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Modeling the Pairwise Key Predistribution Scheme
in the Presence of Unreliable Links
Osman Yağan, Member, IEEE, and Armand M. Makowski, Fellow, IEEE

Abstract—We investigate the secure connectivity of wireless
sensor networks under the random pairwise key predistribution
scheme of Chan, Perrig, and Song. Unlike recent work carried
out under the assumption of full visibility, here we assume a (sim-
plified) communication model where unreliable wireless links are
represented as independent on/off channels. We present conditions
on how to scale the model parameters so that the network 1) has
no secure node that is isolated and 2) is securely connected, both
with high probability, when the number of sensor nodes becomes
large. The results are given in the form of zero-one laws, and
exhibit significant differences with corresponding results in the
full-visibility case. Through simulations, these zero-one laws are
shown to also hold under a more realistic communication model,
namely the disk model.

Index Terms—Connectivity, key predistribution, random
graphs, security, wireless sensor networks (WSNs).

I. INTRODUCTION

A. Motivation and Background

W IRELESS sensor networks (WSNs) are distributed
collections of sensors with limited capabilities for

computations and wireless communications. It is envisioned
[1] that WSNs will be used in a wide range of applications
areas such as healthcare (e.g., patient monitoring), military
operations (e.g., battlefield surveillance), and homes (e.g.,
home automation and monitoring). These WSNs will often be
deployed in hostile environments where communications can
be monitored, and nodes are subject to capture and surreptitious
use by an adversary. Under such circumstances, cryptographic
protection will be needed to ensure secure communications,
and to support functions such as sensor-capture detection, key
revocation, and sensor disabling.
Unfortunately, many security schemes developed for general

network environments do not take into account the unique fea-
tures of WSNs: Public key cryptography is not feasible compu-
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tationally because of the severe limitations imposed on the phys-
ical memory and power consumption of the individual sensors.
Traditional key exchange and distribution protocols are based
on trusting third parties, and this makes them inadequate for
large-scale WSNs whose topologies are unknown prior to de-
ployment. Some of the challenges specific to WSN settings are
discussed in the papers [6], [11], and [20]–[23].
Random key predistribution schemes were introduced to ad-

dress some of these difficulties. The idea of randomly assigning
secure keys to sensor nodes prior to network deployment was
first introduced by Eschenauer and Gligor [11]. Since then,
many competing alternatives to the Eschenauer and Gligor
(EG) scheme have been proposed; see [6], [9], and [20]–[23]
(and references therein) for a detailed survey of various key
predistribution schemes for WSNs. With so many schemes
available, a basic question arises as to how they compare with
each other. Answering this question passes through a good un-
derstanding of the properties and performance of the schemes
under consideration, and this can be achieved in a number
of ways. The approach we use here considers random graph
models naturally induced by a given scheme, and then develops
the scaling laws corresponding to desirable network properties,
e.g., absence of secure nodes that are isolated, secure connec-
tivity, etc. This is done with the aim of deriving guidelines to
dimension the scheme, namely adjust its parameters so that
these properties occur with high probability as the number of
nodes becomes large.
To date, most of the efforts along these lines have been carried

out under the assumption of full visibility according to which
sensor nodes are all within communication range of each other;
more on this later. Under this assumption, the EG scheme gives
rise to a class of random graphs known as random key graphs;
relevant results are available in [3], [8], [11], [18], and [30]. The
-composite scheme [7], a simple variation of the EG scheme,
was investigated by Bloznelis et al. [4] through an appropriate
extension of the random key graphmodel. In [7], Chan et al. also
proposed the random pairwise key predistribution scheme as an
alternative to the EG scheme. Yağan and Makowski have re-
cently analyzed various random graphs induced by this scheme;
see the papers [28], [29], and [31]–[33].
To be sure, the full-visibility assumption does away with

the wireless nature of the communication medium supporting
WSNs. In return, this simplification makes it possible to focus
on how randomization in the key assignments alone affects the
establishment of a secure network in the best of circumstances,
i.e., when there are no link failures. A common criticism of
this line of work is that by disregarding the unreliability of
the wireless links, the resulting dimensioning guidelines are
likely to be too optimistic: In practice, nodes will have fewer
neighbors since some of the communication links may be
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impaired. As a result, the desired connectivity properties may
not be achieved if dimensioning is done according to results
derived under full visibility.

B. Summary of Main Contributions

In this paper, in an attempt to go beyond full visibility, we
revisit the pairwise key predistribution scheme of Chan et al.
[7] under more realistic assumptions that account for the pos-
sibility that communication links between nodes may not be
available—This could occur due to the presence of physical bar-
riers between nodes or because of harsh environmental condi-
tions severely impairing transmission. To study such situations,
we introduce a simple communication model where channels
are mutually independent, and are either on or off. An overall
system model is then constructed by intersecting the random
graph model of the pairwise key distribution scheme (under
full visibility), with an Erdős-Rényi (ER) graph model [5]. For
this new random graph structure, we establish zero-one laws for
two basic (and related) graph properties, namely graph connec-
tivity and the absence of isolated nodes, when the model pa-
rameters are scaled with the number of users. We identify the
critical thresholds and show that they coincide. To the best of
our knowledge, these full zero-one laws constitute the first com-
plete analysis of a key predistribution scheme under nonfull vis-
ibility1—Contrast this with the partial results by Yi et al. [34]
for the absence of isolated nodes (under additional conditions)
when the communication model is taken to be the disk model.
Although the communication model considered here may be

