Chapter 36 Review

AC Circuits

Three categories of time behavior

- <u>Direct Current (DC)</u> Voltages and currents are constants in time. Example: batteries - circuits driven by batteries
- 2. <u>Transients</u> Voltages and currents change in time after a switch is opened or closed. Changes diminish in time and stop if you wait long enough.

3. <u>Alternating Current (AC)</u>. The voltages and currents continually change sinusoidally in time.

Examples: our power grid when it is on. f=60 Hz, V=110 V (RMS) audio signals communication signals Power in microwave ovens Power in MRI machines

Real Life voltages involve DC, AC and Transients

AC - Circuits

<u>First Rule of AC - Circuits</u> - everything oscillates at the same frequency

- The problem then becomes: Find the amplitude and phase of each voltage and current.
- <u>Phasors</u> Everything you learned about DC circuits can be applied to AC circuits provided you do the following:
- 1. Replace all voltages and currents by their complex phasor amplitudes. In practice this means putting a hat on each letter.
- 2. Treat inductors as resistors with "resistance" $j\omega L$
- 3. Treat capacitors as resistors with "resistance" $1/(j\omega C)$

Foolproof sign convention for two terminal devices

Contribution to voltage sum = +V

- 1. Label current going in one terminal (your choice).
- 2. Define voltage to be potential at that terminal wrt the other terminal

$$V = V_2 - V_1$$

- 3. Then <u>no</u> minus signs
- V = RI $V = L\frac{dI}{dt}$ $I = C\frac{dV}{dt}$

Power to device

$$P = VI$$

Phasors for R-L circuit

Result:
$$\hat{I} = \frac{\hat{V}_0}{Z}$$

Impedance $Z = R + jX_L$

Write currents and voltages in phasor form

$$V_{s}(t) = \operatorname{Re}\left[\hat{V}_{0}e^{j\omega t}\right] \quad V_{L}(t) = \operatorname{Re}\left[\hat{V}_{L}e^{j\omega t}\right]$$
$$I(t) = \operatorname{Re}\left[\hat{I}e^{j\omega t}\right] \quad V_{R}(t) = \operatorname{Re}\left[\hat{V}_{R}e^{j\omega t}\right]$$

Write circuit equations for phasor amplitudes

KVL:
$$0 = \hat{V}_L + \hat{V}_R - \hat{V}_0$$
$$\hat{V}_L = j(\omega L)\hat{I} = jX_L\hat{I}$$
$$\hat{V}_R = R\hat{I}$$

Multiplying \hat{V}_0 by $e^{j\omega t}$ rotates the angle of the product by ωt

Remember:

$$|Z_3| = |Z_1||Z_2|$$
$$\theta_3 = \theta_1 + \theta_2$$

How to use in circuits:

1. Every voltage and current is written in phasor form:

$$V_{s}(t) = \operatorname{Re}\left[\hat{V}_{0}e^{j\omega t}\right]$$
$$I(t) = \operatorname{Re}\left[\hat{I}e^{j\omega t}\right]$$
$$V_{L}(t) = \operatorname{Re}\left[\hat{V}_{L}e^{j\omega t}\right]$$

Result:
$$\hat{I} = \frac{\hat{V}_0}{Z}$$

Impedance $Z = R + jX_L$

Impedance has a magnitude and phase

$$Z = |Z|e^{j\phi_{Z}}$$

$$X_{L}$$

$$|Z| = \sqrt{R^{2} + X_{L}^{2}}$$

$$IZ = \sqrt{R^{2} + X_{L}^{2}}$$

Resistor Voltage

$$\hat{V}_{R} = R\hat{I} = \hat{V}_{0} \frac{R}{Z} = \hat{V}_{0} \frac{R}{|Z|} e^{-j\phi_{Z}}$$

Inductor Voltage

$$\hat{V}_{L} = jX_{L}\hat{I} = \hat{V}_{0}\frac{jX_{L}}{Z} = \hat{V}_{0}\frac{X_{L}}{|Z|}e^{j(\frac{\pi}{2}-\phi_{Z})}$$
Note: $j = e^{j\frac{\pi}{2}}$

Power Dissipated in Resistor

Root Mean Square (RMS) Voltage and Current

Current
$$I(t) = I_R \cos[\omega t]$$
 Average Power $P = \frac{1}{2}RI_R^2$
Peak current

What would be the equivalent DC current as far as average power is concerned?

$$I_{RMS} = \frac{I_R}{\sqrt{2}}$$

Average Power
$$P = RI_{RMS}^2$$
 - No pesky 2

What is the peak voltage for 110 V-AC- RMS?

