Moving charges exert forces on each other that augment (add to) Coulomb's Law
This can be viewed as a two-step process:

1. Moving charges (or equivalently electrical currents) create a magnetic field,

$$
\overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}})=\frac{\mu_{0}}{4 \pi} \frac{q \overrightarrow{\mathbf{v}} \times \hat{\mathbf{r}}}{r^{2}},
$$

Here $\overrightarrow{\mathbf{v}}$ is the velocity of the moving charge.
This is the analog to the expression for the electric field due to a point charge.

$$
\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\frac{q}{4 \pi \varepsilon_{0}} \frac{\hat{\mathbf{r}}}{r^{2}}
$$

Superposition applies if a number of moving charges are present just as in the case of electric fields. As in the case of electric fields, most of your grief will come from trying to apply the principle of superposition.
2. A charge moving through a magnetic field feels a force (called the Lorenz force) given by

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}} .
$$

The total electric and magnetic force on a moving charged particle is the sum of the contributions due to electric and magnetic fields,

$$
\overrightarrow{\mathbf{F}}=q(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) .
$$

Just to be confusing this is sometimes called the Lorenz force too.
There are a host of consequences of 1 . and 2 ., which will be explored in this chapter. An example is parallel currents attract and antiparallel currents repel.

A big complication when discussing magnetic fields is the appearance of vector cross products. Don't think that you can slide by without learning how to evaluate them.

Some History

Magnetic materials have been known for over 2000 years. The first compasses (made in China) appeared about 1000 AD. Around the same time Norwegian Vikings navigated to North America without the use of compasses (I just though I'd through that out there.).
The connection between electricity and magnetism was discovered by Oersted (a Dane) in 1819.

Magnets have "poles" labeled north and south:
Like poles repel

Unlike poles attract

If you cut a magnet in half, both halves will have a north and south pole.

Magnets produce fields, which have a distribution unlike that of a point charge.

Rather the field distribution around a magnet is like that of an electric dipole.

(a) Current loop

Whether it's a current loop or a permanent magnet, the magnetic field emerges from the north pole.
(b) Permanent magnet

Whether it's a current loop or a permanent magnet,
the magnetic field emerges from the north pole.
33.7 Force on a moving Charge

For a stationary charge we have

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}) .
$$

For a moving charge there is an additional contribution, known as the Lorenz force,

$$
\overrightarrow{\mathbf{F}}=q(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) .
$$

Here, $\overrightarrow{\mathbf{v}}$ is the velocity of the moving charge.

Some facts:

1. For a particle at rest, $\overrightarrow{\mathbf{v}}=\mathbf{0}$ the magnetic field exerts no force on a charged particle. 2. The Lorenz force is proportional to the charge, the magnetic field strength and the particle's velocity.
2. The vector force is the result of the vector cross product of velocity and magnetic field.

Aside on cross products: $\quad \overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$

Let θ be the angle between $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$, always chose this to be less than 180°.
The magnitude of $\overrightarrow{\mathbf{C}}$ is given by $|\overrightarrow{\mathbf{C}}|=|\overrightarrow{\mathbf{A}}||\overrightarrow{\mathbf{B}}| \sin \theta$
The direction of $\overrightarrow{\mathbf{C}}$ is perpendicular to both $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$, and determined by the "right hand rule"

Right hand rule: put the fingers of your right hand in the direction of $\overrightarrow{\mathbf{A}}$, then rotate them through the angle θ (less than 180°) to the direction of $\overrightarrow{\mathbf{B}}$. Your thumb now indicates the direction of $\overrightarrow{\mathbf{C}}$.

The order of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is important: $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=-\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}}$
If $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are parallel, then $(\theta=0) \overrightarrow{\mathbf{C}}=\mathbf{0}$.

