Chapter 34: Electromagnetic Induction

A time changing magnetic field induces an electric field.
This electric field does not satisfy Coulombs Law

Faraday's Discovery

A current in a coil is induced if the magnetic field through the coil is changing in time.

The current can be induced two different ways:

1. By changing the size, orientation or location of the coil in a steady magnetic field.
2. By changing in time the strength of the magnetic field while keeping the coil fixed.

Both cases can be described by the same law: $\quad E M F=\frac{d}{d t} \Phi$
The "electromotive force" equals the rate of change of magnetic flux.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

The current can be induced two different ways:

1. By changing the size, orientation or location of the coil in a steady magnetic field.

The electromotive force comes from the Lorenz force. Motional EMF
2. By changing in time the strength of the magnetic field while keeping the coil fixed.

In case \#2 the electromotive force comes from an electric field. This requires saying that electric fields can appear that do not satisfy Coulomb's Law!

Two ways to create an induced current

1. A motional emf due to magnetic forces on moving charge carriers.
2. An induced electric field due to a changing magnetic field.

Increasing \vec{B}

Motional EMF

Charge carriers in the wire experience an upward force of magnitude $F_{\mathrm{B}}=q \vee B$. Being free to move, positive charges flow upward (or, if you prefer, negative charges downward).
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

The charge separation creates an electric field in the conductor. \vec{E} increases as more charge flows.

The charge flow continues until the downward electric force \vec{F}_{E} is large enough to balance the upward magnetic force F_{1}. Then the net force on a charge is zero and the current ceases.
(a) Magnetic forces separate the charges and cause a potential difference between the ends. This is a motional emf.

Some numbers

$$
\Delta V=V e B
$$

What is the potential drop across the wings of an airplane flying through the earth's magnetic field?

$$
V=260 \mathrm{~m} / \mathrm{s}
$$

$$
\Delta x=0.85 \text { vars }
$$

antripited
WHAT is the potential drop from the center of the ITER tokamak to the edge?

Plasma rotates with speed ~

$$
\begin{aligned}
& R \sim 3 m \\
& B \sim 117 \\
& V \sim 9.29 \times 10 \mathrm{~m}^{4} / \mathrm{s} \quad\left(62 \frac{\text { miles }}{\mathrm{sec}}\right)
\end{aligned}
$$

$\Delta V=2.9 \times 10^{5} \mathrm{Volts}$

A square conductor moves through a uniform magnetic field. Which of the figures shows the correct charge distribution on the conductor?

A square conductor moves through a uniform magnetic field. Which of the figures shows the correct charge distribution on the conductor?

Resistor R

How much current flows?

How much power is dissipated in R ?

Where does this power come from?

1. The charge carriers in the wire are pushed upward by the

Potential difference on moving conductor

Current that flows: $I=\frac{\Delta V}{R}=\frac{\nu l B}{R} \quad \begin{aligned} & \text { We assume that this current } \\ & \text { is too small to change B }\end{aligned}$
Power supplied to the resistor $\quad P_{\text {dissipated }}=I \Delta V$
Force on moving rail due to B $\quad \vec{F}_{m a g}=\overrightarrow{l l} \times \vec{B}$
Push needed to keep rail moving $\quad \vec{F}_{\text {pul }}=-\vec{l} \times \vec{B}$

The induced current flows through the moving wire.

A pulling force to the right must balance the magnetic force to keep the wire moving at constant speed.
This force does work on the wire.

Power needed to keep rail moving

$$
\vec{v} \cdot \vec{F}_{\text {pull }}=I(l v B)=I \Delta V=P_{\text {dissipated }}
$$

The induced current flows through the moving wire.

Work done by agent doing the pulling winds up as heat in the resistor

What happens when $R \rightarrow 0$?
$I=\frac{\Delta V}{R}=\frac{\nu l B}{R} \rightarrow \infty$

At some point we can't ignore B due to I.

Is there an induced current in this circuit? If so, what is its direction?

A. No
B. Yes, clockwise
C. Yes, counterclockwise

Is there an induced current in this circuit? If so, what is its direction?