deemed simplistic, it does permit a complete analysis of the is-
sues of interest, with the results already yielding a number of in-
teresting observations: The obtained zero-one laws differ signif-
icantly from the corresponding results in the full-visibility case
[31], [33]. Thus, the communication model may have a signif-
icant impact on the dimensioning of the pairwise distribution
algorithm, and this points to the need of possibly reevaluating
guidelines developed under the full-visibility assumption. Sim-
ulations also suggest that the zero-one laws obtained here under
the on/off channel model may still be useful in dimensioning
the pairwise scheme under the popular, and more realistic, disk
model [13].
We also compare the results established here with

well-known zero-one laws for ER graphs [5]. In particular, we
show that the connectivity behavior of the model studied here
does not in general resemble that of the ER graphs. However,
the picture is somewhat more subtle for the results also imply
that if the channel is very poor, the model studied here does
behave like an ER graph as far as connectivity is concerned.
The comparison with ER graphs is particularly relevant to the
analysis of key predistribution schemes for WSNs: Indeed,
connectivity results for ER graphs have often been used whole-
sale in the dimensioning and evaluation of key predistribution
schemes, e.g., see the papers by Eschenauer and Gligor [11],
Chan et al. [7], and Hwang and Kim [14]. There it is a common
practice to assume that the random graph induced by the par-
ticular key predistribution scheme behaves like an ER graph

1The connectivity of the EG scheme under an on/off channel has also been
studied recently by Yağan [24], and zero-one laws analogous to the ones given
here were established.

(although it is not strictly speaking an ER graph). As pointed
out by Di Pietro et al. [8] such an assumption is made without
any formal justification, and subsequent efforts to confirm its
validity have remained limited to this date: The EG scheme has
been analyzed by a number of authors [3], [8], [18], [26], [27],
[30], and as a result of these efforts, it is now known that the ER
assumption does yield the correct results for both the absence
of isolated nodes and connectivity under the assumption of full
visibility. On the other hand, the ER assumption is not valid for
the pairwise scheme under full visibility; see [12], [31], [33],
and the discussion given in Section V-A.

C. Organization of This Paper

The rest of this paper is organized as follows: In Section II,
we give precise definitions and implementation details for the
pairwise scheme of Chan et al., while Section III is devoted
to describing the model of interest. The main results of the
paper, namely Theorem 4.1 and Theorem 4.2, are presented in
Section IV with an extensive discussion given in Section V. The
remaining sections, namely Sections VI–XV, are devoted to es-
tablishing the main results of this paper. The proofs of several
technical results have been relegated to the Appendix.

D. Notation

Aword on notation and conventions in use: All limiting state-
ments, including asymptotic equivalences, are understood with
the number of sensor nodes going to infinity. The random vari-
ables (rvs) under consideration are all defined on the same prob-
ability triple . Probabilistic statements are made with
respect to this probability measure , and we denote the corre-
sponding expectation operator by . The indicator function of
an event is denoted by . Also, for any pair of events
and , we have

(1)

For any discrete set , we write for its cardinality.

II. IMPLEMENTING PAIRWISE KEY PREDISTRIBUTION SCHEMES

Interest in the random pairwise key predistribution scheme
of Chan et al. [7] stems from the following advantages over the
EG scheme: 1) Even if some nodes are captured, the secrecy
of the remaining nodes is perfectly preserved. 2) Unlike earlier
schemes, this pairwise scheme enables both node-to-node au-
thentication and quorum-based revocation.
We parameterize the pairwise key distribution scheme by two

positive integers and such that . There are nodes,
labeled , with unique ids . Write

and set for each .
With node , we associate a subset of nodes selected at
random from —We say that each of the nodes in
is paired to node . Thus, for any subset , we require

if
otherwise.

The selection of is done uniformly amongst all
subsets of which are of size exactly . The rvs
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are assumed to be mutually inde-
pendent so that

for arbitrary subsets of , respec-
tively.
Once this offline random pairing has been created, we con-

struct the key rings , one for each node,
as follows: Assumed available is a collection of distinct
cryptographic keys . Fix

and let denote
a labeling of . For each node in paired to
, the cryptographic key is associated with . For in-
stance, if the random set is realized as
with , then an obvious labeling con-
sists in for each so that key is
associated with node . Of course, other labelings are possible,
e.g., according to decreasing labels or according to a random
permutation. Finally, with node paired to node , the pairwise
key is constructed and inserted in
the memory modules of both nodes and . The key is as-
signed exclusively to the pair of nodes and , hence the termi-
nology pairwise predistribution scheme. The key ring
of node is the set

(2)

If two nodes, say and , are within communication range
of each other, then they can establish a secure link if at least
one of the events or is taking place.
Both events can take place, in which case the memory modules
of node and both contain the distinct keys and .
Finally, it is plain by construction that this scheme supports dis-
tributed node-to-node authentication.

