidyasagar, M.Control System Synthesis Cambridge: MIT Press, 1985

Wolovich, W.A.Linear Multivariable Systems Berlin: Springer, 1974

20

