Chapter 35

Electromagnetic Fields and Waves

Galilean Relativity Why do E and B depend on the observer? Maxwell's displacement current (it isn't a real current) Electromagnetic Waves

Chapter 35. Electromagnetic

 Topictsields and Waves- E or B ? It Depends on Your Perspective
- The Field Laws Thus Far
- The Displacement Current
- Maxwell's Equations
- Electromagnetic Waves
- Properties of Electromagnetic Waves
- Polarization

Preview of what is coming

General Principles

Maxwell's Equations

These equations govern electromagnetic fields:

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {in }}}{\epsilon_{0}} \\
& \text { Gauss's law } \\
& \oint \vec{B} \cdot d \vec{A}=0 \\
& \text { Gauss's law for magnetism } \\
& \oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{\mathrm{m}}}{d t} \\
& \text { Faraday's law } \\
& \oint \vec{B} \cdot d \vec{s}=\mu_{0} I_{\text {through }}+\epsilon_{0} \mu_{0} \frac{d \Phi_{\mathrm{e}}}{d t} \\
& \text { Maxwell's equations tell us that: } \\
& \text { An electric field can be created by } \\
& \text { - Charged particles } \\
& \text { - A changing magnetic field } \\
& \text { A magnetic field can be created by } \\
& \text { - A current } \\
& \text { - A changing electric field } \\
& \text { An electric field can be created by }
\end{aligned}
$$

opyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Lorentz Force

This force law governs the interaction of charged particles with electromagnetic fields:

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

- An electric field exerts a force on any charged particle.
- A magnetic field exerts a force on a moving charged particle.

Field

Transformations

Fields measured in frame S to be \vec{E} and \vec{B} are found in frame S^{\prime} to be

$$
\begin{aligned}
& \vec{E}^{\prime}=\vec{E}+\vec{V} \times \vec{B} \\
& \vec{B}^{\prime}=\vec{B}-\frac{1}{c^{2}} \vec{V} \times \vec{E}
\end{aligned}
$$

Moving observers do not agree on the values of the Electric and magnetic fields.

Observer S says: $\quad \overrightarrow{\mathbf{F}}=q(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{+}} \times \overrightarrow{\mathbf{B}}) \quad$ q makes E and B

Observer S' says: $\quad \overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}} \quad \mathrm{v}=0$ for him, q makes E

How can both be right?

Option A: There is a preferred reference frame (for example S). The laws only apply in the preferred frame. But, which frame?

Option B: No frame is preferred. The Laws apply in all frames. The electric and magnetic fields have different values for different observers.

```
Field
Transformations
Fields measured in frame S
to be \vec{E}\mathrm{ and }\vec{B}\mathrm{ are found in}
frame S' to be
    \vec{E}
    \vec { B } ^ { \prime } = \vec { B } - \frac { 1 } { c ^ { 2 } } \vec { V } \times \vec { E }
```


Extended Option B: No frame is preferred. The Laws apply in all frames. All observers agree that light travels with speed c. Einstein's postulates \rightarrow Special Relativity

Which diagram shows the fields in frame S^{\prime} ?

(a)

(b)

(c)

(d)

(e)

Field
 Transformations

Fields measured in frame S to be \vec{E} and \vec{B} are found in frame S^{\prime} to be

$$
\begin{aligned}
\vec{E}^{\prime} & =\vec{E}+\vec{V} \times \vec{B} \\
\vec{B}^{\prime} & =\vec{B}-\frac{1}{c^{2}} \vec{V} \times \vec{E}
\end{aligned}
$$

What we know about fields - so far

Integrals over closed surfaces

Gauss' Law: $\quad \oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{i n}}{\varepsilon_{0}} \quad$ Gauss' Law: $\quad \oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0$

Integrals around closed loops
Faraday's Law:
Ampere's Law:
$\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \boldsymbol{\Phi}_{m-\text { through } h}$

$$
\oint \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}) \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} I_{\text {through }}
$$

Integrals around closed loops

Faraday's Law:
$\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \boldsymbol{\Phi}_{m-\text { through }}$

Ampere's Law:

$\oint \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}) \cdot d \mathbf{\mathbf { s }}=\mu_{0} I_{\text {through }}$

Faraday's Law for Stationary Loops

$$
E M F=\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\int_{\text {Area }} \frac{\partial}{\partial t} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}
$$

related by right hand rule

Which area should I pick to evaluate the flux?
A. The minimal area as shown
B. It doesn't matter

tho surfaces each with the same perimeter
Because for a closed surface $\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0$

$$
\Phi_{m-\text { through }}=\int_{\text {Surface }-A} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=\int_{\text {Surface }-B} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}
$$

What About Ampere's Law

As long as net current leaving surface is zero, again no problem

However, consider this case

Current through surface B is zero
(a) Cross section through a closed curve C around the wire

This is the magnetic field of the current I that is charging the capacitor.