Use of unit vectors and components

While you may be comfortable with the preceding description of the vector cross product, there will be instances where it is too difficult to use. For example if you are given two arbitrary vectors in component form, then how do you find the direction that is mutually perpendicular to both of them? In these instances it is much easier to evaluate the cross product using basis vectors and components. Let's say we are given $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ in component form in Cartesian coordinates.

$$
\begin{aligned}
& \overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}} \\
& \overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}
\end{aligned}
$$

How do we find the components of $\overrightarrow{\mathbf{C}}$?

$$
\overrightarrow{\mathbf{C}}=C_{x} \hat{\mathbf{i}}+C_{y} \hat{\mathbf{j}}+C_{z} \hat{\mathbf{k}} .
$$

Answer:

$$
\begin{aligned}
& C_{x}=A_{y} B_{z}-A_{z} B_{y} \\
& C_{y}=A_{z} B_{x}-A_{x} B_{z} \quad \text { (my favorite) } \\
& C_{z}=A_{x} B_{y}-A_{y} B_{x}
\end{aligned}
$$

which is the same as taking the pretend determinant

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| .
$$

I prefer the component form above. It's easy to remember, the first three components of each line are in $\mathrm{x}-\mathrm{y}-\mathrm{z}$ order, provided that you remember that x comes again after z , viz. $z-x-y$ and $y-z-x$.

Example \#1
Example \#2
Motion of a charged particle in a magnetic field
Newton's law: $m \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}$

$$
m \overrightarrow{\mathbf{a}}=m \frac{d \overrightarrow{\mathbf{v}}}{d t}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}
$$

Note: Lorentz force is always perpendicular to velocity. There fore the magnitude of velocity will not change. This implies the kinetic energy of the particle is constant,

$$
\frac{d}{d t} K E=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{F}}=\mathbf{0}, \quad K E=\frac{m}{2}|\overrightarrow{\mathbf{v}}|^{2}
$$

Note also, if velocity is parallel to magnetic field the force is zero and vector velocity is constant.

Q: What is magnitude and direction of \vec{F}

$$
\vec{F}=\overrightarrow{9} \stackrel{\rightharpoonup}{V} \times \vec{B} \quad \text { election } q=-1.6 \times 10^{-19} \mathrm{C}
$$

$\vec{V} \times \vec{B}$ Evil be in the Z direction

$$
\begin{array}{ll}
|\vec{V} \times \vec{B}|=|\vec{V} \| \vec{B}| \sin \theta & \text { what is } \theta \text { ? } \\
\vec{F}=-\underbrace{-1.6 \times 10^{-19}}_{9} \times 10^{6} \frac{\mathrm{~m}}{5} \times 1 T \times \frac{1}{2} \hat{K} \hat{K}=-0.8 * 10^{-13} \mathrm{~N} \overrightarrow{\mathrm{~K}}
\end{array}
$$

Fated

Example \#2

$$
\begin{aligned}
& \vec{V}=3 \hat{\imath}+4 \hat{\jmath}+7 \hat{k} \mathrm{~m} / \mathrm{s} \\
& \vec{B}=1 \hat{\imath}+2 \hat{\jmath}+4 \hat{k} \mathrm{~T}
\end{aligned}
$$

what is $\vec{V} \times \vec{B}$

$$
\left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
3 & 5 & 7 \\
1 & 2 & 4
\end{array}\right|=\hat{i}(5.4-2.7)+\hat{\jmath}(2.7 .1-3.4)+\hat{k}(3 \cdot 2-5 \cdot 1)
$$

Motion in a uniform magnetic field
\vec{V} electra c

(1) \vec{B}-out of plane
what direction is $\vec{V} \times \vec{B}$ (ans up)
what directive is \vec{F} (ans down)
later

Electron will execute Circular motion in cow direction

Q: What if proton? A: circular motion in CW direction

Q: What if \vec{B} Points into $A:\left\{\begin{array}{l}\mathrm{CCW} \rightarrow \mathrm{CW} \\ \mathrm{CW} \rightarrow \mathrm{CW}\end{array}\right.$
since of rodetin changes
What is the rotation rate?
Fran For circular motion $|\vec{a}|=\frac{U^{2}}{R}$

$$
|\vec{F}|=q|\vec{M}| \vec{B}|=m| \vec{a} \left\lvert\,=m \frac{V^{2}}{R} \quad \Omega=\frac{V}{R} \quad\right. \text { of circle }
$$