A: 156 V

Current phasor

$$\hat{I} = \frac{\hat{V}_0}{R + j[\omega L - 1/(\omega C)]} = \frac{\hat{V}_0}{Z}$$

Complex Impedance $Z = R + j[\omega L - 1/(\omega C)]$ Magnitude of Impedance $|Z| = \sqrt{R^2 + [\omega L - 1/(\omega C)]^2}$ Phase of Impedance $\tan \phi = [\omega L - 1/(\omega C)]/R$

Resonance: At what frequency is the amplitude of the current maximum?

Resonant frequency

How narrow is the Resonance?

$$\hat{I} = \frac{\left| \hat{V}_{0} \right|}{\left| Z \right|} = \frac{\left| \hat{V}_{0} \right|}{\sqrt{R^{2} + \left[\omega L - 1 / (\omega C) \right]^{2}}}$$

$$\bigvee \bigwedge \bigwedge$$
Width of resonance determined by when these two are equal when these two are equal Quality Factor

Quality factor determines rate of decay of transient

envelope
$$= e^{-\omega_o t/(2Q)}$$

$$\frac{Power \ dissipated \ in \ R}{Energy \ stored \ in \ L \& C} = \frac{\omega_0}{Q}$$

Power Delivered to a Capacitor

Voltage $V(t) = V_C \cos[\omega t]$ Current I(t) = CdV(t) / dt $I(t) = -\omega CV_C \sin[\omega t]$

Instantaneous Power

 $p(t) = IV = -\omega CV_C^2 \cos[\omega t] \sin[\omega t]$ $p(t) = -\frac{\omega CV_C^2}{2} \sin[2\omega t]$

Average Power

Important Concepts

AC circuits are driven by an emf

 $\mathcal{E} = \mathcal{E}_0 \cos \omega t$

that oscillates with angular frequency $\omega = 2\pi f$.

Phasors can be used to represent the oscillating emf, current, and voltage.

Basic circuit elements

Element	i and v	Resistance/ reactance	I and V	Power
Resistor	In phase	R is fixed	V = IR	$V_{\rm rms}I_{\rm rms}$
Capacitor	<i>i</i> leads <i>v</i> by 90°	$X_{\rm C} = 1/\omega C$	$V = IX_{\rm C}$	0
Inductor	<i>i</i> lags <i>v</i> by 90°	$X_{\rm L} = \omega L$	$V = IX_{\rm L}$	0

For many purposes, especially calculating power, the **root-mean-square** (rms) quantities

$$V_{\rm rms} = V/\sqrt{2}$$
 $I_{\rm rms} = I/\sqrt{2}$ $\mathcal{E}_{\rm rms} = \mathcal{E}_0/\sqrt{2}$

are equivalent to the corresponding DC quantities.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Key Skills

Phasor diagrams

- Start with a phasor (v or i) common to two or more circuit elements.
- The sum of instantaneous quantities is vector addition.
- Use the Pythagorean theorem to relate peak quantities.

For an RC circuit, shown here,

 $v_{\rm R} + v_{\rm C} = \mathcal{E}$ $V_{\rm R}^2 + V_{\rm C}^2 = \mathcal{E}_0^2$

Kirchhoff's laws

Loop law The sum of the potential differences around a loop is zero.

Junction law The sum of currents entering a junction equals the sum leaving the junction.

Instantaneous and peak quantities

Instantaneous quantities v and i generally obey different relationships than peak quantities V and I.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Review of Waves

Properties of electromagnetic waves in vacuum:

Waves propagate through vacuum (no medium is required like sound waves)

All frequencies have the same propagation speed, c in vacuum.

Electric and magnetic fields are oriented transverse to the direction of propagation. (transverse waves)

Waves carry both energy and momentum.