\checkmark A. No
B. Yes, clockwise
C. Yes, counterclockwise

Magnetic Flux

$$
\begin{aligned}
\Phi=\int_{\mathbf{S}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}} \\
\text { Some surface }
\end{aligned}
$$

Remember for a closed surface $\Phi=0$

Magnetic flux measures how much magnetic field passes through a given surface
(a) Direction of airflow

[^0](b) Loop seen from the side

Rectangular surface in a constant magnetic field. Flux depends on orientation of surface relative to direction of B

Suppose the rectangle is oriented do that $\overrightarrow{\mathbf{B}}$ and $d \overrightarrow{\mathbf{A}}$ are parallel

$$
\Phi=\int_{\mathbf{s}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=|\overrightarrow{\mathbf{B}}| A=|\overrightarrow{\mathbf{B}}| a b
$$

Suppose I tilt the rectangle by an angle θ

Suppose angle is 90°
$d \overrightarrow{\mathbf{A}}$

A suggestive relation

Define A to be out of page, $\quad \Phi=\int_{\mathbf{s}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=-|\overrightarrow{\mathbf{B}}| A=-|\overrightarrow{\mathbf{B}}| l v t$
B is into page

$$
\Delta V=-\frac{d \Phi}{d t}=v l B
$$

Example of non-uniform B - Flux near a current carrying wire

Flux near a pole piece
pole pieces \qquad
\qquad
Φ
1

$\xrightarrow{\text { Rectangle inctuas }}$ $-\frac{1}{1}$

(b) The magnetic force on the eddy currents is opposite in direction to \vec{v}.

A square loop of copper wire is pulled through a region of magnetic field. Rank in order, from strongest to weakest, the A. $F_{\mathrm{b}}=F_{\mathrm{d}}>F_{\mathrm{a}}=F_{\mathrm{c}}$ pulling forces $F_{\mathrm{a}}, F_{\mathrm{b}}, F_{\mathrm{c}}$ B. $F_{\mathrm{c}}>F_{\mathrm{b}}=F_{\mathrm{d}}>F_{\mathrm{a}}$ and F_{d} that must be applied to keep the loop
C. $F_{\mathrm{c}}>F_{\mathrm{d}}>F_{\mathrm{b}}>F_{\mathrm{a}}$
D. $F_{\mathrm{d}}>F_{\mathrm{b}}>F_{\mathrm{a}}=F_{\mathrm{c}}$ moving at constant speed.

A square loop of copper wire is pulled through a region of magnetic field. Rank in order, from strongest to weakest, the pulling forces $F_{\mathrm{a}}, F_{\mathrm{b}}, \boldsymbol{F}_{\mathrm{c}}$ and F_{d} that must be applied to keep the loop
A. $\boldsymbol{F}_{\mathrm{b}}=\boldsymbol{F}_{\mathrm{d}}>\boldsymbol{F}_{\mathrm{a}}=\boldsymbol{F}_{\mathrm{c}}$
B. $F_{\mathrm{c}}>F_{\mathrm{b}}=F_{\mathrm{d}}>F_{\mathrm{a}}$
C. $F_{\mathrm{c}}>F_{\mathrm{d}}>F_{\mathrm{b}}>F_{\mathrm{a}}$
D. $F_{\mathrm{d}}>F_{\mathrm{b}}>F_{\mathrm{a}}=F_{\mathrm{c}}$
E. $F_{\mathrm{d}}>F_{\mathrm{c}}>F_{\mathrm{b}}>F_{\mathrm{a}}$ moving at constant speed.

Lenz's Law

In a loop through which there is a change in magnetic flux, and EMF is induced that tends to resist the change in flux

What is the direction of the magnetic field made by the current I?
A. Into the page
B. Out of the page

A current-carrying wire is pulled away from a conducting loop in the direction shown. As the wire is moving, is there a cw current around the loop, a cew current or no current?
A. There is no current around the loop.
B. There is a clockwise current around the loop.
C. There is a counterclockwise current around the loop.

