Chapters 21 \& 22

Interference and Wave Optics

Waves that are coherent can add/cancel

Patterns of strong and weak intensity

Approximate Electric Field:

$$
E(r, t)=A(r) \cos (k r-\omega t+\theta)
$$

Field depends on distance from source and time.

Typically $\quad A(r) \sim 1 / r$

Most important dependence is in the cosine

Two in-phase sources emit circular or spherical waves.

- Points of constructive interference. A crest is aligned with a crest, or a trough with a trough.
- Points of destructive interference. A crest is aligned with a trough of another wave.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$
\begin{aligned}
& \text { Two sources that have exactly the } \\
& \text { same frequency. "Coherent" } \\
& E(r, t)=A\left(r_{1}\right) \cos \left(k r_{1}-\omega t+\phi_{1}\right) \\
& \quad+A\left(r_{2}\right) \cos \left(k r_{2}-\omega t+\phi_{2}\right)
\end{aligned}
$$

Sources will interfere constructively when

$$
\begin{gathered}
\left(k r_{1}+\phi_{1}\right)-\left(k r_{2}+\phi_{2}\right)=2 \pi m \\
m=0,1,2, \ldots
\end{gathered}
$$

Sources will interfere destructively when

$$
\left(k r_{1}+\phi_{1}\right)-\left(k r_{2}+\phi_{2}\right)=2 \pi\left(m+\frac{1}{2}\right)
$$

Incoherent vs Out of Phase

- Antinodal lines, constructive interference, oscillation with maximum amplitude. Intensity is at its maximum value.
- Nodal lines, destructive interference, no oscillation. Intensity is zero.

Field and Intensity far from sources*

$$
E(r, t)=A\left(r_{1}\right) \cos \left(k r_{1}-\omega t\right)+A\left(r_{2}\right) \cos \left(k r_{2}-\omega t\right)
$$

suppose $\quad A\left(r_{1}\right)=A\left(r_{2}\right)$

$$
E(r, t) \simeq 2 A \cos \left(\frac{k \Delta r}{2}\right) \cos (k \bar{r}-\omega t)
$$

Field amplitude depends on space

Field oscillates in time.
*Special case $\quad \phi_{1}=\phi_{2}=0$

Average intensity depends in difference in distance to sources, Δr

Field

$$
E(r, t) \simeq 2 A \cos \left(\frac{k \Delta r}{2}\right) \cos (k \bar{r}-\omega t)
$$

$$
\Delta r=r_{1}-r_{2}
$$

$$
\bar{r}=\frac{r_{1}+r_{2}}{2}
$$

$$
\begin{aligned}
& \text { Intensity } \quad I=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|\stackrel{\rightharpoonup}{\mathbf{E}}|^{2} \\
& I_{\text {ave }}=\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}\left|2 A \cos \left(\frac{k \Delta r}{2}\right)\right|^{2}
\end{aligned}
$$

Interference of light

(a)

The drawing is not to scale; the distance to the screen is actually much greater than the distance between the slits

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Coherence because sources are at exactly the same frequency

[^0]

Sources will interfere constructively when

$$
(k r_{1}+\underbrace{\phi_{1}})-\left(k r_{2}+\phi_{2}\right)=k \Delta r=2 \pi m
$$

$$
\begin{aligned}
k \Delta r=k d \sin \theta & =2 \pi m \\
\sin \theta_{m} \approx \theta_{m} & =m \lambda / d
\end{aligned}
$$

Phases same because source comes from a single incident plane wave

$$
m=0,1,2, \ldots
$$

Dark fringes $\quad \sin \theta_{m} \approx \theta_{m}=\left(m+\frac{1}{2}\right) \lambda / d$

Intensity on a distant screen $\quad I=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|\mathbf{E}|^{2}$

$$
\begin{aligned}
& I_{\text {ave }}=\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}\left|2 A \cos \left(\frac{k \Delta r}{2}\right)\right|^{2} \\
& k \Delta r=k d \sin \theta \simeq k d \theta=\frac{2 \pi}{\lambda} d \frac{y}{L}
\end{aligned}
$$

Fringe spacing $\quad \Delta y=\frac{L \lambda}{d}$
Intensity from a single source

$$
I_{1}=\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|A|^{2}
$$

Maximum Intensity at fringe

$$
I_{\text {fringe }}=\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|2 A|^{2}=2 I_{1}
$$

Real pattern affected by slit opening width and distance to screen

Suppose the viewing screen in the figure is moved closer to the double slit. What happens to the interference fringes?
A. They fade out and disappear.
B. They get out of focus.
C. They get brighter and closer together.
D. They get brighter and farther apart.
E. They get brighter but otherwise do not change.