Suppose $\quad B=G T$
what is Ω for an electron

$$
\begin{aligned}
& m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \quad \mid 91=1.6 \times 10^{-19} \mathrm{C} \\
& \Omega=\frac{9 B}{\mathrm{~m}}=\frac{1.6 \times 10^{-19} \times 6}{9.11 \times 10^{-32}}=1.05 \times 10^{12} \mathrm{Rad} / \mathrm{sec} \\
& f=\frac{\Omega}{2 H}=167 \times 10^{9} \\
& \lambda=c / f=1.8 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

- frequerer of microwave chan $f=2.45 \mathrm{KHz}$

R Radius ot orbit $R=\frac{V}{\Omega}$
Suppose $V=0.2 * C \quad c=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ spear of light

$$
R=\frac{0.2 * 3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.05 \times 10^{12} \mathrm{Red} / \mathrm{sec}}=5.71 \times 10^{-5} \mathrm{~m}
$$

What is motion when $v_{z} \neq 0$

when $\cdot V_{z}=0 \quad V_{x}, V_{y} \neq 0$

Circular motim

$$
\text { freq }=\Omega=q B / m
$$

Linear motion
when $V_{z} \neq 0 \quad V_{x}, V_{y}=0$

$\frac{d \vec{V}}{d t}=9 \stackrel{\rightharpoonup}{V} \times \vec{B} \quad$ is a linear equation (one pacer ar
If $\vec{V}_{1}(t)$ is a solutim corvesparding to Circular motion
and $\vec{v}_{2}(t)$ is a solutim correspondin to linear matin

Then $\delta \vec{V}_{3}(t)=\vec{V}_{1}(t)+\vec{V}_{2}(t)$ is also a solution spiral

Example Earth is surrounded r by plasma
(magneto sphere)

Sometime n charged particles strike the pules
"Aurora"

Motion of a charged particle in crossed electric and magnetic fields

$$
\begin{array}{r}
m \frac{d \vec{v}}{d f}=q\left[E_{y} \hat{\jmath}+V_{x} B_{0} \hat{\imath} \times \hat{k}\right]=\hat{j} q\left(E_{y}-V_{x} B_{0}\right) \\
\hat{i} \times \hat{k}=-\hat{j}
\end{array}
$$

If $x_{x}=E_{y} / B_{0}$ then total force is zero
Particle will move with constant velucity in a direction perpendicular to both $E A B$.

Cylindrical Version

\vec{B} out of plane what is direction of motion

* have we left anything out? Yes radial acceleration
* makes a good tu Problem

Q: Where would you encounter suck a thing?
A: On your kitchen counter - magnetron powers a

electrons spiral out from cathode, potential energy is converted to radiation. $f=2.45 \mathrm{GHz}$ (aletermineal by suss)
$\sim 70 \%$ efficient
\& 12/anit Power ~ 1 kW

Never put your cat in a microwave oven.

Motion in crossed electric and magnetic fields

$$
\vec{B}=B_{0} \hat{k} \quad \vec{E}_{\hat{L}}=\hat{r}\left(\frac{k^{\lambda}}{2 \pi \epsilon_{0} r}\right) \quad \begin{aligned}
& \text { field due to } \\
& \text { a live charge }
\end{aligned}
$$

Suppose $\hat{V}=V_{\theta} \hat{\theta} \quad$ Circular motion

$$
m \frac{d \vec{V}}{d t}=q[\hat{r} E_{r}+\underbrace{\hat{r}}_{\hat{r}} V_{\theta} B_{0}(\underbrace{\hat{\theta} \times \hat{k}})]
$$

centripetal acelleration
$\frac{d \vec{V}}{d t}=-\frac{V_{\theta}^{2}}{r} \hat{r}$ find V_{θ}

$$
-\frac{m V_{\theta}^{2}}{r}=9\left(\frac{\lambda}{2 \pi t_{0}} \frac{1}{r}+V_{\theta} B_{0}\right)
$$

Could solve for rotation rate

Now let $\quad V_{\theta}=\Omega r$
33.8) Force on a current carrying wire

inside the wive we have statiman charges Both Positive \& Negative
moving charges - usually electrons (why?) Called free electrons