Resolution James Clerk Maxwell

Total current leaving surface $I(t)=I_{1}+I_{2}+\cdots$. (1831-1879)
en.wikipedia.org/ wiki/James_Clerk_M axwell

By Charge conserfatim $I(t)=-\frac{d Q}{d t}$

$$
I(t)+\frac{d}{d t} Q(t)=0
$$

$$
\varepsilon_{0} \oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=Q_{i n}
$$

Thus, for any closed surface

$$
I_{\text {through }}+\varepsilon_{0} \frac{d}{d t} \oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=0
$$

$$
\begin{align*}
& \text { Maxwell said to add this term } \\
& \oint \vec{B} \cdot d \vec{s}=\mu_{0}\left(I_{\text {through }}+I_{\text {disp }}\right)=\mu_{0}\left(I_{\text {through }}+\epsilon_{0} \frac{d \Phi_{\mathrm{e}}}{d t}\right) \tag{35.22}
\end{align*}
$$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$
\Phi_{e}=\int_{s} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

The new term is called the displacement current.
It is an unfortunate name, because it is not a current.

Maxwell is known for all of the following except:
A. Proposing the displacement current and unifying electromagnetism and light.
B. Developing the statistical theory of gases.
C. Having a silver hammer with which he would bludgeon people.
D. Studying color perception and proposing the basis for color photography.

Faraday's law describes an induced electric field.

Increasing capacitor charge

Induced \vec{B}

Increasing \vec{E}

The Ampère-Maxwell law describes an induced magnetic field.

The magnetic field line is a circle concentric with the capacitor. The electric flux through this circle is $\pi r^{2} E$.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$
\begin{gathered}
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=B_{\theta}(r) 2 \pi r \\
\Phi_{e}=\int_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\pi r^{2} E_{z}
\end{gathered}
$$

$$
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\mu_{0}\left(I_{\text {ltrough }}+\varepsilon_{0} \frac{d \Phi_{e}}{d t}\right)
$$

$$
B_{\theta}(r)=\frac{\mu_{0} \varepsilon_{0} r}{2} \frac{\partial E_{z}}{\partial t}
$$

Recall from Faraday: $\quad E_{\theta}(r)=-\frac{r}{2} \frac{\partial B_{z}}{\partial t}$

Faraday: time varying B makes an E

$$
\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \int_{\mathbf{S}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}
$$

$$
\begin{aligned}
& \text { example } \\
& E_{\theta}(r)=-\frac{r}{2} \frac{\partial B_{z}}{\partial t}
\end{aligned}
$$

Ampere-Maxwell: time varying E makes a B

$$
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\mu_{0} \varepsilon_{0} \frac{d}{d t} \int_{s} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

$$
\begin{aligned}
& \text { example } \\
& B_{\theta}(r)=\frac{\mu_{0} \varepsilon_{0} r}{2} \frac{\partial E_{z}}{\partial t}
\end{aligned}
$$

Put together, fields can sustain themselves - Electromagnetic Waves

$$
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\mu_{0} \varepsilon_{0} \frac{d}{d t} \int_{s} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

Based on the arrows, the electric field coming out of the page is
A. increasing
B. decreasing
C. not changing
D. undetermined

Properties of electromagnetic waves:

Waves propagate through vacuum (no medium is required like sound waves)

All frequencies have the same propagation speed, c.
Electric and magnetic fields are oriented transverse to the direction of propagation. (transverse waves)

Waves carry both energy and momentum.

1. A sinusoidal wave with frequency f and wavelength λ travels with wave speed v_{em}. perpendicular to each other and to the direction of travel. The fields have amplitudes E_{0} and B_{0}.
2. \vec{E} and \vec{B} are in phase. That is, they have matching crests, troughs, and zeros.