Light of wavelength λ_{1} illuminates a double slit, and interference fringes are observed on a screen behind the slits.
When the wavelength is changed to λ_{2},
the fringes get closer together. How large is λ_{2} relative to λ_{1} ?
A. λ_{2} is smaller than λ_{1}.
B. λ_{2} is larger than λ_{1}.
C. Cannot be determined from this information.

Diffraction Grating N slits, sharpens bright fringes

Bright fringes at same angle as for double slit

$$
\begin{gathered}
\sin \theta_{m}=m \lambda / d \\
m=0,1,2, \ldots
\end{gathered}
$$

Location of Fringes on distant screen

Intensity on a distant screen $\quad I=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|\mathbf{E}|^{2}$
Average over time

$$
I_{a v e}=\frac{1}{2} I
$$

Intensity from a single slit

$$
I_{1}=\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|A|^{2}
$$

amplitude from a single slit

At the bright fringe N slits interfere constructively

$$
I_{\text {fringe }}=\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}|N A|^{2}=N^{2} I_{1}
$$

Spatial average of intensity must correspond to sum of N slits

$$
I_{S A}=N I_{1}
$$

Measuring Light Spectra

Light usually contains a superposition of many frequencies.
The amount of each frequency is called its spectrum.
Knowing the components of the spectrum tells us about the source of light.

Composition of stars is known by measuring the spectrum of their light.

$$
\sin \theta_{m}=m \lambda / d \quad \frac{y_{m}}{L}=\tan \theta_{m}
$$

White light passes through a diffraction

 grating and forms rainbow patterns on a screen behind the grating. For each rainbow,A.the red side is farthest from the center of the screen, the violet side is closest to the center.
B.the red side is closest to the center of the screen, the violet side is farthest from the center.
C.the red side is on the left, the violet side on the right.
D.the red side is on the right, the violet side on the left.

Reflection Grating

A reflection grating can be made by cutting parallel grooves in a mirror surface. These can be very precise, for scientific use, or mass produced in plastic.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Incoherent vs Out of Phase

Fields in slits are coherent but out of phase

Diffraction pattern shifts

Field and Intensity far from sources

$$
E(r, t)=A\left(r_{1}\right) \cos \left(k r_{1}-\omega t+\phi_{1}\right)+A\left(r_{2}\right) \cos \left(k r_{2}-\omega t+\phi_{2}\right)
$$

$$
\text { suppose } \quad A\left(r_{1}\right)=A\left(r_{2}\right)
$$

$$
E(r, t) \simeq 2 A \cos \left(\frac{k \Delta r}{2}+\frac{\phi_{1}-\phi_{2}}{2}\right) \cos \left(k \bar{r}-\omega t+\frac{\phi_{1}+\phi_{2}}{2}\right)
$$

$$
\begin{aligned}
& \Delta r=r_{1}-r_{2} \\
& \bar{r}=\frac{r_{1}+r_{2}}{2}
\end{aligned}
$$

Field amplitude depends on space

Field oscillates in time.

$$
\Delta r=d \sin \theta
$$

Constructive interference when

$$
\begin{gathered}
\frac{k \Delta r}{2}+\frac{\phi_{1}-\phi_{2}}{2}=m \pi \\
d \sin \theta=\lambda\left(m-\frac{\phi_{1}-\phi_{2}}{2 \pi}\right)
\end{gathered}
$$

Propagation of wave fronts from a slit with a nonzero width

Sources are not points.
How do we describe spreading of waves?

Ans. Just solve Maxwell's equations. (wave equation)

That is not always so easy.

In the past, not possible.

In the distant past equations were not known.

Huygen's Principle

1. Each point on a wave front is the source of a spherical wavelet that spreads out at the wave speed.
2. At a later time, the shape of the wave front is the line tangent to all the wavelets.