III. MODEL

Under full visibility, this pairwise predistribution scheme nat-
urally gives rise to the following class of random graphs: With

and positive integer , we say that the dis-
tinct nodes and are K-adjacent, written , if and only if
they have at least one key in common in their key rings, namely

(3)

Let denote the undirected random graph on the vertex
set induced by the adjacency notion (3); this corre-
sponds to modeling the pairwise distribution scheme under full
visibility. We have

(4)

where is the link assignment probability in
given by

(5)

The random graph is known in the literature on random
graphs as the random -out graph [5], [12]: To each of the
vertices, assign exactly arcs to distinct vertices that are
selected uniformly at random, and then ignore the orientation
of the arcs. In what follows, we sometimes refer to as
the random pairwise graph (instead of the random -out graph)
in order to emphasize its connection with the random pairwise
scheme of Chan et al.
As mentioned earlier, we seek to account for the possibility

that communication links between nodes may not be available.
To study such situations, we assume a simple communication
model that consists of independent channels, each of which can
be either on or off. Thus, with in , let

denote i.i.d. -valued rvs with success proba-
bility . The channel between nodes and is available (resp.
up) with probability and unavailable (resp. down) with the
complementary probability . Distinct nodes and are
said to be B-adjacent, written , if . B-adja-
cency defines the standard ER graph on the vertex set

. Obviously

The random graph model studied here is obtained by inter-
secting the random pairwise graph with the ER graph

. More precisely, the distinct nodes and are said to
be adjacent, written , if and only they are both K-adjacent
and B-adjacent, namely

(6)

The resulting undirected random graph defined on the vertex
set through this notion of adjacency is denoted

.
Throughout we assume the collections of rvs

and to
be independent, in which case the edge occurrence probability
in is given by

(7)

IV. RESULTS

To fix the terminology, we refer to any mapping
as a scaling (for random pairwise graphs) provided it satis-

fies the natural conditions

(8)



YAĞAN AND MAKOWSKI: MODELING THE PAIRWISE KEY PREDISTRIBUTION SCHEME 1743

Similarly, any mapping defines a scaling for
ER graphs.
To lighten the notation, we often group the parameters and
into the ordered pair . Hence, a mapping

defines a scaling for the intersection graph
provided the condition (8) holds on the first component

mapping.
The results will be expressed in terms of the threshold func-

tion defined by

if

if

if .

(9)

It is easy to check that this threshold function is continuous on
its entire domain of definition (see Fig. 3).

A. Absence of Isolated Nodes

The first result gives a zero-one law for the absence of isolated
nodes.
Theorem 4.1: Consider scalings and
such that

(10)

for some . If for some in , then
we have

if
if

(11)

where the threshold is given by (9).
The condition (10) on the scaling will

often be used in the equivalent form

(12)

with the sequence satisfying . In
view of (5), this amounts to

(13)

B. Connectivity

An analog of Theorem 4.1 also holds for the property of graph
connectivity.
Theorem 4.2: Consider scalings and
such that (10) holds for some . If

for some in , then we have

if
if

(14)

where the threshold is given by (9).

Comparing Theorem 4.2 with Theorem 4.1, we see that the
class of random graphs studied here provides one more instance
where the zero-one laws for absence of isolated nodes and con-
nectivity coincide, viz. ER graphs [5], random geometric graphs
[19], or random key graphs [3], [18], [30].
A case of particular interest arises when since re-

quiring (10) now amounts to

(15)

for some . Any scaling that satisfies
(15) must necessarily satisfy , e.g.,
see (39) in the proof of Lemma 7.1. Therefore, requiring (10)
is equivalent to

(16)

for some with and related by . With this
reparameterization, Theorem 4.1 and Theorem 4.2 can be sum-
marized in the following simpler form.
Theorem 4.3: Consider scalings and
such that . Under the condition (16)

for some , we have

if
if

(17)

where we have set

(18)

This alternate formulation is particularly relevant for the case
(in ) for all , which captures situa-

tions when channel conditions are not affected by the number
of users. Such simplifications do not occur in the more realistic
case which corresponds to the situation where channel
conditions are indeed influenced by the number of users in the
system—The more users in the network, the more likely they
will experience interferences from other users.
In Figs. 1 and 2, we present simulation results that support

(17). In all these simulations, the number of nodes is fixed at
. We consider the channel parameters , ,
, , and (the full-visibility case), while

varying the parameter from to . For each
parameter pair , we generate 500 independent samples of
the graph and count the number of times (out of a
possible 500) that the obtained graphs 1) have no isolated nodes
and 2) are connected. Dividing the counts by 500, we obtain the
(empirical) probabilities for the events of interest. The results
for connectivity are given in Fig. 1, where the curve fitting tool
of MATLAB is used. It is easy to check that for each value of

, the connectivity threshold matches the prescription (17),
namely . It is also seen that, if the channel is
poor, i.e., if is close to zero, then the required value for
to ensure connectivity can be much larger than the one in the
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Fig. 1. Probability that is connected as a function of for , , , , and with .