THE ELECTROMAGNETIC SPECTRUM

mynasadata.larc.nasa.gov/ ElectroMag.html

35.5 - Electromagnetic Waves

1. Assume that no currents or charges exist nearby, $\mathrm{Q}=0 \mathrm{I}=0$
2. Try a solution where:

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}, t)=E_{y}(x, t) \mathbf{j} & \text { Only y-component, depends only on } \mathrm{x}, \mathrm{t} \\
\overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}, t)=B_{z}(x, t) \mathbf{k} & \text { Only z-component, depends only on } \mathrm{x}, \mathrm{t}
\end{aligned}
$$

3. Show that this satisfies Maxwell Equations provided the following is true:

$$
\begin{gathered}
-\frac{\partial B_{z}(x, t)}{\partial t}=\frac{\partial E_{y}(x, t)}{\partial x} \quad \text { Faraday } \\
-\frac{\partial B_{z}(x, t)}{\partial x}=\mu_{0} \varepsilon_{0} \frac{\partial E_{y}(x, t)}{\partial t} \quad \text { Ampere-Maxwell }
\end{gathered}
$$

4. Show that the solution of these are waves with speed c .

Maxwell's Equations in Vacuum
 $$
Q_{i n}=0, I_{\text {through }}=0
$$

Integrals over closed surfaces

Gauss’ Law

$$
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=0
$$

Gauss' Law:
$\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0$

Integrals around closed loops
Faraday's Law:
Ampere's Law:
$\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \boldsymbol{\Phi}_{m-\text { through }}$
$\oint \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}) \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} \varepsilon_{0} \frac{d}{d t} \boldsymbol{\Phi}_{e-\text { through }}$

Do our proposed solutions satisfy the two Gauss' Law Maxwell Equations?

$$
\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}, t)=E_{y}(x, t) \mathbf{j}
$$

$$
\overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}, t)=B_{z}(x, t) \mathbf{k}
$$

Electric field

The net magnetic flux through the box is zero.

Magnetic field

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=0 \quad \oint \stackrel{\rightharpoonup}{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0
$$

Ans: Yes, net flux entering any volume is zero

$$
\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}}, t)=E_{y}(x, t) \mathbf{j} \quad \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}, t)=B_{z}(x, t) \mathbf{k}
$$

Electric field

$$
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=0
$$

Magnetic field
$\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0$

True or False? We showed that GL is satisfied for the surfaces of rectangular
A. True
B. False volumes. But it would not be satisfied for other shapes.

What about the two loop integral equations?

Faraday's Law

$$
\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \int_{\text {Sufface }} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}
$$

Apply Faraday's law to loop
$\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=h\left[E_{y}(x+\Delta x)-E_{y}(x)\right] \simeq h \Delta x \frac{\partial E_{y}(x)}{\partial x} \searrow$

$$
\int_{\text {Sufface }} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=h \Delta x \boldsymbol{B}_{z}(x, t) \quad \longrightarrow \quad \frac{\partial E_{y}(x, t)}{\partial x}=-\frac{\partial B_{z}(x, t)}{\partial t}
$$

Ampere-Maxwell Law:

$$
\oint \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}) \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} \varepsilon_{0} \frac{d}{d t} \int_{\text {Sufface }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

Apply Ampere-Maxwell law to loop:
$\oint \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}) \cdot d \overrightarrow{\mathbf{s}}=h\left[-B_{z}(x+\Delta x)+B_{z}(x)\right] \simeq-h \Delta x \frac{\partial B_{z}(x)}{\partial x \downarrow}$
$\int_{\text {surface }}$

$$
-\frac{\partial B_{z}(x, t)}{\partial x}=\mu_{0} \varepsilon_{0} \frac{\partial E_{y}(x, t)}{\partial t}
$$

$$
\begin{aligned}
& \text { Faraday's Law: } \\
& \oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \boldsymbol{\Phi}_{m-\text { through }} \\
& \frac{\partial E_{y}(x, t)}{\partial x}=-\frac{\partial B_{z}(x, t)}{\partial t}
\end{aligned}
$$

Should I apply Faraday's law
 to a loop lying in the $y-z$ plane?
A. No satisfying FL for one loop is enough
B. Yes, but the result would still be $\frac{\partial E_{y}(x, t)}{\partial x}=-\frac{\partial B_{z}(x, t)}{\partial t}$
C. Yes, but the result would be $0=0$.

Combine to get the Wave Equation:
$\# 1-\frac{\partial B_{z}(x, t)}{\partial x}=\mu_{0} \varepsilon_{0} \frac{\partial E_{y}(x, t)}{\partial t}$
$\# 2 \quad \frac{\partial E_{y}(x, t)}{\partial x}=-\frac{\partial B_{z}(x, t)}{\partial t}$

Differentiate \#1 w.r.t. time

$$
-\frac{\partial}{\partial x} \frac{\partial B_{z}(x, t)}{\partial t}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{y}(x, t)}{\partial t^{2}}
$$

Use \#2 to eliminate B_{z}

$$
\frac{\partial^{2} E_{y}(x, t)}{\partial x^{2}}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{y}(x, t)}{\partial t^{2}}
$$