Huygen's (1629-1695) Principle

1. Each point on a wave front is the source of a spherical wavelet that spreads out at the wave speed.
2. At a later time, the shape of the wave front is the line tangent to all the wavelets.

www.guerrillacandy.com/.../

Wikimedia Commons

Huygens Principle:

(a) Plane wave

Each of these points is the source of a spherical wavelet.

Initial wave front

The wave front at a later time is tangent to all the wavelets.
(b) Spherical wave

The wave front at a later time is tangent to all the wavelets.
(a) Greatly magnified view of slit

When is there perfect destructive interference?
(c)

Each point on the wave front is paired with another point distance $a / 2$ away.

These wavelets all meet on the screen at angle θ. Wavelet 2 travels distance $\Delta r_{12}=(a / 2) \sin \theta$ farther than wavelet 1.

Destructive when

$$
\Delta r_{12}=\frac{a}{2} \sin \theta=\frac{\lambda}{2}
$$

1 cancels 2
3 cancels 4
5 cancels 6
Etc.
Also:

$$
\frac{a}{2 p} \sin \theta_{p}=\frac{\lambda}{2}
$$

$$
p=1,2,3 \ldots \ldots
$$

We can calculate the pattern from a single silit!

Field from two point sources
$E(r, t)=A\left(r_{1}\right) \cos \left(k r_{1}-\omega t\right)+A\left(r_{2}\right) \cos \left(k r_{2}-\omega t\right)$

Field from many point sources

$$
E(r, t)=\sum_{i} A\left(r_{i}\right) \cos \left(k r_{i}-\omega t\right)
$$

- Points of constructive interference. A crest is aligned with a crest, or a trough with a trough.
- Points of destructive interference.

A crest is aligned with a trough of another wave.

Field from a continuous distribution of point sources - Integrate!
(a) Greatly magnified view of slit

$$
\begin{gathered}
E(r, t)=\sum_{i} A\left(r_{i}\right) \cos \left(k r_{i}-\omega t\right) \\
E(r, t)=\int_{-a / 2}^{a / 2} \frac{d y_{i}}{a} A\left(r_{i}\right) \cos \left(k r_{i}-\omega t\right)
\end{gathered}
$$

Replace sum by integral

The wavelets from each point on the initial wave front overlap and interfere, creating a diffraction pattern on the screen.

Distance from source to observation point

Still can't do integral. Must make an approximation, $\left|y_{i}\right| \ll L, y$

$$
r_{i} \simeq \sqrt{L^{2}+y^{2}}-\frac{y y_{i}}{\sqrt{L^{2}+y^{2}}}
$$

Result

$$
E(r, t)=\int_{-a / 2}^{a / 2} \frac{d y_{i}}{a} A \cos \left(k r_{i}-\omega t\right) \simeq A \frac{\sin (\Psi)}{\Psi} \cos (k \bar{r}-\omega t)
$$

Time average intensity

$$
I_{\text {ave }}=\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}\left|A \frac{\sin (\Psi)}{\Psi}\right|^{2}
$$

Intensity zero when

$$
\begin{array}{r}
\Psi=p \pi \\
p= \pm 1,2,3, \ldots \\
\sin \theta=\frac{y}{\bar{r}}=\frac{p \lambda}{a}
\end{array}
$$

Fraunhofer Approximation Named in honor of Fraunhofer Fraunhofer lines
Absorption lines in sunlight

Joseph von Faunhofer

Wikimedia Commons

Width of Central Maximum

$$
\frac{w}{\bar{r}}=\frac{2 \lambda}{a}
$$

What increases w?

1. Increase distance from slit.
2. Increase wavelength
3. Decrease size of slit

Circular aperture diffraction

Width of central maximum

$$
\frac{w}{L}=\frac{2.44 \lambda}{D}
$$

The figure shows two single-slit diffraction patterns. The distance between the slit and the viewing screen is the same in both cases. Which of the following could be true?

A. The wavelengths are the same for both; $a_{1}>a_{2}$.
B. The wavelengths are the same for both; $a_{2}>a_{1}$.
C. The slits and the wavelengths are the same for both; $p_{1}>p_{2}$.
D. The slits and the wavelengths are the same for both; $p_{2}>p_{1}$.

Wave Picture vs Ray Picture

(a) Plane waves approach from the left.