Fig. 2. Probability that has no isolated nodes as a function of for , , , and with . This figure
clearly resembles Fig. 1 for all .

full-visibility case . The results regarding the absence of
node isolation are displayed in Fig. 2. For each value of
, Fig. 2 is indistinguishable from Fig. 1, with the difference
between the estimated probabilities of graph connectivity and
absence of isolated nodes being quite small, in agreement with
(17).

V. DISCUSSION AND COMMENTS

A. Comparing With the Full-Visibility Case

At this point, the reader may wonder as to what form would
Theorem 4.2 take in the context of full visibility. In the setting
developed here, this corresponds to so that

coincides with ; see the curve for in Fig. 1.
Results for this case were given by Fenner and Frieze [12, Th.
2.1, p. 348], and by the authors in [31] and [33].
Theorem 5.1: For any a positive integer, it holds that

if
if .

The case where the parameter is scaled with is an easy
corollary of Theorem 5.1.
Corollary 5.2: For any scaling such that

for all sufficiently large, we have the one-law
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Each node in has degree at least , so that no node
is ever isolated in . This is in sharp contrast with the
model studied here, as reflected by the full zero-one law for node
isolation given in Theorem 4.1.
Theorem 5.1 and its Corollary 5.2 together show that very

small values of suffice to ensure asymptotically almost sure
(a.a.s.) connectivity of the random graph . However,
these two results cannot be recovered from Theorem 4.2 whose
zero-one law is derived under the assumption for all

. Furthermore, even if the scaling
were to satisfy , only the one-law in Theorem
4.3 remains since (and ) at .
Although this might perhaps be expected given the aforemen-
tioned absence of isolated nodes in , the one-laws for
both the absence of isolated nodes and graph connectivity in

still require conditions on the behavior of the scaling
, namely (16) (whereas Corollary 5.2 does not).

B. Comparing With ER Graphs

In the original paper of Chan et al. [7] (as in [14]), the connec-
tivity analysis of the pairwise scheme was based on ER graphs
[5]—It was assumed that the random graph induced by the pair-
wise scheme under a communication model (taken mostly to
be the disk model [13]) behaves like an ER graph; similar as-
sumptions have been made in [11] and [14] when discussing the
connectivity of the EG scheme. However, this assumption was
made without any formal justification. Recently, we have shown
that the full-visibilitymodel hasmajor differences with
ER graphs. For instance, the edge assignments are (negatively)
correlated in while independent in ER graphs; see [25,
Ch. 3.2, pp. 32–35], for a detailed discussion on the differences
of and . It is easy to verify that the edge as-
signments in are also negatively correlated; see
Section IX. Therefore, the models and
cannot be equated with an ER graph, and the results obtained in
[31], [33] and in this paper are not mere consequences of clas-
sical results for ER graphs.
However, formal similarities do exist between

and ER graphs. Recall the following well-known zero-one law
for ER graphs: For any scaling satisfying

for some , it holds that

if
if

On the other hand, the condition (10) can be rephrased more
compactly as

with the results (11) and (14) unchanged. Hence, in both ER
graphs and , the zero-one laws can be expressed as
a comparison of the probability of link assignment against the
critical scaling ; this is also the case for random geometric
graphs [19], and random key graphs [3], [18], [30]. But the con-
dition that ensures a.a.s. connectivity in is
not the same as the condition for a.a.s. connectivity in ER
graphs; see Fig. 3. Thus, the connectivity behavior of the model

is in general different from that in an ER graph, and
a “transfer” of the connectivity results from ER graphs cannot
be taken for granted. Yet, the comparison becomes more subtle
when the channel is poor: The connectivity behaviors of the two
models do match in the practically relevant case for WSNs, i.e.,
when since then .

C. A More Realistic Communication Model

One possible extension of the work presented here would be
to consider a more realistic communication model, e.g., the pop-
ular disk model [13] which takes into account the geograph-
ical positions of the sensor nodes. For instance, assume that the
nodes are distributed over a bounded region of the plane. Ac-
cording to the disk model, nodes and located at and ,
respectively, in are able to communicate if

(19)

where is called the transmission range. When the node
locations are independently and uniformly distributed over the
region , the graph induced under the condition (19) is known
as a random geometric graph [19], thereafter denoted .
Under the disk model, studying the pairwise scheme of Chan

et al. amounts to analyzing the intersection of and
, say . A direct analysis of this model

seems to be very challenging; see the following for more on this.
However, limited simulations already suggest that the zero-one
laws obtained here for have an analog for the
model . To verify this, consider 200 nodes dis-
tributed uniformly and independently over a folded unit square

with toroidal (continuous) boundary conditions. Since
there are no border effects, it is easy to check that

whenever . We match the two communication models
and by requiring . Then, we use the

same procedure that produced Fig. 1 to obtain the empirical
probability that is connected for various values
of and . The results are depicted in Fig. 4 whose resem-
blance with Fig. 1 suggests that the connectivity behaviors of
the models and are quite sim-
ilar. This raises the possibility that the results obtained here for
the on/off communication model can also be used for dimen-
sioning the pairwise scheme under the disk model.
A complete analysis of is likely to be very

challenging given the difficulties already encountered in the
analysis of related problems. For example, the intersection of
random geometric graphs with ER graphs was considered in
[2] and [34]. Although zero-one laws for graph connectivity are
available for each component random graph, results for the in-
tersection model given in these references were limited only to
the absence of isolated nodes; the connectivity problem is still
open for that model. Yi et al. [34] also consider the intersection
of random key graphs with random geometric graphs, but these
results are again limited to the property of node isolation. To the
best of our knowledge, Theorem 4.2 reported here constitutes
the first zero-one law for graph connectivity in a model formed
by intersecting multiple random graphs! (Except of course the
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Fig. 3. versus . Clearly, only if .