The Wave Equation

Solution of the Wave equation

$$
\begin{gathered}
\frac{\partial^{2} E_{y}(x, t)}{\partial x^{2}}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{y}(x, t)}{\partial t^{2}} \\
E_{y}(x, t)=f_{+}\left(x-v_{e m} t\right)+f_{-}\left(x+v_{e m} t\right)
\end{gathered}
$$

Where $f_{+,-}$are any two functions you like, and

$$
v_{e m}=1 / \sqrt{\mu_{0} \varepsilon_{0}}
$$

$v_{e m}$ is a property of space. $\quad v_{e m}=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$f_{+,-}$Represent forward and backward propagating wave (pulses). They depend on how the waves were launched

$$
E_{y}(x, t)=f_{+}\left(x-v_{e m} t\right)
$$

Speed of pulse determined by medium

$$
v_{e m}=1 / \sqrt{\mu_{0} \varepsilon_{0}}
$$

What is the magnetic field of the wave?

$$
E_{y}(x, t)=f_{+}\left(x-v_{e m} t\right)+f_{-}\left(x+v_{e m} t\right)
$$

Magnetic field can be found from either equation \#1 or \#2

$$
\# 2 \quad \frac{\partial E_{y}(x, t)}{\partial x}=-\frac{\partial B_{z}(x, t)}{\partial t}
$$

This gives:

$$
B_{z}(x, t)=\frac{1}{v_{e m}}\left(f_{+}\left(x-v_{e m} t\right)-f_{-}\left(x+v_{e m} t\right)\right)
$$

E and B fields in waves and Right Hand Rule:

f+ solution Wave propagates in $\mathbf{E x} \mathbf{B}$ direction

f- solution

Do the pictures below depict possible electromagnetic waves?

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

A. Yes
B. No
A. Yes
B. No

Special Case Sinusoidal Waves

$$
E_{y}(x, t)=f_{+}\left(x-v_{e m} t\right)=E_{0} \cos \left[k\left(x-v_{e m} t\right)\right]
$$

(b) A snapshot graph at one instant of time

Wavenumber and wavelength

$$
\begin{aligned}
k & =2 \pi / \lambda \\
\lambda & =2 \pi / k
\end{aligned}
$$

These two contain the same information

Special Case Sinusoidal Waves

$$
E_{y}(x, t)=f_{+}\left(x-v_{e m} t\right)=E_{0} \cos \left[k\left(x-v_{e m} t\right)\right]
$$

(a) A history graph at one point in space

$$
2 \pi=k v_{e m} T
$$

Introduce
$\omega=2 \pi / T$
$f=1 / T$

Different ways of saying the same thing:

$$
\omega / k=v_{e m} \quad f \lambda=v_{e m}
$$

Energy Density and Intensity of EM Waves

Energy density associated with electric and magnetic fields

$$
u_{E}=\frac{\varepsilon_{0}|\overrightarrow{\mathbf{E}}|^{2}}{2} \quad u_{B}=\frac{|\overrightarrow{\mathbf{B}}|^{2}}{2 \mu_{0}}
$$

For a wave: $\quad|\overrightarrow{\mathbf{B}}|=\frac{1}{v_{e m}}|\overrightarrow{\mathbf{E}}|=\sqrt{\varepsilon_{0} \mu_{0}}|\overrightarrow{\mathbf{E}}|$

Thus:

$$
u_{E}=u_{B} \quad \text { Units: } \mathrm{J} / \mathrm{m}^{3}
$$

Energy density in electric and magnetic fields are equal for a wave in vacuum.

Wave Intensity - Power/area

Energy density inside cube

$$
u_{E}=\frac{\varepsilon_{0}|\overrightarrow{\mathbf{E}}|^{2}}{2}=u_{B}=\frac{|\overrightarrow{\mathbf{B}}|^{2}}{2 \mu_{0}}
$$

In time $\Delta t=L / v_{e m}$ an amount of energy
$U=V\left(u_{E}+u_{B}\right)=A L \varepsilon_{0}|\overrightarrow{\mathbf{E}}|^{2}$
comes through the area A .

Intensity

I=Power/Area

$$
I=\frac{U}{\Delta t A}=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|\overrightarrow{\mathbf{E}}|^{2}
$$

Poynting Vector

The power per unit area flowing in a given direction

$$
\begin{gathered}
\overrightarrow{\mathbf{S}}=\frac{1}{\mu_{0}} \overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{B}} \\
|\overrightarrow{\mathbf{S}}|=I=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|\overrightarrow{\mathbf{E}}|^{2}
\end{gathered}
$$

What are the units of $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \quad$ Ans: Ohms

$$
I-\mathrm{W} / \mathrm{m}^{2}, \mathrm{E}-\mathrm{V} / \mathrm{m} \quad \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=377 \Omega
$$

Antennas

Simple dipole

An oscillating voltage causes
the dipole to oscillate.