Circular waves spread out on the right.
(b)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
If $\mathrm{D} \gg \mathrm{w}$, ray picture is OK

$$
\frac{w}{L}=\frac{2.44 \lambda}{D}
$$ If $\mathrm{D}<=\mathrm{w}$, wave picture is needed

Critical size: $\quad D_{c}=w \Rightarrow D_{c}=\sqrt{2.44 \lambda L}$
If product of wave length and distance to big, wave picture necessary.

Distant object

When will you see ?

$$
D>D_{c}=\sqrt{2.44 \lambda L}
$$

When will you see
Example suppose object is on surface of sun

$$
\begin{gathered}
L=1.5 \times 10^{11} \mathrm{~m} \\
\lambda=500 \mathrm{~nm}=5 \times 10^{-7} \mathrm{~m} \\
D_{c}=\sqrt{2.44 \lambda L}=427 \mathrm{~m}
\end{gathered}
$$

Diffraction blurs image

$$
D \leq D_{c}=\sqrt{2.44 \lambda L}
$$

Interferometer

1. The wave divides at this point.

2. The waves recombine at this point and interfere.
3. The microphone detects the superposition of the two waves that traveled different distances.

If I vary L
$\Delta m=\frac{\Delta L}{\lambda / 2}$

Sources will interfere constructively when

$$
\Delta r=2 L=m \lambda \quad m=0,1,2, \ldots
$$

Sources will interfere destructively when

$$
\Delta r=2 L=\left(m+\frac{1}{2}\right) \lambda
$$

The waves traveling the two paths interfere constructively.

Moving the slide $\lambda / 4$ changes the interference to destructive.

Michelson Interferometer
What is seen

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
As L2 is varied, central spot changes from dark to light, etc. Count changes $=\Delta \mathrm{m}$

$$
\text { If I vary } \mathrm{L}_{2} \quad \Delta m=\frac{\Delta L_{2}}{\lambda / 2}
$$

Using the interferometer Michelson and Morley showed that the speed of light is independent of the motion of the earth.

This implies that light is not supported by a medium, but propagates in vacuum.

Led to development of the special theory of relativity.

Albert Michelson
First US Nobel Science Prize Winner

Albert Michelson was the first US Nobel Science Prize Winner. The first US Nobel Prize winner was awarded the Peace Prize.

This American is known for saying:
A. Peace is at hand.
B. All we are saying, is give peace a chance.
C. There will be peace in the valley.
D. Speak softly, and carry a big stick.

A Michelson interferometer using light of wavelength λ has been adjusted to produce a bright spot at the center of the interference pattern. Mirror \mathbf{M}_{1} is then moved distance λ toward the beam splitter while M_{2} is moved distance λ away from the beam splitter. How many bright-dark-bright fringe shifts are seen?
A. 4
B. 3
C. 2
D. 1
E. 0

Measuring Index of refraction

Number of wavelengths in cell when empty

$$
m_{1}=\frac{2 d}{\lambda_{\text {aca }}}
$$

Number of
wavelengths in cell when full

$$
m_{2}=\frac{2 d}{\lambda_{g a s}}=\frac{2 d}{\lambda_{\text {vac }} / n_{g a s}}
$$

Number of fringe

$$
\Delta m=m_{2}-m_{1}=\left(n_{\text {gas }}-1\right) \frac{2 d}{\lambda_{\text {vac }}}
$$

EXAMPLE 22.9 Measuring the index of refraction

QUESTION:

example 22.9 Measuring the index of refraction
A Michelson interferometer uses a helium-neon laser with wavelength $\lambda_{\text {vac }}=633 \mathrm{~nm}$. As a $4.00-\mathrm{cm}$-thick cell is slowly filled with a gas, 43 bright-dark-bright fringe shifts are seen and counted. What is the index of refraction of the gas at this wavelength?

EXAMPLE 22.9 Measuring the index of refraction

model The gas increases the number of wavelengths in one arm of the interferometer. Each additional wavelength causes one bright-dark-bright fringe shift.