* In any length of wire the number of positive r and negative changes is essentially same (unless wine is charged)
still
* Can A be a net current even if electrons are moving slowly because there are so many free electrons

consider a segment of
length e
Suppose there are N free Velectrons
\vec{V} is mean velocity,
of electrons
(morning)

To calculate current
How long will it take cell N to leave the volume? (of course the, will be replaced by new e's).

$$
\Delta t=l / v
$$

so during time interval Δt a net charge $Q=-e N$
flows through any cross section of the wine

Thus the current in the wire is

$$
I=\frac{|Q|}{\Delta t}=\frac{e N V}{l}
$$

Since electrons are flowing the direction of the current is opposite to \vec{V}

What is the force on those N electrons?
Force an a single electron

$$
\vec{F}=-e \stackrel{1}{V} \times \vec{B}
$$

Force on the N electrons

$$
\vec{F}_{\text {wive }}=-e N \vec{V} \times \vec{B}
$$

Now From Above

$$
e N|\vec{v}|=I e
$$

Let's make e a vector
$-e N \vec{V}=I \vec{e} \quad$ where \vec{e} points
parallel to wive in direction of current (Not electron velocity l

$$
\vec{F}_{\text {wine }}=I \vec{\ell} \times \vec{B}
$$

Now the fact that current is carried as negative or pusito chassis is nut relays
Force is \perp to both \vec{B} and \vec{l}
33.9

Force - Torque an a current loop

current loop is a rectangle in $x-y$ plane $a \times b$

TOP VIEW
\vec{B} is out of page

What is force on each segment?
i) To the right \vec{i} IB
ii) up

兵 $I_{a B}$
iii) To the left

- \hat{i} Ib B
iv) down
$-\hat{\jmath} I_{a} B$
Net force is zero $\vec{F}=\hat{i}(I b B-I b B)$

$$
+\hat{j}(I a B-I a B)=0
$$

(Net force on any loup in a uniform
field is zero. Non uniform \vec{B} can have a net Fore

What is torque?

plane of loop is tilted by angle θ with respect to direction of $\vec{B}(\vec{E})$

The loop wants to move so that axis and \vec{B} are aligned

Remember $\quad \frac{1}{\tau}=\stackrel{\rightharpoonup}{V \times F}$

area of loop $a b=A$
coll $\mu=I A$ call d

General Result

$\vec{A}=$ vector in direction determiner by Right hand rule

$$
\begin{aligned}
& \vec{\mu}=I \vec{A} \\
& \vec{T}=\vec{\mu} \times \vec{B}
\end{aligned}
$$

DIRECTIon of torque is to align $\vec{\mu} d \vec{B}$

loop precesses like a top
*MAGNETK FIELD DUE TO A current

We have been holding off on this topic now is the time to bite the bullet results

Magnetic fidel due to a single charge moving at velocity v

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{(q \stackrel{\rightharpoonup}{v}) \times \hat{r}}{r^{2}}
$$

If many charges apply principle of super position

$$
\vec{B}(\vec{r})=\alpha_{0} \sum_{q_{j}} \frac{q_{j} \vec{v}_{j} \times \hat{r}_{j}}{r_{j}^{2}}
$$

$\hat{r}_{j}=$ unit vector from charge $/ q_{j}$ pointing to location \vec{r} where I want to know $\vec{B}(\vec{r})$

in wines
When currents are involved we sum over charges in small segment i of the wire

Each segment will have a differat \vec{l}_{j} r_{j} and \hat{r}_{j} will be different for each segment too.
let $\frac{1}{K}$ be where you want to know \vec{B}
location of sower segment

$$
r_{j}=\left|\frac{\vec{r}-\vec{r}^{\prime}}{}\right|
$$

When you take the limit of many small segments, the sum becomes an itegral

$$
\overrightarrow{B C}(\vec{r})=\frac{\mu_{0}}{4 \pi} \sum_{\substack{\text { lime } \\ \text { segmats }}} \frac{\overrightarrow{\mathscr{d}}_{j} \times \hat{r_{j}}}{r_{d}^{2}} \Rightarrow \frac{\mu_{0}}{4 \pi} \int \frac{I \frac{d e}{x} \hat{r}}{r^{2}}
$$

This expression looks simple enough but you have to keep track of two positim vectors:

