Chapter 23
Why doesn't this work with real spoons?
Ray Optics

Chapter 23. Ray Optics

Topics:

- The Ray Model of Light
- Reflection
- Refraction
- Image Formation by Refraction
- Color and Dispersion
- Thin Lenses: Ray Tracing
- Thin Lenses: Refraction Theory
- Image Formation with Spherical Mirrors

When can one consider waves to be like particles following a trajectory?

Direction of power flow

- Wave model: study solution of Maxwell equations. Most complete classical description. Called physical optics.
- Ray model: approximate propagation of light as that of particles following specific paths or "rays". Called geometric optics.
- Quantum optics: Light actually comes in chunks called photons

Wave Picture vs Ray Picture

(a) Plane waves approach from the left.

Circular waves spread out on the right.
(b)

In the Ray Picture a beam of light is a bundle of parallel traveling rays

Light rays
Direction
of travel

A beam of light

luminous object.

Source sends out rays in all directions
These are just a few of the infinitely many rays leaving
(b)

Pin hole camera (No lens)

$$
\frac{h_{i}}{d_{i}}=\frac{h_{0}}{d_{0}}
$$

The image is upside down. If the hole is sufficiently small, each point on the image corresponds to one point on the object.

A long, thin light bulb illuminates a vertical aperture. Which pattern of light do you see on a viewing screen behind the aperture?

(a)

(b)

(c)

(d)

Pin hole camera
(No lens)
How big and how small can the pin hole be?

Diffraction should be negligible

$$
a \gg \sqrt{\lambda d_{i}}
$$

Also, a should be big enough to allow enough light to see.

Specular Reflection - reflection from a smooth surface
(a) The incident and reflected rays lie in a plane perpendicular to the surface.

surface

Diffuse Reflection - reflection from an irregular surface

Angle of Incidence $=$ Angle of Reflection

(b)

Normal

Reflective surface

Why does angle of incidence $=$ angle of reflection?

$$
\begin{gathered}
\lambda_{l}=\frac{\lambda}{\sin \theta_{i}}=\frac{\lambda}{\sin \theta_{r}} \\
\theta_{i}=\theta_{r}
\end{gathered}
$$

Incident and Reflected wave crests must match up along surface

(a)

Rays from P reflect from the mirror. Each ray obeys the law of reflection.
(b)

This reflected ray appears
to have come from point P^{\prime}.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(c) Object distance Image distance

The reflected rays all diverge from P^{\prime}, which appears to be the source of the reflected rays. Your eye collects the bundle of diverging rays and "sees" the light coming from P^{\prime}.

Your eye intercepts only
a very small fraction of
all the reflected rays.

Two plane mirrors form a right angle. How many images of the ball can you see in the mirrors?

Suppose the corner had a third side.

How many images?
A. 3
B. 6
C. 7
D. 8

Refraction - path of light bends when going from one medium to another Depends on index of refraction

Refraction of a parallel beam of light
and of rays from a point source
(b)

If the ray direction is reversed, the incident

Snell's Law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

(b)

Remember definition of index of refraction

$$
n=\frac{c}{v_{e m}}
$$

Why Snell's Law?

$$
\begin{gathered}
\lambda_{\|}=\frac{\lambda_{1}}{\sin \theta_{1}}=\frac{\lambda_{2}}{\sin \theta_{2}} \\
\lambda_{1}=\frac{\lambda_{v a c}}{n_{1}} \\
\lambda_{2}=\frac{\lambda_{v a c}}{n_{2}} \\
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
\end{gathered}
$$

Incident and Transmitted wave crests must match up along surface
tABLE 23.1 Indices of refraction

Medium	n	For most material $\mathrm{n}>1$
Vacuum	1.00 exactly	
Air (actual)	1.0003	
Air (accepted)	1.00	
Water	1.33	
Ethyl alcohol	1.36	Plasma $\mathrm{n}<1$
Oil	1.46	
Glass (typical)	1.50	
Polystyrene plastic	1.59	
Cubic zirconia	2.18	
Diamond	2.41	On Mastering Physics Homework you are to pretend that plasma does not exist
Silicon (infrared)	3.50	

Tactics: Analyzing refraction

TACTICS
 BOX 23.1
 Analyzing refraction

(1) Draw a ray diagram. Represent the light beam with one ray.
(2) Draw a line normal to the boundary. Do this at each point where the ray intersects a boundary.
(3) Show the ray bending in the correct direction. The angle is larger on the side with the smaller index of refraction. This is the qualitative application of Snell's law.
(4) Label angles of incidence and refraction. Measure all angles from the normal.
(5) Use Snell's law. Calculate the unknown angle or unknown index of refraction.