trivial case where an ER graph intersects another ER graph.) As
mentioned previously, Yağan [24] has recently established anal-
ogous zero-one laws for the connectivity of random key graphs
intersecting ER graphs.

D. Intersection of Random Graphs

When using random graph models to study networks, situ-
ations arise where the notion of adjacency between nodes re-
flects multiple constraints. This can be so even when dealing
with networks other than WSNs. As was the case here, such
circumstances call for studying models that are constructed by
taking the intersection of multiple random graphs. However, the
availability of results for each component model does not nec-
essarily imply such results for the intersection of these models;
see the examples provided in the previous section.
Figs. 5–7 can help better understand the relevant issues as to

why this is so: Fig. 5 provides a sample of an ER graph
with and . As would be expected from the
classical results, the obtained graph is very densely connected.
Similarly, Fig. 6 provides a sample of the pairwise random graph

with and . In line with Theorem 5.1,
the obtained graph is connected. On the other hand, the graph
formed by intersecting these graphs turns out to be disconnected
as shown in Fig. 7.
To drive this point further, consider the constant parameter

case for the models and , a case which cannot
be recovered from either Theorem 4.1 or Theorem 4.2. Never-
theless, Theorem 5.1 yields

while it is well known [5] that

However, it can be shown that

(20)

whence

(21)

For details, see the discussion at the end of Section X. This
clearly provides a nontrivial example (one that is not for an ER
intersecting an ER graph) where the intersection of two random
graphs is indeed a.a.s. not connected although each of the com-
ponents is a.a.s. connected.

VI. A PROOF OF THEOREM 4.1

We prove Theorem 4.1 by the method of first and second mo-
ments [15, p. 55] applied to the total number of isolated nodes
in . First some notation: Fix and con-
sider with in and positive integer such
that . With

for each , the number of isolated nodes in
is simply given by

The random graph has no isolated nodes if and only
if .
The method of first moment [15, eq. (3.10), p. 55] relies on

the well-known bound

(22)
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Fig. 4. Probability that is connected as a function of . The number of nodes is set to and is given by .

Fig. 5. Instantiation of ER graph with and .—The
graph is connected.

while the method of second moment [15, Remark 3.1, p. 55] has
its starting point in the inequality

(23)

The rvs being exchangeable, we find

(24)

and

Fig. 6. Instantiation of with and .—The graph is
connected.

by the binary nature of the rvs involved. It then follows that

(25)

From (22) and (24), it is plain that the one-law
will be established if we show

that

(26)
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Fig. 7. Intersection of the graphs in Figs. 5 and 6—The graph is
disconnected as the marked nodes form a component!

From (23) and (25), we see that the zero-law
holds if

(27)

and

(28)

The proof of Theorem 4.1 passes through the next two tech-
nical propositions which establish (26)–(28) under the appro-
priate conditions on the scaling .
Proposition 6.1: Consider scalings and

such that (10) holds for some . Assume also
that exists. Then, we have

if
if

(29)

where the threshold is given by (9).
A proof of Proposition 6.1 is given in Section VIII.
Proposition 6.2: Consider scalings and

such that (10) holds for some . Assume
also that exists. Then, we have (28) whenever

.
A proof of Proposition 6.2 can be found in Section X. To com-

plete the proof of Theorem 4.1, pick a scaling
such that (10) holds for some and

exists. Under the condition we get (26) from Propo-
sition 6.1, and the one-law fol-
lows. Next, assume that —This case is possible only

if since as seen at (9). When , we ob-
tain (27) and (28) with the help of Propositions 6.1 and 6.2, re-
spectively. The conclusion is now
immediate.

VII. A PREPARATORY RESULT

Fix and consider with in
and positive integer such that . Under the enforced
assumptions, for each , we easily get

(30)

where denotes the degree of node in . Note
that

(31)

By independence, since

the second term in (31) is a binomial rv with trials
and success probability given by

(32)

whence

(33)

The proof of Proposition 6.1 uses a somewhat simpler form
of the expression (33) which we develop next.
Lemma 7.1: Consider scalings and
such that (10) holds for some . It holds that

(34)

with

(35)

where the sequence is the one appearing in the form
(12) of the condition (10).
In what follows, we make use of the decomposition

(36)

with

on that range. Note that
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Proof: Consider a scaling such
that (10) holds for some and assume the existence of
the limit . Replacing by in (33) for each

, we get

(37)

with given by

where

The decomposition (36) now yields

where the last step used the form (12) of the condition (10) on
the scaling. Reporting this calculation into the expression for
, we find

Lemma 7.1 will be established if we show that

(38)

To that end, for each , we note the inequalities

by virtue of the fact that . The condition (12) implies

(39)

hence

(40)

and

Invoking the behavior of at mentioned earlier, we
conclude from these facts that

(41)

This establishes (38) and the proof of Lemma 7.1 is completed.