Solution of the Wave equation

$$\frac{\partial^2 E_y(x,t)}{\partial x^2} = \mu_0 \varepsilon_0 \, \frac{\partial^2 E_y(x,t)}{\partial t^2}$$

$$E_{y}(x,t) = f_{+}(x - v_{em}t) + f_{-}(x + v_{em}t)$$

Where $f_{+,-}$ are any two functions you like, and $v_{em} = 1 / \sqrt{\mu_0 \varepsilon_0}$

 v_{em} is a property of space. $v_{em} = 2.9979 \times 10^8 \ m / s$

 $f_{+,-}$ Represent forward and backward propagating wave (pulses). They depend on how the waves were launched

What is the magnetic field of the wave?

$$E_{y}(x,t) = f_{+}(x - v_{em}t) + f_{-}(x + v_{em}t)$$

$$B_{z}(x,t) = \frac{1}{v_{em}} \left(f_{+}(x - v_{em}t) - f_{-}(x + v_{em}t) \right)$$

Notice minus sign

E and B fields in waves and Right Hand Rule:

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Special Case Sinusoidal Waves

$$E_{y}(x,t) = f_{+}(x - v_{em}t) = E_{0} \cos[k(x - v_{em}t)]$$

Wavenumber and wavelength

$$k = 2\pi / \lambda$$

 $\lambda = 2\pi / k$

These two contain the same information

Special Case Sinusoidal Waves

$$E_{y}(x,t) = f_{+}(x - v_{em}t) = E_{0} \cos[k(x - v_{em}t)]$$

Different ways of saying the same thing:

$$\omega / k = v_{em} \qquad f\lambda = v_{em}$$

Polarizations

We picked this combination of fields: $E_y - B_z$

(a) Vertical polarization

Could have picked this combination of fields: $E_z - B_y$

(b) Horizontal polarization

These are called plane polarized. Fields lie in plane

Energy Density and Intensity of EM Waves

Energy density associated with electric and magnetic fields

$$u_E = \frac{\varepsilon_0 \left| \vec{\mathbf{E}} \right|^2}{2} \qquad u_B = \frac{\left| \vec{\mathbf{B}} \right|^2}{2\mu_0}$$

For a wave: $\left| \vec{\mathbf{B}} \right| = \frac{1}{v_{em}} \left| \vec{\mathbf{E}} \right| = \sqrt{\varepsilon_0 \mu_0} \left| \vec{\mathbf{E}} \right|$

Thus:

$$u_E = u_B$$
 Units: J/m³

Energy density in electric and magnetic fields are equal for a wave in vacuum.

Wave Intensity - Power/area

In time $\Delta t = L/v_{em}$ an amount of energy

$$U = V(u_E + u_B) = AL\varepsilon_0 \left| \vec{\mathbf{E}} \right|^2$$

comes through the area A.

I=Power/Area

$$I = \frac{U}{\Delta tA} = \sqrt{\frac{\varepsilon_0}{\mu_0}} \left| \vec{\mathbf{E}} \right|^2$$

Poynting Vector

The power per unit area flowing in a given direction

$$\vec{\mathbf{S}} = \frac{1}{\mu_0} \vec{\mathbf{E}} \times \vec{\mathbf{B}}$$

$$\left| \vec{\mathbf{S}} \right| = I = \sqrt{\frac{\mathcal{E}_0}{\mu_0}} \left| \vec{\mathbf{E}} \right|^2$$

What are the units of
$$\sqrt{\frac{\mu_0}{\varepsilon_0}}$$
 Ans: Ohms
 $I - W/m^2$, E - V/m $\sqrt{\frac{\mu_0}{\varepsilon_0}} = 377\Omega$

Polarizations

We picked this combination of fields: $E_y - B_z$

(a) Vertical polarization

Could have picked this combination of fields: $E_z - B_y$

(b) Horizontal polarization

These are called plane polarized. Fields lie in plane

FIGURE 35.28 A polarizing filter.

The polymers are parallel to each other.

We now want to expand the picture in the following way:

EM waves propagate in 3D not just 1D as we have considered. - <u>Diffraction</u> - waves coming from a finite source spread out.

EM waves propagate through material and are modified.