A current-carrying wire is pulled away from a conducting loop in the direction shown. As the wire is moving, is there a cw current around the loop, a cew current or no current?
A. There is no current around the loop.
\checkmark B. There is a clockwise current around the loop.
C. There is a counterclockwise current around the loop.

A conducting loop is halfway into a magnetic field. Suppose the magnetic field begins to increase rapidly in strength. What happens to the loop?

A. The loop is pulled to the left, into the magnetic field.
B. The loop is pushed to the right, out of the magnetic field.
C. The loop is pushed upward, toward the top of the page.
D. The loop is pushed downward, toward the bottom of the page.
E. The tension is the wires increases but the loop does not move.

A conducting loop is halfway into a magnetic field. Suppose the magnetic field begins to increase rapidly in strength. What happens to the loop?

A. The loop is pulled to the left, into the magnetic field.
B. The loop is pushed to the right, out of the magnetic field.
C. The loop is pushed upward, toward the top of the page.
D. The loop is pushed downward, toward the bottom of the page.
E. The tension is the wires increases but the loop does not move.

A Transformer

Questions:

What will be the direction of B in the gap?
If I hold I_{p} fixed, what will be the current in the loop?
If I increase I_{p} what will be the direction of current in the loop?
If I decrease I_{p} what will be the direction of current in the loop?

What will be the direction of B in the gap?

Answer: Down

Primary makes B - up in core, returns through gap.
If I hold Ip fixed what will be the current in the loop?

Answer: Zer, flux through loop is not changing

If I increase Ip from one positive value to a larger positive value what will be the direction of the current in the loop?

What if I lower Ip but don't make it negative. What will be the direction of current in the loop?
\qquad

Two ways to create an induced current

1. A motional emf due to magnetic forces on moving charge carriers.
2. An induced electric field due to a changing magnetic field.

Increasing \vec{B}
34.6 Induced Electric Field

Time changing magnetic fields induce electric fields

$$
\overrightarrow{\mathbf{F}}=q(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})
$$

But, the wire is not moving, $\mathrm{v}=0$

(b) The induced electric field circulates around the magnetic field lines.

There is an electric field even with no wire.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Faraday's Law for Moving Loops

$$
E M F=\oint_{\text {loop }}(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \Phi=-\frac{d}{d t} \int_{\text {Area }} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}
$$

Reasons Flux Through a Loop Can Change

$$
\frac{d}{d t} \Phi=\frac{d}{d t} \int_{\text {Area }} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}
$$

A. Location of loop can change
B. Shape of loop can change

C. Orientation of loop can change

The magnetic flux through the loop is $\Phi_{\mathrm{m}}=\vec{A} \cdot \vec{B}$.

The angle θ between \vec{A} and \vec{B} is the angle at which the loop has been tilted.
D. Magnetic field can change

Faraday's Law for Moving Loops

$$
E M F=\oint_{\text {loop }}(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \overrightarrow{\mathbf{S}}=-\frac{d}{d t} \Phi=-\frac{d}{d t} \int_{\text {Area }} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}
$$

Faraday's Law for Stationary Loops

$$
\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\int_{\text {Area }} \frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \cdot d \overrightarrow{\mathbf{A}}
$$

Only time derivative of B enters
(b) The induced electric field circulates around the magnetic field lines.

There is an electric field even with no wire.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Consider a solenoid with N turns

Put your right thumbs in direction of I. Fingers give dinectim of \vec{B} (up inside)

$$
|\vec{B}|=\frac{\mu_{0} I N}{e}
$$

VIEW FROM ABOVE

Calculate induced \vec{E}-field as a functim of r

$$
\hat{E} ? \quad+\hat{\theta} \text { or }-\hat{\theta}
$$

Ans: We don't know, is B increasing or decreasing?

$$
E_{\theta}=-\frac{r}{2} \frac{\partial B_{z}}{\partial t}
$$

Faraday's Law for Stationary Loops

$$
\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\int_{\text {Area }} \frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \cdot d \overrightarrow{\mathbf{A}} \quad \text { Out of page }(+\mathrm{z})
$$

