Review of Waves

Properties of electromagnetic waves in vacuum:

Waves propagate through vacuum (no medium is required like sound waves)

All frequencies have the same propagation speed, c in vacuum.

Electric and magnetic fields are oriented transverse to the direction of propagation. (transverse waves)

Waves carry both energy and momentum.

E and B fields in waves and Right Hand Rule:

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Special Case Sinusoidal Waves

$$E_{y}(x,t) = f_{+}(x - v_{em}t) = E_{0} \cos[k(x - v_{em}t)]$$

Wavenumber and wavelength

$$k = 2\pi / \lambda$$
$$\lambda = 2\pi / k$$

These two contain the same information

Special Case Sinusoidal Waves

$$E_{y}(x,t) = f_{+}(x - v_{em}t) = E_{0} \cos[k(x - v_{em}t)]$$

Different ways of saying the same thing:

$$\omega / k = v_{em} \qquad f\lambda = v_{em}$$

Polarizations

We picked this combination of fields: $E_y - B_z$

(a) Vertical polarization

Could have picked this combination of fields: $E_z - B_v$

(b) Horizontal polarization

These are called plane polarized. Fields lie in plane

Which of the following are valid EM waves?

1.

A. YesB. No

$$E_x(z,t) = E_0 \cos\left[k(z - v_{em}t)\right]$$
$$B_y(z,t) = \frac{E_0}{v_{em}} \cos\left[k(z - v_{em}t)\right]$$

2. A.Yes B. No

$$E_{y}(y,t) = E_{0} \cos[k(y - v_{em}t)]$$
$$B_{z}(y,t) = \frac{E_{0}}{v_{em}} \cos[k(y - v_{em}t)]$$

3.

A.Yes B. No

$$E_x(y,t) = E_0 \cos[k(y+v_{em}t)]$$
$$B_z(y,t) = \frac{E_0}{v_{em}} \cos[k(y+v_{em}t)]$$

- 4. What direction is this wave propagating in?
 - A. Y
 - B. Z
 - C. X
 - D. None of above

$$E_{x}(y, z, t) = E_{0} \cos[ky \cos\theta + kz \sin\theta - \omega t]$$
$$\omega = ?$$
$$\vec{\mathbf{B}} = ?$$

Energy Density and Intensity of EM Waves

Energy density associated with electric and magnetic fields

Thus:

$$u_E = u_B$$
 Units: J/m³

Energy density in electric and magnetic fields are equal for a wave in vacuum.

We now want to expand the picture in the following way:

EM waves propagate in 3D not just 1D as we have considered. - <u>Diffraction</u> - waves coming from a finite source spread out.

EM waves propagate through material and are modified.

- <u>Dispersion</u> waves are slowed down by media, different frequency waves travel with different speeds
- <u>Reflection</u> waves encounter boundaries between media. Some energy is reflected.
- <u>Refraction</u> wave trajectories are bent when crossing from one medium to another.

EM waves can take multiple paths and arrive at the same point.

- <u>Interference</u> - contributions from different paths add or cancel.

Waves emanating from a point source

(a)

Wave fronts are the crests of the wave. They are spaced one wavelength apart.

Very far from the source, small segments of spherical wave fronts appear to be planes. The wave is cresting at every point in these planes.

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

geometric optics.

• Quantum optics: Light actually comes in chunks called photons

Circular waves spread out on the right. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

(b)

A Comparable to opening size

What is the difference? Diffraction.

 λ Much smaller than opening size

Propagation of light through dielectric media

In a dielectric the Electric field causes molecules/atoms to become polarized.

What happens when the electric field oscillates in time?

A current is induced.

 $I\propto \frac{\partial E}{\partial t}$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

For S₂ there is both displacement current and real current

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 (I_{\text{through}} + I_{\text{disp}}) = \mu_0 \left(I_{\text{through}} + \epsilon_0 \frac{d\Phi_e}{dt} \right)$$
(35.22)

Electric flux

 κ Dielectric constant

In a dielectric material

	Material	Dielectric constant ĸ	Dielectric strength $E_{\rm max}$ (10 ⁶ V/m)
Static dielectric constants	Vacuum	1	
	Air (1 atm)	1.0006	3
	Teflon	2.1	60
To complicate matters, dielectric constant depends on frequency.	Polystyrene plastic	2.6	24
	Mylar	3.1	7
	Paper	3.7	16
	Pyrex glass	4.7	14
Dielectric function depends on frequency	Pure water (20°C)	80	
	Titanium dioxide	110	6
	Strontium titanate	300	8