- <u>Dispersion</u> waves are slowed down by media, different frequency waves travel with different speeds
- <u>Reflection</u> waves encounter boundaries between media. Some energy is reflected.
- <u>Refraction</u> wave trajectories are bent when crossing from one medium to another.

EM waves can take multiple paths and arrive at the same point.

- <u>Interference</u> - contributions from different paths add or cancel.

• Quantum optics: Light actually comes in chunks called photons

Electric flux

 κ Dielectric constant

In a dielectric material

Consequences for EM Plane waves

$$\begin{split} E_{y}(x,t) &= f_{+}(x - v_{em}t) + f_{-}(x + v_{em}t) \\ B_{z}(x,t) &= \frac{1}{v_{em}} \left(f_{+}(x - v_{em}t) - f_{-}(x + v_{em}t) \right) \\ v_{em} &= 1 / \sqrt{\mu_{0}\varepsilon_{0}\kappa} = c / \sqrt{\kappa} \end{split}$$

Propagation speed changes Refraction

Ratio of E to B changes Reflection For sinusoidal waves the following is still true

$$f\lambda = v_{em}$$

$$\omega$$
 / $k = v_{_{em}}$

For sinusoidal waves the following is still true $f\lambda = v_{em}$

$$\omega$$
 / $k=v_{_{em}}$

Frequency is the same in both media

Wavelength changes

Reflection from surface

Reflection coefficient

$$\rho = \frac{v_2 - v_1}{v_2 + v_1}$$

What if
$$\kappa_1 = \kappa_2$$

"Index matched"

Interference in 1 Dimension

Incident and reflected waves will interfere, changing the peak electric field at different points

Case #4: partial reflection ρ = -0.5

E plotted versus x for several values of t

How far apart are the minima? The Maxima? What is peak E?

When reflection is not total there are still local maxima and minima.

$$\frac{E_{\text{max}}}{E_{\text{min}}} = \frac{1+|\rho|}{1-|\rho|} = \text{VSWR}$$

Voltage Standing Wave Ratio Pronounced "vizwarr"

Summary

- 1. Waves are modified by dielectric constant of medium, κ .
- 2. All our Maxwell equations are valid provided we replace

$$\varepsilon_0 \to \varepsilon_0 \kappa$$

3. Speed of waves is lowered. (Index of refraction - n)

$$n = \frac{\text{speed of light in vacuum}}{\text{speed of light in material}} = \frac{c}{v_{em}} = \sqrt{\kappa}$$

4. Frequency of wave does not change in going from one medium to another. Wavelength does. $\lambda = \lambda_{vac} / n$

5. Waves are reflected at the boundary between two media. (Reflection coefficient)

$$\rho = \frac{v_2 - v_1}{v_2 + v_1} = \frac{n_1 - n_2}{n_1 + n_2}$$

6. Reflected waves interfere with incident waves.

Distance between interference maxima/minima $\lambda/2$

Ratio of maximum peak field to minimum peak field (Voltage standing wave ratio)

$$\frac{E_{\text{max}}}{E_{\text{min}}} = \frac{1 + |\rho|}{1 - |\rho|} = \text{VSWR}$$

Chapters 21 & 22

Interference and Wave Optics

Waves that are coherent can add/cancel

Patterns of strong and weak intensity

Two in-phase sources emit circular or spherical waves.

- Points of constructive interference. A crest is aligned with a crest, or a trough with a trough.
- Points of destructive interference. A crest is aligned with a trough of another wave.

Two sources that have exactly the same frequency. "<u>Coherent</u>" \checkmark $E(r,t) = A(r_1)\cos(kr_1 - \omega t + \phi_1)$

$$+A(r_2)\cos(kr_2-\omega t+\phi_2)$$

Sources will interfere <u>constructively</u> when

$$(kr_1 + \phi_1) - (kr_2 + \phi_2) = 2\pi m$$

 $m = 0, 1, 2, ...$

Sources will interfere <u>destructively</u> when

$$(kr_1 + \phi_1) - (kr_2 + \phi_2) = 2\pi \left(m + \frac{1}{2}\right)$$

Interference of light

Coherence because sources are at exactly the same frequency

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Sources will interfere constructively when

$$(kr_1 + \phi_1) - (kr_2 + \phi_2) = k\Delta r = 2\pi m$$

$$k\Delta r = kd\sin\theta = 2\pi m$$
$$\sin\theta_m \approx \theta_m = m\lambda / d$$