Only time derivative of B enters
Call component of E in θ direction $\mathrm{E}_{\theta}(\mathrm{r}, \mathrm{t})$

$$
\begin{gathered}
\oint_{\text {loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=2 \pi r E_{\theta}(r, t) \\
\int_{\text {Area }} \frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \cdot d \overrightarrow{\mathbf{A}}=\pi r^{2} \frac{\partial B_{z}}{\partial t}
\end{gathered}
$$

Therefore: $\quad E_{\theta}(r, t)=-\frac{r}{2} \frac{\partial B_{z}}{\partial t}$

Is Lenz's law satisfied ????

$$
E_{\theta}(r, t)=-\frac{r}{2} \frac{\partial B_{z}}{\partial t}
$$

B_{z} - out of page and increasing

An induced current would flow:
(A) Clockwise

B Counterclockwise

N turns
$=\oint_{L o o p} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{s}}=-N \pi a^{2} \frac{\partial B_{z}}{\partial t}$

Question: $\int_{1, \text { wire }}^{2} \overrightarrow{\mathbf{A}} \cdot d \vec{N}=?$
A.0 B. $-\int_{2} \overrightarrow{\mathrm{E}} \cdot d_{\mathrm{N}}$

Top view

Inductance

$$
\int_{2}^{1} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-N \pi a^{2} \frac{\partial B_{z}}{\partial t}
$$

$$
B_{z}=\frac{\mu_{o} N I}{l}
$$

$$
\begin{aligned}
V_{1}-V_{2} & =-\int_{2}^{1} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=\frac{\mu_{0} N^{2} \pi a^{2}}{l} \frac{d I}{d t}=L \frac{d I}{d t} \\
L & =\frac{\mu_{0} N^{2} \pi a^{2}}{l} \quad \text { Depends in geometry of coil, not I }
\end{aligned}
$$

Inductors
An inductor is a coil of wire
Any length of wire has inductance: but it's usually negligible

Engineering sign convention for labeling voltage and current

$$
V_{L}=V(2)-V(1)=L d I / d t
$$

Engineering Convention for Labeling Voltages and Currents

1. Pick one terminal and draw an arrow going in.
2. Label the current I_{x}.

> No f-ing minus signs
3. Label the Voltage at that terminal V_{x}. This is the potential at that terminal relative to the other terminal.

$$
\begin{gathered}
V_{R}=R I_{R} \\
V_{L}=L d I_{L} / d t \\
I_{C}=C d V_{C} / d t
\end{gathered}
$$

$$
V_{R}=\left(V_{2}-V_{1}\right)=I R
$$

OHM'S LAW

$$
V_{p}=I R
$$

$$
\begin{aligned}
Q(t) & =C\left(V_{2}-V_{1}\right) \\
& =c V_{c}
\end{aligned}
$$

$$
\frac{d Q(t)}{d t}=I(t)=c \frac{d V_{c}}{d t}
$$

$$
I(t)=c \frac{d V_{c}}{d t}
$$

Power and Energy to a two terminal device

If device is a resistor

$$
\begin{gathered}
V_{x}=I_{x} R \\
P=I_{x}^{2} R>0
\end{gathered}
$$

At $t=0$ the switch is closed

Then $V_{x}=V_{b}$
Current I_{x} flows.
The power delivered to the device is

$$
P=I_{x} V_{x}
$$

If device is an inductor

$$
\begin{gathered}
V_{x}=L \frac{d I_{x}}{d t} \\
P=I_{x} L \frac{d I_{x}}{d t}=\frac{d}{d t}\left(\frac{L I_{x}^{2}}{2}\right)
\end{gathered}
$$

Energy stored in Inductor

$$
P=I L \frac{d I}{d t}=\frac{d}{d t}\left(\frac{L I^{2}}{2}\right)
$$

$$
U=\int_{0}^{t} d t^{\prime} P\left(t^{\prime}\right)=\int_{0}^{t} d t^{\prime} \frac{d}{d t^{\prime}}\left(\frac{L I^{2}}{2}\right)=\left(\frac{L I^{2}}{2}\right)
$$

Where is the energy?