VIII. A PROOF OF PROPOSITION 6.1

In view of Lemma 7.1, Proposition 6.1 will be established if
we show

if
if .

(42)

To see this, first note from (36) that for each , we
have and the lower bound in (39) implies

(43)

Letting go to infinity in this last expression yields
whenever

(44)

since .
Next, we show that if , then .

We only need to consider the case since
and the constraint is then vacuous. We begin by

assuming , in which case for each , we have

(45)

with the inequality following from the upper bound in (39). Let
grow large in the last expression. Since we have assumed

, we get

and the desired conclusion is obtained
whenever because .
Finally, we assume . For each , there exists

a finite positive integer such that when
. On that range, the upper bound in (39) yields

and the conclusions and



1750 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

follow. Comparing this last fact against the left-hand side of (12)
yields

so that

(46)

From (35), it follows that

for all sufficiently large. Letting go to infinity in this last
expression and using (46) with earlier remarks, we readily con-
clude

by direct inspection. It is now clear that when
with . The proof of Proposition 6.1 is now

completed.

IX. NEGATIVE DEPENDENCE AND CONSEQUENCES

Fix positive integers and with . Sev-
eral properties of the -valued rvs

(47)

and

(48)

will play a key role in some of the forthcoming arguments.

A. Negative Association

The properties of interest can be couched in terms of nega-
tive association, a form of negative correlation introduced by
Joag-Dev and Proschan [16]. We first develop the needed def-
initions and properties: Let be a collection of
-valued rvs indexed by the finite set . For any nonempty
subset of , we write to denote the -valued

. The rvs are then said to be nega-
tively associated if for any nonoverlapping subsets and of
and for any monotone increasing mappings

and , the covariance inequality

(49)

holds whenever the expectations in (49) are well defined and
finite. Note that and need only be monotone increasing on
the support of and , respectively.
This definition has some easy consequences to be used repeat-

edly in what follows: The negative association of
implies the negative association of the collection
where is any subset of . It is also well known [16, P2, p. 288]

that the negative association of the rvs implies
the inequality

(50)

where is a subset of and the collection of
mappings are all monotone increasing; by nonnega-
tivity, all the expectations exist and finiteness is moot.
We can apply these ideas to collections of indicator rvs,

namely for each in , for some event . From
the definitions, it is easy to see that if the rvs
are negatively associated, so are the rvs .
Moreover, for any subset of , we have

(51)

This follows from (50) by taking on for each
in .

B. Useful Consequences

A key observation for our purpose is as follows: For each
, the rvs

(52)

form a collection of negatively associated rvs. This is a con-
sequence of the fact that the random set represents a
random sample (without replacement) of size from ; see
[16, Example 3.2(c)] for details.
The collections (52) are mutually independent, so that by

the “closure under products” property of negative association
[16, P7, p. 288] [10, p. 35], the rvs (47) also form a collection
of negatively associated rvs.
By taking complements, we see that the rvs

(53)

also form a collection of negatively associated rvs. With distinct
, we note that

with mapping given by for all ,
in . This mapping being nondecreasing on , it follows [16,
P6, p. 288] that the rvs

(54)

are also negatively associated. Taking complements one more
time, we see that the rvs (48) are also negatively associated.
For each , 2 and , we shall find it useful to

define
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and

Under the enforced assumptions, we have
and

.
Before computing either one of the quantities and
, we note that

(55)

This is a straightforward consequence of the negative associa-
tion of the rvs (47)—In (49), with and singletons, use the
increasing functions , .
Using (32), we get

(56)

An expression for is available but will not be needed due
to the availability of (55).

X. A PROOF OF PROPOSITION 6.2

As expected, the first step in proving Proposition 6.2 consists
in evaluating the cross moment appearing in the numerator of
(28). Fix and consider with in
and positive integer such that . Define the -valued
rvs and by

(57)

and

(58)

Proposition 10.1: Fix . For any in and
positive integer such that , we have

(59)

where the rvs and are given by (57) and (58),
respectively.
A proof of Proposition 10.1 is available in Appendix A. Still

in the setting of Proposition 10.1, we use (55) in conjunction
with (59) to get

(60)

where we find

We note that

and

by similar arguments. The expression

readily follows, and the inequality

is obtained upon using (60), with given by

Next, with the help of (33) and (56), we conclude that

(61)

Direct inspection readily yields

if

if

otherwise.
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Taking expectation and recalling (32), we conclude from (61)
that

(62)

by crude bounding arguments.
Now, consider a scaling such that (10)

holds for some and . Replace by
in the bound (62) according to this scaling, and let go to

infinity in the resulting inequality. From (39), we get both (40)
and

since . This completes the proof of (28).

