Two dimensional solutions of Laplace's equations in Cartesian coordinates are easy to come by. Let \(z = x + iy \) be a complex number, and \(f(z) \) any complex analytic function of \(z \). Examples of analytic functions are: \(z^n, \sin z, e^z \ldots \) The complex function \(f \) will have a real part \(f_R(x,y) \) and an imaginary part \(f_I(x,y) \) each of which depend on \(x \) and \(y \). Both \(f_R \) and \(f_I \) can be regarded as the real functions of \(x \) and \(y \) as well as the real and imaginary parts of the complex function \(f = f_R + i f_I \).

Show that \(f_R \) and \(f_I \) are both solutions of Laplace's Equation. Along the way you must first show the following (Cauchy-Riemann) equations,

\[
\frac{\partial f_R}{\partial x} = -\frac{\partial f_I}{\partial y}, \quad \frac{\partial f_R}{\partial y} = \frac{\partial f_I}{\partial x}.
\]

Take \(f(z) \) to be \(\arcsin(z) \). Make contour plots of the potential corresponding to the real part of \(f \). What problem is this the potential for?