$$
B_{z}=\frac{\mu_{o} N I}{l} \quad L=\frac{\mu_{0} N^{2} \pi a^{2}}{l}
$$

Consider a solenoid

$$
\left(\frac{L I^{2}}{2}\right)=\left(\pi a^{2} l\right) \frac{B_{z}^{2}}{2 \mu_{0}} \quad=\text { Volume } x \text { Energy Density }
$$

Energy is stored in the magnetic field

How much energy is stored in the magnetic field of an MRI machine?

$$
\begin{aligned}
& \text { Volume }=\pi a^{2} l=\pi(.5)^{7} \cdot 2=1.57 \mathrm{~m}^{3} \\
& \mu_{0}=4 \pi \times 10^{-7} \\
& \begin{aligned}
U & =\frac{1.57}{2}\left(4 \pi \times 10^{-7}\right) \\
& =1 \text { hairdryer } * 625 \mathrm{sec} \\
& =1 \text { hairdiger } * 10 \text { minutes }
\end{aligned}
\end{aligned}
$$

The potential at a is higher than the potential at b . Which of the following statements about the inductor current I could be true?
A. I is from b to a and is steady.
B. I is from b to a and is increasing.
C. I is from a to b and is steady.
D. I is from a to b and is increasing.
E. I is from a to b and is decreasing.

The potential at a is higher than the potential at b . Which of the following statements about the inductor current I could be true?
A. I is from b to a and is steady.
B. I is from b to a and is increasing.
C. I is from a to b and is steady.
D. I is from a to b and is increasing.
E. I is from a to b and is decreasing.

What happens to the current in the inductor after I close the switch?

Three categories of time behavior

1. Direct Current (DC) Voltages and currents are constants in time. Example: batteries - circuits driven by batteries
2. Transients Voltages and currents change in time after a switch is opened or closed. Changes diminish in time and stop if you wait long enough.

Consider the series connection of an inductor, a resistor and a battery. Initially no current flows through inductor and resistor. At $\mathrm{t}=0$ switch is closed. What happens to current?

Notice, I've gone overboard and labeled every circuit element voltage and current according to the engineering convention.

A Word about Voltage and Current

Voltage is "across".
Current is "through".
Voltage is the potential difference between the two terminals.

Current is the amount of charge per unit time flowing through the device.

If you catch yourself saying:
"Voltage through..".
Or
"Current across...".

You are probably confused.

Kirchhoff's voltage and current laws.

1. The sum of the currents entering any node is zero. (KCL)

2. The sum of the voltages around any loop is zero. (KVL)

\#1(KCL) tells us
A. $\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{R}}+\mathrm{I}_{\mathrm{L}}=0$
B. $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{L}}$
C. $\mathrm{I}_{\mathrm{B}}=-\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{L}}$
\#2(KVL) tells us
A. $V_{B}+V_{R}+V_{L}=0$
B. $\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{B}}=0$
C. $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{L}}$

Now I have cleaned things up making use of
$I_{B}=-I_{R}, I_{R}=I_{L}=I$.
Now use device laws:
$\mathrm{V}_{\mathrm{R}}=\mathrm{RI}$
$\mathrm{V}_{\mathrm{L}}=\mathrm{LdI} / \mathrm{dt}$
KVL: $\quad V_{L}+V_{R}-V_{B}=0$

$$
\begin{gathered}
\hat{\hat{t}} \\
\frac{d I}{d t}+R I-V_{B}=0
\end{gathered}
$$

This is a differential equation that determines $\mathrm{I}(\mathrm{t})$. Need an initial condition $\mathrm{I}(0)=0$

$$
L \frac{d I(t)}{d t}+R I(t)-V_{B}=0, \quad I(0)=0
$$

This is a linear, ordinary, differential equation with constant coefficients.

Linear: only first power of unknown dependent variable and its derivatives appears. No I^{2}, I^{3} etc.
Ordinary: only derivatives with respect to a single independent variable

- in this case t.

Constant coefficients: L and R are not functions of time.