We close with a proof of (20): Consider with in
and positive integer . It follows from (33) that

whence . It also immediate from (62)
that

The arguments outlined in Section VI now yield

and this establishes (20). The conclusion (21) immediately fol-
lows; see discussion at (63).

XI. A PROOF OF THEOREM 4.2 (PART I)

Fix and consider with in and
positive integer such that . We define the events

and

If the random graph is connected, then it does not
contain any isolated node, whence is a subset of ,
and the conclusions

(63)

and

(64)

are obtained.
Taken together with Theorem 4.1, the relations (63) and

(64) pave the way to proving Theorem 4.2. Indeed, pick a
scaling such that (10) holds for some

and exists. If , then
by the zero-law for the absence

of isolated nodes, whence with the
help of (63). If , then
by the one-law for the absence of isolated nodes, and the
desired conclusion (or equivalently,

) will follow via (64) if we show the
following.
Proposition 11.1: For any scaling such

that exists and (10) holds for some ,
we have

(65)

The proof of Proposition 11.1 starts below and runs through
Sections XII–XV. The basic idea is to find a sufficiently tight
upper bound on the probability in (65) and then to show that
this bound goes to zero as becomes large. This approach is
similar to the one used for proving the one-law for connectivity
in ER graphs [5, p. 164] and in random key graphs [3], [8], [30].
We begin by finding the needed upper bound: Fix

and consider with in and posi-
tive integer such that . For any nonempty subset of
nodes, i.e., , we define the graph
(with vertex set ) as the subgraph of restricted to
the nodes in . We also say that is isolated in
if there are no edges (in ) between the nodes in
and the nodes in the complement . This is
characterized by

With each nonempty subset of nodes, we associate several
events of interest: Let denote the event that the sub-
graph is itself connected. The event
is completely determined by the rvs and

. We also introduce the event to
capture the fact that is isolated in , i.e.,
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Finally, we set

The starting point of the discussion is the following basic ob-
servation: If is not connected and yet has no isolated
nodes, then there must exist a subset of nodes with
such that is connected while is isolated in

. This fact is captured by the inclusion

(66)

A moment of reflection should convince the reader that this
union need only be taken over all subsets of with

. A standard union bound argument immediately
gives

(67)

where denotes the collection of all subsets of
with exactly elements.
For each , we simplify the notation by writing

, ,
and . With a slight abuse of no-
tation, we use for as defined earlier. Under the
enforced assumptions, exchangeability yields

and the expression

(68)

follows since . Substituting into (67), we obtain
the key bound

(69)

Consider a scaling as in the statement
of Proposition 11.1. Substitute by according to this scaling
in the right-hand side of (69). The proof of Proposition 11.1 will
be completed once we show

(70)

The means to do so are provided in the next section.

XII. BOUNDING PROBABILITIES

Fix and consider with in and
positive integer such that .

A. Bounding the Probabilities

The following two results will be used to efficiently bound
the probability ; proofs are available in Appendix B.
Lemma 12.1: For each , the inequality

(71)
holds with the rv given by

(72)

The arguments leading to (71) can be modified to obtain the
next bound.
Lemma 12.2: For each , the inequality

(73)

holds with defined by (56) and the rv given by

(74)

The tail of the rv is controlled through the following
result.
Lemma 12.3: Fix . For any in we

have

(75)

Proof: Consider a positive integer such that .
From the facts reported in Section IX, the negative association
of the rvs (52) implies that of the rvs

. We are now in a position to apply
the Chernoff–Hoeffding bound to the sum (72) as given for neg-
atively associated rvs [10, Th. 3.1, p. 35]. This bound takes the
form

and the conclusion (75) follows upon noting that

as we use (32).
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B. Bounding the Probabilities

For each , let stand for the subgraph
when . Also let denote the

collection of all spanning trees on the vertex set .
Lemma 12.4: Fix . For each in , we have

(76)

where the notation indicates that the tree
is a subgraph spanning .
Since is the probability of link assignment, the situa-

tion is reminiscent of the one found in ER graphs [5] and random
key graphs [30], where in each of these cases the bound (76)
holds with equality.

Proof: Fix and pick a tree in . Let
be the set of edges that appear in . It is plain that

occurs if and only if the set of conditions

holds. Therefore, under the enforced independence assump-
tions, since , we get

by making use of (51) with the negatively associated rvs (48).
The desired result (76) is now immediate from (5) and the rela-
tion .
As for ER graphs [5] and random key graphs [30], we have

the following bound.
Lemma 12.5: For each , we have

(77)

Proof: Fix . If is a connected
graph, then it must contain a spanning tree on the vertex set

, and a union bound argument yields

By Cayley’s formula [17], there are labeled trees on ver-
tices, i.e., , and (77) follows upon making use of
(76).

XIII. A PROOF OF PROPOSITION 11.1 (PART II)

Consider a scaling as in the statement
of Proposition 11.1. Pick integers and

(to be specified in Section XV). On the range , we
consider the decomposition

and let go to infinity. The desired convergence (70) will be
established if we show

(78)

for each and

(79)

We establish (78) and (79) in turn in Sections XIV and XV,
respectively. Throughout, we shall make use of several bounds.
The following bounds

(80)

are standard.
Furthermore, fix and consider such

that . With (72) in mind, for each , we note
that

since . The bounds

follow, whence

(81)

It is also easy to see that

where for each , we have
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since , and the bounds

(82)

follow.