EXAMPLE 23.4 Measuring the index of refraction

QUESTION:

EXAMPLE 23.4 Measuring the index of refraction

FIGURE 23.19 shows a laser beam deflected by a $30^{\circ}-60^{\circ}-90^{\circ}$ prism. What is the prism's index of refraction?

FIGURE 23.19 A prism deflects a laser beam.

EXAMPLE 23.4 Measuring the index of refraction

model Represent the laser beam with a single ray and use the ray model of light.

EXAMPLE 23.4 Measuring the index of refraction

VISUALIZE FIGURE 23.20 uses the steps of Tactics Box 23.1 to draw a ray diagram. The ray is incident perpendicular to the front face of the prism $\left(\theta_{\text {incident }}=0^{\circ}\right)$, thus it is transmitted through the first boundary without deflection. At the second boundary it is especially important to draw the normal to the surface at the point of incidence and to measure angles from the normal.

EXAMPLE 23.4 Measuring the index of refraction

FIGURE 23.20 Pictorial representation of a laser beam passing through the prism.

θ_{1} and θ_{2} are measured from the normal.

EXAMPLE 23.4 Measuring the index of refraction

solve From the geometry of the triangle you can find that the laser's angle of incidence on the hypotenuse of the prism is $\theta_{1}=30^{\circ}$, the same as the apex angle of the prism. The ray exits the prism at angle θ_{2} such that the deflection is $\phi=\theta_{2}-\theta_{1}=$ 22.6°. Thus $\theta_{2}=52.6^{\circ}$. Knowing both angles and $n_{2}=1.00$ for air, we can use Snell's law to find n_{1} :

$$
n_{1}=\frac{n_{2} \sin \theta_{2}}{\sin \theta_{1}}=\frac{1.00 \sin 52.6^{\circ}}{\sin 30^{\circ}}=1.59
$$

EXAMPLE 23.4 Measuring the index of refraction

ASSESS Referring to the indices of refraction in Table 23.1, we see that the prism is made of plastic.

A light ray
 travels from medium 1 to medium 3 as shown.
 For these media,

A. $n_{3}=n_{1}$.
B. $n_{3}>n_{1}$.
C. $n_{3}<n_{1}$.
D. We can't compare n_{1} to n_{3} without knowing n_{2}.

Total Internal Reflection

$$
\begin{aligned}
& \text { Based on picture, } \\
& \quad \text { which is } \\
& \quad \text { bigger? } \\
& \text { A. } n_{1} \\
& \text { B. } n_{2} \\
& \text { Solve for } \theta_{2} \\
& \sin \theta_{2}=\frac{n_{1}}{n_{2}} \sin \theta_{1}
\end{aligned}
$$

What if $\frac{n_{1}}{n_{2}} \sin \theta_{1}>1$?
Then there is no θ_{2} satisfying SL - no transmission - total reflection
Can only happen if wave is incident from high index material, viz. $\mathrm{n}_{1}>\mathrm{n}_{2}$.

Critical angle

$$
\frac{n_{1}}{n_{2}} \sin \theta_{c}=1
$$

The angle of incidence is increasing.
Transmission is getting weaker.

A light ray traveling in air enters a $30^{\circ}-60^{\circ}$ 90° prism along normal direction to its hypotenuse face, as shown in the figure. The index of refraction of the prism is n $=2$.1Determine ALL possible outgoing ray
 directions.

Since $n=2.1$ and $n_{\text {air }} \propto 1$, critical angle $\theta_{c}=\sin ^{-1}\left(\frac{n_{\text {ar }}}{n}\right)=\sin ^{-1}\left(\frac{1}{2.1}\right)=28.42^{\circ}<30^{\circ}$

(a) A fish out of water

The eye sees the object at distance d.

(b) A fish in the aquarium

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

$l=s \tan \theta_{1}=s^{\prime} \tan \theta_{2}$

Approximation for small angles:
$\sin \theta \simeq \tan \theta$

$$
\frac{s^{\prime}}{s}=\frac{n_{2}}{n_{1}}
$$

Color

Different colors are associated with light of different wavelengths. The longest wavelengths are perceived as red light and the shortest as violet light. Table 23.2 is a brief summary of the visible spectrum of light.

TABLE 23.2 the visible spectrum of light	
Color	Approximate wavelength
Deepest red	700 nm
Red	650 nm
Green	550 nm
Blue	450 nm
Deepest violet	400 nm

Different colors are associated with light of different wavelengths.
However, color is a perception, and most of that perception is based on the way our eyes and brain work.