Phases same because source comes from a single incident plane wave

$$m = 0, 1, 2, \dots$$

Dark fringes
$$\sin \theta_m \approx \theta_m = \left(m + \frac{1}{2}\right) \lambda / d$$

Intensity on a distant screen

$$I_{ave} = \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} \left| 2A\cos(\frac{k\Delta r}{2}) \right|^2$$

$$k\Delta r = kd\sin\theta \simeq kd\ \theta = \frac{2\pi}{\lambda}d\ \frac{y}{L}$$

 $\underline{L\lambda}$

d

Fringe spacing
$$\Delta y =$$

Intensity from a single source

$$I_1 = \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} \left| A \right|^2$$

Maximum Intensity at fringe

$$I_{fringe} = \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} \left| 2A \right|^2 = 2I_1$$

Diffraction Grating N slits, sharpens bright fringes

Bright fringes at same angle as for double slit

$$\sin\theta_m = m\lambda \,/\, d$$

$$m = 0, 1, 2, \dots$$

Location of Fringes on distant screen

Intensity on a distant screen $I = \sqrt{\frac{\varepsilon_0}{\mu_0}} |\mathbf{E}|^2$

Average over time $I_{ave} = \frac{1}{2}I$

Intensity from a single slit $I_1 = \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu}} |A|^2$

, amplitude from a single slit

At the bright fringe N slits interfere constructively

$$I_{fringe} = \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} \left| NA \right|^2 = N^2 I_1$$

Spatial average of intensity must correspond to sum of N slits

$$I_{SA} = NI_1$$

Huygen's Principle

- 1. Each point on a wave front is the source of a spherical wavelet that spreads out at the wave speed.
- 2. At a later time, the shape of the wave front is the line tangent to all the wavelets.

Huygens Principle:

(b) Spherical wave Initial wave front Each point is the source of a spherical wavelet. The wave front at a later time is tangent to all the wavelets.

The wavelets from each point on the initial wave front overlap and interfere, creating a diffraction pattern on the screen.

Width of Central Maximum

$$\frac{w}{\overline{r}} = \frac{2\lambda}{a}$$

What increases w?

- 1. Increase distance from slit.
- 2. Increase wavelength
- 3. Decrease size of slit

Circular aperture diffraction

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Width of central maximum

$$\frac{w}{L} = \frac{2.44\lambda}{D}$$

Wave Picture vs Ray Picture

(b)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

If D >> w, ray picture is OK If D <= w, wave picture is needed $\frac{w}{L} = \frac{2.44\lambda}{D}$

Critical size:
$$D_c = w \implies D_c = \sqrt{2.44\lambda L}$$

If product of wave length and distance to big, wave picture necessary.

$$\lambda = 500 nm = 5 \times 10^{-7} m$$

$$D_c = \sqrt{2.44\lambda L} = 427\,m$$

Interferometer

 $\Delta m = \frac{\Delta L}{\lambda / 2}$

Sources will interfere <u>constructively</u> when

$$\Delta r = 2L = m\lambda \qquad m = 0, 1, 2, \dots$$

Sources will interfere <u>destructively</u> when

$$\Delta r = 2L = \left(m + \frac{1}{2}\right)\lambda$$

What is seen

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

As L2 is varied, central spot changes from dark to light, etc. Count changes = Δm

If I vary
$$L_2 \qquad \Delta m = \frac{\Delta L_2}{\lambda/2}$$

Measuring Index of refraction

Number of fringe shifts as cell fills up Number of wavelengths in cell when empty

$$m_1 = \frac{2d}{\lambda_{vac}}$$

Number of wavelengths in cell when full

$$m_2 = \frac{2d}{\lambda_{gas}} = \frac{2d}{\lambda_{vac} / n_{gas}}$$

 $\Delta m = m_2 - m_1 = \left(n_{gas} - 1\right) \frac{2d}{\lambda_{vac}}$