XIV. ESTABLISHING (78)

Fix and consider such that .
Also let with in and positive integer such
that .
Using the lower bounds at (81) and (82) into (73), we get

(83)

since , . The event depends only on
the rvs and .
Write

and use a straightforward conditioning argument to conclude
that

(84)

upon applying the bound (83). By Lemma 12.5, we get

(85)

as we make use of (80). With the help of (36), we also note from
(56) that

(86)

with

(87)

Now, pick any given positive integer and con-
sider a scaling such that
exists and (10) holds for some . Replace by in
(85) according to this scaling.

For sufficiently large, upon using (12), (85), and (86), we
get

(88)

with the sequence satisfying .
On the other hand, upon making repeated use of the bounds

(39), we find from (87) that

Therefore, with an eye toward the last factor in (88), we obtain

(89)

with

To conclude, let go to infinity in (88): The assumptions of
Proposition 11.1 yield

(90)
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since here we have assumed , and the desired conclusion
(78) follows from (88) as a consequence of (89) and (90).

XV. ESTABLISHING (79)

Fix and consider with in
, and positive integer such that . Pick

. Recall that the event depends
only on and .
A straightforward conditioning argument with respect to these
rvs yields

(91)

as we use the bound (71). By the observation made
earlier, the event is independent of the rvs

, hence is independent of the rv
, and we conclude

(92)

Pick arbitrary in and recall Lemma 12.3. A simple
decomposition argument shows that

where

Whenever , we have

(93)

since on that range, we have

Next, combine (92) with (77) and (93). By arguments similar
to the ones leading to (85), we obtain

(94)

with the help of (80).

Now, consider a scaling such that
exists and (10) holds for some .

Replace by in (94) according to this scaling, and use (12).
With integer (to be further specified shortly) for

, we now get

(95)

with

for each —The last step made use of the lower
bound at (39). It is plain that since

. Hence, there exists a positive integer
such that for all .

Thus, on that range

by standard results on convergent geometric series. Note that

for each .
Finally, let go to infinity in the last inequality: If we select
such that

then

and the desired conclusion (79) follows. For each in ,
since , this choice of is always feasible by taking
sufficiently large, specifically
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APPENDIX A
A PROOF OF PROPOSITION 10.1

The basis for deriving (59) lies in the observation that nodes
1 and 2 are both isolated in if and only if each
edge in incident to one of these nodes is not present in

. Thus, if and only if both sets
of conditions

and

hold.
To formalize this observation, we introduce the random sets

and defined by

and

Thus, node in is neither node 1 nor node 2, and is
K-adjacent to node 1. Similarly, node in is neither
node 1 nor node 2, and is K-adjacent to node 2. Let denote
the total number of edges in that are incident to either
node 1 or node 2. It is plain that

(96)

with the last term accounting for the possibility that
nodes 1 and 2 are K-adjacent. By conditioning on the rvs

, we readily conclude from the earlier
observation that

(97)

under the enforced independence on the collections of rvs
and .

To proceed, we need to assess the various contributions to
: Using (1), we find

(98)

where the last step made use of fact . Similar
arguments show that

By the definition of , we now get

(99)

upon using (1) one more time, where

In order to evaluate the expression (97), we first compute the
conditional expectation

(100)

From (99), this quantity can be evaluated as the product of the
two terms

(101)

and

(102)

To evaluate this last conditional expectation, for each
, we set

with and elements of . It is straightforward to check
that

Then, with the notation introduced earlier in Section IX, we can
write
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Next, the two rvs and being jointly inde-
pendent of the rvs , we find

(103)

where the rvs and are given by (57) and (58),
respectively. Therefore, since

by a standard preconditioning argument, the expression (59) is
obtained upon writing (100) as the product of the quantities
(101) and (102), and using (103).

APPENDIX B
PROOFS OF LEMMAS 12.1 AND 12.2

The defining conditions for lead to the representation

where we have set

with and . In terms of indicator
functions, with the help of (1), this definition reads

The three collection of rvs ,
, and

are mutually independent. It is
then elementary to see that

under the enforced independence assumptions, where

Since for , 1, we obtain

(104)

A. A Proof of Lemma 12.1

It is plain from (104) that

and (71) immediately follows upon noting that

B. A Proof of Lemma 12.2

We start at (104). Conditioning on the rvs
and (rather than
), we find that

(105)

where we have set

with subsets of , each of size .
Next, we find



YAĞAN AND MAKOWSKI: MODELING THE PAIRWISE KEY PREDISTRIBUTION SCHEME 1759

under the enforced independence assumptions. Fix
and note that

(106)

where (106) follows from the negative association of the rvs
(53)—Use (50) and note that

Next, for each , we have

whence

Combining these observations readily leads to

From (105), we finally obtain

and the desired conclusion (73) follows.
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