TABLE 30.1 Properties of dielectrics

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Consequences for EM Plane waves

$$\begin{split} E_{y}(x,t) &= f_{+}(x-v_{em}t) + f_{-}(x+v_{em}t) \\ B_{z}(x,t) &= \frac{1}{v_{em}} \left(f_{+}(x-v_{em}t) - f_{-}(x+v_{em}t) \right) \\ v_{em} &= 1 / \sqrt{\mu_{0}\varepsilon_{0}\kappa} = c / \sqrt{\kappa} \end{split}$$

Propagation speed changes in a material Refraction

Ratio of E to B changes Reflection For sinusoidal waves the following is still true

$$f\lambda = v_{em}$$

$$\omega$$
 / $k = v_{em}$

Index of refraction

$$n = \frac{speed \ of \ light \ in \ vacuum}{speed \ of \ light \ in \ material} = \frac{c}{v_{em}} = \sqrt{\kappa}$$

TABLE 20.2 Typical indices of refraction

Material	Index of refraction		
Vacuum	1 exactly		
Air	1.0003		
Water	1.33		
Glass	1.50		
Diamond	2.42		

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

For sinusoidal waves the following is still true $f\lambda = v_{em}$ $\omega / k = v_{em}$

Frequency is the same in both media

Wavelength changes

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesle

A light wave travels through three transparent materials of equal thickness. Rank in order, from the largest to smallest, the indices of refraction n_1 , n_2 , and n_3 .

A. $n_1 > n_2 > n_3$ B. $n_2 > n_1 > n_3$ C. $n_3 > n_1 > n_2$ D. $n_3 > n_2 > n_1$ E. $n_1 = n_2 = n_3$

Example: Optical fiber

Fused silica: n=1.48

In vacuum

 $I = \sqrt{\frac{\varepsilon_0}{\mu_0}} \left| \vec{\mathbf{E}} \right|^2$ Vacuum wavelength $\lambda = 1550$ nm Wavelength in fiber $\lambda/n = 1045$ nm $D = 10 \ \mu m$ P=1mW inside fiber I=P/A=?E=?

Rays bounce back and forth

Reflection from surface

Reflection coefficient

$$\rho = \frac{v_2 - v_1}{v_2 + v_1}$$

What if $\kappa_1 = \kappa_2$, $v_1 = v_2$

"Index matched"

Continuity of E_y at x=0 x < 0 x>0 $E_y(0,t) = f_+(-v_1t) + f_-(v_1t) = f_t(-v_2t)$ Continuity of B_z at x=0 x < 0 x>0 $B_z(0,t) = \frac{1}{v_1} (f_+(-v_1t) - f_-(v_1t)) = \frac{1}{v_2} f_t(-v_2t)$

Solve for reflected & transmitted pulses

$$f_{-}(v_{1}t) = \rho f_{+}(-v_{1}t) \qquad \rho = \frac{v_{2} - v_{1}}{v_{2} + v_{1}}$$

$$f_{t}(-v_{2}t) = (1+\rho)f_{+}(-v_{1}t) \qquad \rho = \frac{v_{2} - v_{1}}{v_{2} + v_{1}}$$

Example: what fraction of power is reflected at boundary between glass and air?

Reflection coefficient
$$\rho = \frac{v_2 - v_1}{v_2 + v_1} = \frac{n_1 - n_2}{n_1 + n_2}$$

Air: $n_1 = 1.0003$ Glass: $n_2 = 1.5$

$$\rho = \frac{n_1 - n_2}{n_1 + n_2} = \frac{1 - 1.5}{1 + 1.5} = -0.2$$

ratio of reflected to incident electric field amplitude

I=Power/Area

 $I = \sqrt{\frac{\varepsilon_0}{\mu_0}} \left| \vec{\mathbf{E}} \right|^2$

$$I_{\text{Refl}} = \rho^2 I_{\text{Inc}}$$
$$I_{\text{Refl}} = 0.04 I_{\text{Inc}}$$

ratio of reflected to incident intensity

Suppose the wave was incident on the boundary from the glass side

n₁=1.5 n₂=1.0 What is reflection coefficient? $\rho = \frac{v_2 - v_1}{v_2 + v_1} = \frac{n_1 - n_2}{n_1 + n_2}$