Antenna
wire

The oscillating dipole causes an electromagnetic wave to move away from the antenna at speed $v_{\mathrm{em}}=c$.

AM radio transmitter

$$
|\overrightarrow{\mathbf{S}}|=I=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|\overrightarrow{\mathbf{E}}|^{2}
$$

To a good approximation what ever power goes the surface 1 also goes through surface 2.

Therefore:
A. $\quad\left|\overrightarrow{\mathbf{S}}_{1}\right|=\left|\overrightarrow{\mathbf{S}}_{2}\right|$
B. $\quad \frac{\left|\overrightarrow{\mathbf{S}}_{\mathbf{1}}\right|}{r_{1}^{2}}=\frac{\left|\overrightarrow{\mathbf{S}}_{\mathbf{2}}\right|}{r_{2}^{2}}$
C. $r_{1}^{2}\left|\overrightarrow{\mathbf{S}}_{\mathbf{1}}\right|=r_{2}^{2}\left|\overrightarrow{\mathbf{S}}_{\mathbf{2}}\right|$
D. $\quad r_{1}\left|\overrightarrow{\mathbf{S}}_{\mathbf{1}}\right|=r_{2}\left|\overrightarrow{\mathbf{S}}_{\mathbf{2}}\right|$

The amplitude of the oscillating electric field at your cell phone is $4.0 \mu \mathrm{~V} / \mathrm{m}$ when you are 10 km east of the broadcast antenna. What is the electric field amplitude when you are 20 km east of the antenna?
A. $4.0 \mu \mathrm{~V} / \mathrm{m}$
B. $2.0 \mu \mathrm{~V} / \mathrm{m}$
C. $1.0 \mu \mathrm{~V} / \mathrm{m}$
D. There's not enough information to tell.

$$
|\overrightarrow{\mathbf{S}}|=I=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|\overrightarrow{\mathbf{E}}|^{2}
$$

Polarizations

We picked this combination of fields: $E_{y}-B_{z}$

(a) Vertical polarization

Could have picked this combination of fields: $E_{z}-B_{y}$
(b) Horizontal polarization

These are called plane polarized. Fields lie in plane

FIGURE 35.28 A polarizing filter.
The polymers are parallel to each other.

The wave that passes through the polarizer has an electric field amplitude

$$
|\overrightarrow{\mathbf{E}}|_{\text {out }}=|\cos \theta||\overrightarrow{\mathbf{E}}|_{\text {in }}
$$

If input light is unpolarized

$$
I_{\text {out }}=\left\langle\cos ^{2} \theta\right\rangle I_{\text {in }}=\frac{1}{2} I_{\text {in }}
$$

Malus's Law

Unpolarized light of equal intensity is incident on four pairs of polarizing filters. Rank in order, from largest to smallest, the intensities I_{a} to I_{d} transmitted through the second polarizer of each pair.
A. $I_{\mathrm{a}}=I_{\mathrm{d}}>I_{\mathrm{b}}=I_{\mathrm{c}}$
B. $I_{\mathrm{b}}=I_{\mathrm{c}}>I_{\mathrm{a}}=I_{\mathrm{d}}$
C. $I_{\mathrm{d}}>I_{\mathrm{a}}>I_{\mathrm{b}}=I_{\mathrm{c}}$
D. $I_{\mathrm{b}}=I_{\mathrm{c}}>I_{\mathrm{a}}>I_{\mathrm{d}}$
E. $I_{\mathrm{d}}>I_{\mathrm{a}}>I_{\mathrm{b}}>I_{\mathrm{c}}$

Integral versus Differential Versions of Maxwell's Equations

$$
\begin{array}{cc}
\text { Integral } & \text { Differential } \\
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{\text {in }}}{\varepsilon_{0}} & \nabla \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\varepsilon_{0}} \\
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0 & \nabla \cdot \overrightarrow{\mathbf{B}}=0 \\
\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \int_{\text {Sufarge }} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}} & \nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \\
\overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}) \cdot d \overrightarrow{\mathbf{s}}=\mu_{0}\left(I_{\text {through }}+\varepsilon_{0} \frac{d}{d t} \int_{\text {sufface }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}\right) & \nabla \times \overrightarrow{\mathbf{B}}=\mu_{0}\left(\overrightarrow{\mathbf{J}}+\varepsilon_{0} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}\right)
\end{array}
$$