What do we know?

$$
\Delta m=m_{2}-m_{1}=\left(n_{\text {gas }}-1\right) \frac{2 d}{\lambda_{v a c}}
$$

EXAMPLE 22.9 Measuring the index of refraction

solve We can rearrange Equation 22.36 to find that the index of refraction is

$$
n=1+\frac{\lambda_{\mathrm{vac}} \Delta m}{2 d}=1+\frac{\left(6.33 \times 10^{-7} \mathrm{~m}\right)(43)}{2(0.0400 \mathrm{~m})}=1.00034
$$

$$
\Delta m=m_{2}-m_{1}=\left(n_{g a s}-1\right) \frac{2 d}{\lambda_{\text {vac }}}
$$

EXAMPLE 22.9 Measuring the index of refraction

ASSESS This may seem like a six-significant-figure result, but it's really only two. What we're measuring is not n but $n-1$. We know the fringe count to two significant figures, and that has allowed us to compute $n-1=\lambda_{\text {vac }} \Delta m / 2 d=3.4 \times 10^{-4}$.

Mach-Zehnder Interferometer

displacement of interference fringes gives "line averaged" product

Imaging a profile of index change
interferogram
Interference depends on index of refraction of unknown

Viewing screen or camera

6.9 cm

Chapter 22. Summary Slides

General Principles

Huygens' principle says that each point on a wave front is the source of a spherical wavelet. The wave front at a later time is tangent to all the wavelets.

General Principles

Diffraction is the spreading of a wave after it passes through an opening.

Constructive and destructive interference are due to the overlap of two or more waves as they spread behind openings.

Important Concepts

The wave model of light considers light to be a wave propagating through space. Diffraction and interference are important. The ray model of light considers light to travel in straight lines like little particles. Diffraction and interference are not important. Diffraction is important when the width of the diffraction pattern of an aperture equals or exceeds the size of the aperture. For a circular aperture, the crossover between the ray and wave models occurs for an opening of diameter $D_{\mathrm{c}}=\sqrt{ } 2.44 \lambda L$. In practice, $D_{\mathrm{c}} \approx 1 \mathrm{~mm}$. Thus

- Use the wave model when light passes through openings $<1 \mathrm{~mm}$ in size. Diffraction effects are usually important.
- Use the ray model when light passes through openings $>1 \mathrm{~mm}$ in size. Diffraction is usually not important.

Annlications

Single slit of width a.
A bright central maximum of width

$$
w=\frac{2 \lambda L}{a}
$$

is flanked by weaker secondary maxima. Dark fringes are located at angles such that

$$
a \sin \theta_{p}=p \lambda \quad p=1,2,3, \ldots
$$

If $\lambda / a \ll 1$, then from the small-angle approximation

$$
\theta_{p}=\frac{p \lambda}{a} \quad y_{p}=\frac{p \lambda L}{a}
$$

Applications

Interference due to wave-front division

Waves overlap as they spread out behind slits. Constructive interference occurs along antinodal lines. Bright fringes are seen where the antinodal lines intersect the viewing screen.
Double slit with separation d.
Equally spaced bright fringes are located at

$$
\theta_{m}=\frac{m \lambda}{d} \quad y_{m}=\frac{m \lambda L}{d} \quad m=0,1,2, \ldots
$$

The fringe spacing is $\Delta y=\frac{\lambda L}{d}$
Diffraction grating with slit spacing d.
Very bright and narrow fringes are located at
 angles and positions

$$
d \sin \theta_{m}=m \lambda \quad y_{m}=L \tan \theta_{m}
$$

Annlieatinns

Circular aperture of diameter D.
A bright central maximum of diameter

$$
w=\frac{2.44 \lambda L}{D}
$$

is surrounded by circular secondary maxima. The first dark fringe is located at

$$
\theta_{1}=\frac{1.22 \lambda}{D} \quad y_{1}=\frac{1.22 \lambda L}{D}
$$

For an aperture of any shape, a smaller opening causes a more rapid spreading of the wave behind the opening.

Applications

Interference due to amplitude division

An interferometer divides a wave, lets the two waves travel different paths, then recombines them. Interference is constructive if one wave travels an integer number of wavelengths more or less than the other wave. The difference can be due to an actual path-length difference or to a different index of refraction.

Michelson interferometer
The number of bright-dark-bright fringe shifts as mirror M_{2} moves distance ΔL_{2} is

$$
\Delta m=\frac{\Delta L_{2}}{\lambda / 2}
$$

[^0]: Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