For example combinations of light with different wavelengths appear to have colors different from those of the original components.

See Chapter 24.3
We will focus n the inherent properties of light, not on the way we perceive it.

Dispersion

The slight variation of index of refraction with wavelength is known as dispersion. Shown is the dispersion curves of two common glasses. Notice that n is larger when the wavelength is shorter, thus violet light refracts more than red light.

FIGURE 23.29 Dispersion curves show
how the index of refraction varies with wavelength.

Examples of dispersive refraction - Rainbow

(a) 2. Dispersion causes different colors to refract at different angles.
 colors even more as the rays refract back into the air.

You see a rainbow with red on the top, violet on the bottom.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Rayleigh Scattering

scattered wave
$I \propto \frac{d^{6}}{\lambda^{4} R^{2}}$
scattered intensity is
higher for shorter wavelengths

John William Strutt 3rd Baron Rayleigh

Wikimedia commons

At midday the scattered light is mostly blue because molecules preferentially scatter shorter wavelengths.

Sun

at midday

Observer
 at sunset

At sunset, when the light has traveled much farther through the atmosphere, the light is mostly red because the shorter wavelengths have been lost to scattering.

Lenses

Thin Lenses: Ray Tracing

FIGURE 23.34 The focal point and focal length of converging and diverging lenses.

Thin Lenses: Ray Tracing

FIGURE 23.34 The focal point and focal length of converging and diverging lenses.

Thin Lenses: Ray Tracing

FIGURE 23.36 Rays from an object point P are refracted by the lens and converge to a real image at point P^{\prime}.

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \text { (thin-lens equation) }
$$

Real Image

Thin lens approximation $\quad d \ll D, f$

Lens has parabolic thickness

$$
d(y)=\frac{a^{2}-y^{2}}{2 L^{4}} \text { Determines focal length }
$$

What is the phase of a wave arriving at the focus?

Some Math

Phase $\quad \phi=k[(n-1) d(y)+r(y)]$

Recall thickness of lens

$$
d(y)=\frac{a^{2}-y^{2}}{2 L}
$$

$$
\begin{array}{ll}
\text { Approximate } & r(y)=\sqrt{y^{2}+f^{2}} \simeq f+\frac{y^{2}}{2 f} \\
y \ll f
\end{array}
$$

Phase is independent of ray (y) if $\quad \frac{-(n-1) y^{2}}{2 L}+\frac{y^{2}}{2 f}=0$

Focal length determined by curvature of lens and index of refraction

$$
\frac{1}{f}=\frac{(n-1)}{L}
$$

What changes when the lens is immersed in another medium ?

$k=2 \pi n_{\text {medium }} / \lambda_{\text {vac }}$ Contribution from lens
$\left.\begin{array}{l}\text { Wave } \\ \text { phase }\end{array} \quad \underset{k}{k}\left(n_{\text {lens }}-n_{\text {medium }}\right) d(y)+r(y)\right] \quad \frac{1}{f}=\frac{\left(n_{\text {lens }}-n_{\text {medium }}\right)}{L}$

Graphically locating an image and determining it's size

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \text { (thin-lens equation) }
$$

$$
\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}=m
$$

A lens produces a sharply-focused, inverted image on a screen. What will you see on the screen if the lens is
 removed?

A. The image will be inverted and blurry.
B. The image will be as it was, but much dimmer.
C. There will be no image at all.
D. The image will be right-side-up and sharp.
E. The image will be right-side-up and blurry.

Suppose object is closer than focal point to lens
A ray along a line through the near focal point refracts parallel to the optical axis.

The refracted rays are diverging. They appear to come from point P^{\prime}.

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \text { (thin-lens equation) }
$$

$$
\begin{aligned}
& \text { Virtual mage located } \\
& \text { at } \quad s^{\prime}<0
\end{aligned}
$$

$$
\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}=m
$$

Lens Maker Formula: two surfaces defined by two radii of curvature

Compare with

$$
d(y)=\frac{a^{2}-y^{2}}{2 L}
$$

The same coefficient of y^{2} if

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

$$
\frac{1}{2 L}=\frac{1}{2 R_{1}}-\frac{1}{2 R_{2}}
$$

Works for both converging and diverging lens

A lens is made of a material with two flat parallel surfaces. The material has a non-uniform index of refraction

Will the rays
a) Converge
b) Diverge
c) Go straight
d) Spiral
e) Become so frustrated that the fall down to the ground