1) \vec{r} which is where you want to Know \vec{B}. call this the observation point
2) $\vec{r}^{\prime \prime}$ which is the location of the curvent segments the contribute to \vec{B}. This is the variable that you integrate over

Example magnetic field due to an infinitely long wine
zit
Current flow show picture along $\{z$-axis
$1 I$

$$
y \text { is into page }
$$

$$
\hat{H}
$$

$$
\bar{\theta}^{\circ}
$$

I want to find the magnetic field at the point $(x, 0,0)$

$$
\vec{r}=x \hat{l}+0 \hat{y}+0 \hat{k}
$$

Segment located at Point $\vec{r}^{\prime}=0 \hat{\imath}+0 \hat{y}+z^{\prime} k$
prime denotes locetim of current unprimed denote locatim where I want to
know $\vec{B}(\vec{r})$
Summing over segments \Rightarrow integral over Z^{\prime}.
origin

$$
A: \quad\left(\overrightarrow{r^{\prime}}-\vec{r}^{\prime}\right)=(x-0) \hat{\imath}+(0-0) \hat{\jmath}+\left(0-z^{\prime}\right) \hat{k}
$$

Things we will need for the integral:

$$
\begin{aligned}
& \frac{\hat{d}}{d \ell}=d z^{1} \hat{k} \\
& r^{2}=\left|\vec{r}-\vec{r}^{\prime}\right|^{2}=\sqrt{(x-0)^{2}+(0-0)^{2}+\left(0-z^{6}\right)^{2}} \\
& =\sqrt{x^{2}+z^{\prime 2}} \\
& \hat{r}=\frac{\vec{r}-\vec{r}}{r}=\frac{x i+-z^{4} k}{\sqrt{x^{2}+z^{2}}}
\end{aligned}
$$

So, putting things together

$$
\begin{aligned}
& \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} I \int_{-\infty}^{\infty} d z^{\prime} \frac{\hat{k} x\left(x \hat{i}-z^{\prime} \hat{k}\right)}{\left(x^{2}+z^{2}\right)^{3 / 2}} \\
&=\frac{\mu_{0} I}{4 \pi} \int_{-\infty}^{\infty} d z^{\prime} \frac{x(\hat{k} \times \hat{L})-z^{\prime}(\hat{k} \times \hat{k})}{\left(x^{2}+z^{\prime 2}\right)^{3 / 2}} \\
& \hat{k} \times \hat{L}=\hat{\jmath} \quad \\
& \hat{k} \times \hat{k}=0
\end{aligned}
$$

$$
\vec{B}(\vec{r})=\frac{\mu_{0} I}{4 \pi} \hat{\jmath} \int_{-\infty}^{\infty} \frac{x d z^{1}}{\left(x^{2}+z^{2}\right)^{3 / 2}}
$$

In the lecture notes I show

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{x d z^{1}}{\left(x^{2}+z^{2}\right)^{3 /}}=\frac{2}{x} \\
\vec{B}(\vec{r})=\frac{\mu_{0} I}{2 \pi x} \hat{\jmath}
\end{gathered}
$$

Evaluation of

$$
\text { Int }=\int_{-\infty}^{\infty} \frac{d z^{\prime} x}{\left(x^{2}+z^{12}\right)^{3 / 2}}
$$

Evaluate by trigonometric substitution
Range
Let $z^{\prime}=x \tan \theta \Rightarrow z^{\prime}= \pm \infty, \theta= \pm \pi / 2$

$$
\begin{aligned}
& d z^{1}=\frac{x d \theta}{\cos ^{2} \theta} \\
& \left(x^{2}+z^{12}\right)^{3 / 2}=\left(x^{2}(1+\tan \theta)\right)^{3 / 2}=x^{3}\left(1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)^{3 / 2}=\frac{x^{3}}{\cos ^{3} \theta} \\
& I_{n} t=\int_{-\pi / 2}^{\pi / 2} \frac{x d \theta}{\cos ^{2} \theta} \frac{x}{x^{3} l \cos ^{3} \theta}=\frac{1}{x} \int_{-\pi / 2}^{\pi / 2} d \theta \cos \theta=\frac{2}{x}
\end{aligned}
$$