What is reflection coefficient? A. $\rho=0$ B. $\rho=.2$ ρ C. $\rho=-.2$ D. $\rho=5$

$$\rho = \frac{v_2 - v_1}{v_2 + v_1} = \frac{n_1 - n_2}{n_1 + n_2}$$

Region 2 has higher velocity

$$\rho = \frac{v_2 - v_1}{v_2 + v_1} = \frac{n_1 - n_2}{n_1 + n_2} > 0$$

Region 2 has lower velocity

$$\rho = \frac{v_2 - v_1}{v_2 + v_1} = \frac{n_1 - n_2}{n_1 + n_2} < 0$$

What if
$$\kappa_2, n_2 \to \infty$$

$$\rho = \frac{n_1 - n_2}{n_1 + n_2} \to -1$$

Same as for reflection from a conductor

Interference in 1 Dimension

Incident and reflected waves will interfere, changing the peak electric field at different points

Case #1: no reflection ρ=0. No interference,

E plotted versus x for several values of t

E plotted versus t for a single value of x.

Same peak value independent of x

Traveling wave

Case #2: total reflection ρ = -1.

E plotted versus x for several values of t

How far apart are the nodes? Anti-nodes? What is peak E?

Case #3: total reflection ρ = +1.

E plotted versus x for several values of t

Case #4: partial reflection ρ = -0.5

E plotted versus x for several values of t

How far apart are the minima? The Maxima? What is peak E?

When reflection is not total there are still local maxima and minima.

$$\frac{E_{\text{max}}}{E_{\text{min}}} = \frac{1 + |\rho|}{1 - |\rho|} = \text{VSWR}$$

Voltage Standing Wave Ratio Pronounced "vizwarr"

Half Wavelength Window Eliminates Reflection

When dielectric #2 is an integer number of half-wavelengths thick, no reflection

CVD diamond window

Manufactured by elementsix

http://www.e6.com/wps/wcm/connect/E6_Content_EN/Home

Summary

- 1. Waves are modified by dielectric constant of medium, κ .
- 2. All our Maxwell equations are valid provided we replace

$$\varepsilon_0 \to \varepsilon_0 \kappa$$

3. Speed of waves is lowered. (Index of refraction - n)

$$n = \frac{\text{speed of light in vacuum}}{\text{speed of light in material}} = \frac{c}{v_{em}} = \sqrt{\kappa}$$

4. Frequency of wave does not change in going from one medium to another. Wavelength does. $\lambda = \lambda_{vac} / n$

5. Waves are reflected at the boundary between two media. (Reflection coefficient)

$$\rho = \frac{v_2 - v_1}{v_2 + v_1} = \frac{n_1 - n_2}{n_1 + n_2}$$

6. Reflected waves interfere with incident waves.

Distance between interference maxima/minima $\lambda/2$

Ratio of maximum peak field to minimum peak field (Voltage standing wave ratio)

$$\frac{E_{\text{max}}}{E_{\text{min}}} = \frac{1 + |\rho|}{1 - |\rho|} = \text{VSWR}$$

Solution of the Wave equation

$$\frac{\partial^2 E_y(x,t)}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_y(x,t)}{\partial t^2}$$

$$E_{y}(x,t) = f_{+}(x - v_{em}t) + f_{-}(x + v_{em}t)$$

Where $f_{+,-}$ are any two functions you like, and $v_{em} = 1 / \sqrt{\mu_0 \varepsilon_0}$

 v_{em} is a property of space. $v_{em} = 2.9979 \times 10^8 \ m / s$

 $f_{+,-}$ Represent forward and backward propagating wave (pulses). They depend on how the waves were launched

What is the magnetic field of the wave?

$$E_{y}(x,t) = f_{+}(x - v_{em}t) + f_{-}(x + v_{em}t)$$

$$B_{z}(x,t) = \frac{1}{v_{em}} \left(f_{+}(x - v_{em}t) - f_{-}(x + v_{em}t) \right)$$

Notice minus sign

The graph at the top is the history graph at x = 4 m of a wave traveling to the right at a speed of 2 m/s. Which is the history graph of this wave at x = 0 m?

What is the phase difference between the crest of a wave and the adjacent trough?

A. 0
B. π
C. π /4
D. π /2
E. 3 π /2