Consequence: We can solve it!

$$
L \frac{d I(t)}{d t}+R I(t)-V_{B}=0, \quad I(0)=0
$$

Solution:

$$
I(t)=\frac{V_{B}}{R}\left(1-e^{-t / \tau}\right)
$$

$$
\tau=(L / R) \quad \begin{aligned}
& \text { This is called the "L over } \mathrm{R} " \\
& \text { time }
\end{aligned}
$$

Let's verify

What is the voltage across the resistor and the inductor?

$$
\begin{aligned}
& I(t)=\frac{V_{B}}{R}\left(1-e^{-t / \tau}\right) \\
& V_{R}=R I(t)=V_{B}\left(1-e^{-t / \tau}\right) \\
& V_{L}=L \frac{d I}{d t}=V_{B} e^{-t / \tau}
\end{aligned}
$$

Initially I is small and V_{R} is small.
All of V_{B} falls across the
L inductor, $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{B}}$.
Inductor acts like an open circuit.

Time asymptotically I stops changing and V_{L} is small. All of V_{B} falls across the resistor, $V_{R}=V_{B} . \quad I=V_{B} / R$
Inductor acts like an short circuit.

Now for a Mathematical Interlude

How to solve a linear, ordinary differential equation with constant coefficients

The L-C circuit

KCL says:
A. $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{L}}$
B. $\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{L}}=0$
C. $\mathrm{V}_{\mathrm{L}}=\mathrm{L} \mathrm{dI}_{\mathrm{L}} / \mathrm{dt}$

KVL says:
A. $V_{C}=V_{L}$
$V_{C}=V_{L}=V$
B. $\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{L}}=0$
C. $\mathrm{I}_{\mathrm{C}}=\mathrm{CdV}_{\mathrm{L}} / \mathrm{dt}$

$$
I_{C}+I_{L}=0
$$

$$
V(t)=L \frac{d I_{L}}{d t}
$$

$$
I_{C}=C \frac{d V(t)}{d t}
$$

What about initial conditions?
Must specify: $I_{L}(0)$ and $V_{C}(0)$

$$
\begin{aligned}
& V_{C}=V_{L}=V \\
& \left\{\begin{array}{l}
I_{C}+I_{L}=0 \\
-V(t)=L \frac{d I_{L}}{d t} \\
I_{C}=C \frac{d V(t)}{d t}
\end{array}\right. \\
& \rightarrow \frac{d I_{C}}{d t}+\frac{d I_{L}}{d t}=0 \longrightarrow \quad \frac{d^{2} V(t)}{d t^{2}}+\frac{V(t)}{L C}=0 \\
& \longrightarrow \frac{d I_{C}}{d t}=C \frac{d^{2} V(t)}{d t^{2}} \\
& \longrightarrow \frac{d I_{L}}{d t}=\frac{V(t)}{L} \\
& \text { What about initial conditions? } \\
& \text { Must specify: } \mathrm{I}_{\mathrm{L}}(0) \text { and } \mathrm{V}_{\mathrm{C}}(0) \\
& V(0)=V_{C}(0) \\
& I_{L}(0)=-I_{C}(0)=-\left.C \frac{d V}{d t}\right|_{t=0}
\end{aligned}
$$

Let's take a special case of no current initially flowing through the inductor

$\frac{d^{2} V(t)}{d t^{2}}+\frac{V(t)}{L C}=0$
$V(0)=V_{C}(0)$
$I_{L}(0)=0=-\left.C \frac{d V}{d t}\right|_{t=0}$

Solution
A: $\quad V(t)=V_{C}(0) \cos (\omega t)$

$$
\omega=1 / \sqrt{L C}
$$

B: $\quad V(t)=V_{C}(0) \sin (\omega t)$

Current through Inductor and Energy Stored

$$
I_{L}(t)=-c \frac{d V}{d t}=c \omega V_{0} \sin \omega t=\sqrt{C} C_{L} V_{0} \sin \omega t
$$

$$
U_{C}=\frac{1}{2} C V^{2}
$$

Three ways to change the flux

1. A loop moves into or out of a magnetic field.
2. The loop changes area or rotates.

3. The magnetic field through the loop increases or decreases.

[^0]: Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley

