Special Relativity

4/27/21

Classical Mechanics-Galilean Transfromations

1) The laws of Newtomian mechanues are invariant under Gelilean transformatias
2) Maxwell's equations ane not mvariant under qalilean transformetions

$$
\begin{aligned}
& F=m q \\
& \underset{\sim}{F}=F^{\prime} \\
& m^{\prime}=m^{\prime} \\
& u_{m}^{\prime}=u_{n}^{\prime}+V_{v} \\
& L^{\prime}=+
\end{aligned}
$$

Retersence frome unovm with velocein \checkmark

$$
\frac{d u}{d t}=\frac{d u^{\prime}}{d t}=\frac{F}{m}
$$

Transformation of Wave Equation
Express the wave equation in terms of the coordinates in the moving frame,

$$
\begin{array}{cl}
\underset{m}{x}=x^{\prime}+v t^{\prime} & x^{\prime}=x-v+ \\
t=t^{\prime} & t^{\prime}=t \\
\frac{\partial}{\partial x}=\frac{\partial x_{m}^{\prime}}{\partial x} \cdot \frac{\partial}{\partial x^{\prime}}+\frac{\partial t^{\prime}}{\partial x} \frac{\partial}{\partial t^{\prime}}=\frac{\partial}{\partial x^{\prime}} \\
\frac{\partial}{\partial t}=\frac{\partial x^{\prime}}{\partial t} \cdot \frac{\partial}{\partial x_{\sim}^{\prime}}+\frac{\partial t^{\prime}}{\partial t} \frac{\partial}{\partial t^{\prime}}=-v \cdot \frac{\partial}{\partial x^{\prime}}+\frac{\partial}{\partial t^{\prime}}
\end{array}
$$

Wave Equation

$$
\nabla^{2}=\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial x}=\frac{\partial}{\partial x_{x}} \cdot \frac{\partial}{\partial x^{\prime}} \quad \frac{\partial}{\partial t}=\frac{\partial}{\partial t^{\prime}}-v \cdot \frac{\partial}{\partial x^{\prime}}
$$

thus, in terms of primed coordinates

$$
\left[\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial x^{\prime}}-\frac{1}{c^{2}}\left(\frac{\partial}{\partial t^{\prime}}-v \cdot \frac{\partial}{\partial x^{\prime}}\right)^{2}\right]{ }_{n}(A)=0
$$

It should be

$$
\left[\frac{\partial}{\partial x^{\prime}} \cdot \frac{\partial}{\partial x^{\prime}}-\frac{1}{c^{2}}\left(\frac{\partial}{\partial t^{\prime}}\right)^{2}\right]\left(\underset{\sim}{A^{\prime}} \phi^{\prime}\right)=0
$$

Explanations
assume Newtonian mechances is correct

EITher
1)

Maxwell's equations wrong
or
2) Maxwell's equations are not supposed to be invonant

ETHER ExiSTS MEDIUM supporting light waves

Alternatively

Assumes maxwell's equations are
correct. \{ Lorentz $\}$ transformations appropriate

1) THEN THE SPEED of LIGHT Is THE same for any observer
2) Newtonian mechances is wrong but can be frow

Lorentz Transformation

$$
\begin{aligned}
& x=x^{\prime} \\
& y=y^{\prime} \\
& z=\gamma\left(z^{\prime}+v t^{\prime}\right) \\
& t=\gamma\left(t^{\prime}+\left(v / c^{3}\right) z^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y \\
& z^{\prime}=\gamma(z-v t) \\
& t^{\prime}=\gamma\left(t-\left(v / c^{2}\right) z\right)
\end{aligned}\left\{\begin{array}{l}
\gamma=\left(1-v^{2} / c^{2}\right)^{1 / 2} \\
\text { THEN } \\
\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \\
=\nabla^{\prime 2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{\prime 2}}
\end{array}\right.
$$

"Derivation" of Lorentz Transformation

$$
\begin{aligned}
& x^{\prime}=a_{1} x+a_{2} t \\
& t^{t}=a_{3} t+a_{4} x
\end{aligned}
$$

TRANSFOTMATION mUSt BE LINEAR. SPACE
time are homogeneous

$$
\begin{array}{ll}
x \rightarrow x+\Delta x & , t^{\prime} \rightarrow t+\Delta t \\
x^{\prime} \rightarrow x^{\prime}+\Delta x^{\prime}, & t^{\prime} \rightarrow t+\Delta t^{\prime}
\end{array}
$$

$\Delta x^{\prime} \& \Delta t^{\prime}$ can not deperal on $x_{2} t$

Observers see each other at +-v

Requirement $\# 1$ origin of x^{\prime} is moving at velocity y in

$$
\begin{gathered}
x^{\prime}=0=\left(a_{1} v+a_{2}\right) t \\
a_{2}=-a_{2} v
\end{gathered}
$$

Requirement $\# 2$
x, t
origin of x is moving $\quad t^{t}=a_{3} t+a_{4} x$ at velocity $-v$ in x^{\prime}, f^{\prime}

$$
\begin{array}{ll}
x^{\prime}=a_{1}(x-v t) \\
t^{\prime}=a_{1}\left(t+a_{4} l a_{1} x\right)
\end{array} \quad \text { call } a_{4} l_{,}=\hat{a_{i}}
$$

Requinement $\forall_{3} \quad x^{2}-c^{2} t^{2}=\left(x^{1}\right)^{2}-\left(c t^{\prime}\right)^{2}$
if $x= \pm c t$ then $x^{\prime}= \pm c t^{\prime}$

$$
\begin{aligned}
& x^{2}-c^{2} t^{2}=a_{1}^{2}\left[(x-v t)^{2}-c^{2}\left(t+\hat{a}_{4} x\right)^{2}\right] \\
&=a_{1}^{2}\left[x^{2}+v^{2} t^{2}-2 x v t-c^{2}\left(t^{2}+2 \hat{a}_{4} x t+\hat{a}_{4}^{2} x^{2}\right)\right. \\
& \hat{a}_{4}=-\frac{v}{c^{2}} \\
& x^{2}-c^{2} t^{\prime 2}=a_{1}^{2}\left\{x^{2}\left(1-\frac{v^{2}}{c^{2}}\right)--c^{2}\left(1-\frac{v^{2}}{c^{2}}\right) t^{2}\right] \\
&=x^{2}-c^{2} t^{2} \quad a_{1}^{2}\left(1-\frac{v^{2}}{c^{2}}\right)=1
\end{aligned}
$$

$$
a_{1}=\gamma=\left(1-v_{c}^{2} /\right)^{-1 / 2}
$$

What exactly does the Lorenz transformation mean, and how does one use it. Think of time as being a fourth coordinate. An event is characterized by its four coordinates. An event can be anything that occurs at a. particular place and time.

Let x, t be the coordinates of an event in some reference frame K. The same event as observed
in an other reference frame will have a different set of coordinates $\quad x^{\prime}, t^{\prime}$

These coordinates are related to the coordinates in tue unprimed frame by the Lorents transformaturn

TRANSFORmation $X \rightarrow x^{\prime}$

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y \\
& z^{\prime}=\gamma(z-v t) \\
& t^{\prime}=\gamma\left(t-\left(v / c^{2}\right) z\right)
\end{aligned}
$$

inverse $x^{1} \rightarrow x$

$$
\begin{aligned}
& x=x^{\prime} \\
& y=y^{\prime} \\
& z=\gamma\left(z^{\prime}+v t^{\prime}\right) \\
& t=\gamma\left(t+\frac{v}{c^{2}} z\right)
\end{aligned}
$$

Implicit is that we have picked
our coordinate system such that an event at the origin in ore frame occurs at the origin in the other $\underset{\sim}{x}=0 \quad+=0 \quad x^{\prime}=0 \quad t^{\prime}=0$

Coordinate Rotation in a Plane

In ordinary space the x and y coordinates in a rotated coordinate system are given by

Relativity

Relativity

Lorentz transformations are analogous to a rotation of coordinates in space - time Lorentz transformations

$$
\binom{x^{\prime}}{c t^{\prime}}=\left(\begin{array}{cc}
\gamma & -\gamma \beta \\
-\gamma \beta & \gamma
\end{array}\right)\binom{x}{c t}=\left(\begin{array}{cc}
\cosh (\varsigma) & -\sinh (\varsigma) \\
-\sinh (\varsigma) & \cosh (\varsigma)
\end{array}\right)\binom{x}{c t}
$$

Invariant to a Lorentz transformation \rightarrow like a rotation in space time coordinates

Length (in space-time) is conserved under a Lorentz transformation
$\gamma^{2}-\gamma^{2} \beta^{2}=1 \rightarrow \cosh ^{2}(\varsigma)-\sinh ^{2}(\varsigma)=1$

$$
-c^{2} t^{2}+x^{2}+y^{2}+z^{2}=-c^{2}\left(t^{\prime}\right)^{2}+\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}
$$

LACK of simultaneity.
Two events occuring at the same time in one coordinate system may occur at different....times in an other.
Example suppose that on
observer in the unprimed frame
determines that two lights
flashed an at $t=0 \quad$ at $z=+L$ and $\quad Z=-L$.

Thus, the precise time at which the bulbs flasher can be determined. Call thy $t=0$

Coovelinetes of event Coordinates of event \#2

$$
\begin{aligned}
& t=0 \\
& x_{1}=0 \\
& y_{1}=0 \\
& z_{1}=L
\end{aligned}
$$

$$
\begin{aligned}
& t=0 \\
& x_{2}=0 \\
& y_{2}=0 \\
& z_{2}=-L
\end{aligned}
$$

Observer moving with speed V in frame K^{\prime} also see? two bulbs flash. Knowing the speed of light and the location of the flashes he can determine the precis tines of the flashes

Event \#1

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{1}=0 & z_{1}^{\prime}=\gamma\left(z_{1}-v t_{1}\right)=\gamma z_{1}=\gamma L \\
y_{2}^{\prime}=g_{2}=0 & t_{1}^{\prime}=\gamma\left(t_{1}-\frac{v}{c^{2}} z_{1}\right)=-\gamma \frac{v L}{c^{2}}
\end{array}
$$

Event \#2

$$
\begin{array}{ll}
x_{2}^{\prime}=x_{2}=0 & z_{2}^{\prime}=\gamma\left(z_{2}-v t_{2}\right)=-\gamma L \\
y_{2}^{\prime}=y_{2}=0 & t_{2}^{\prime}=\gamma\left(t_{2}-\frac{v}{c^{2}} z_{2}\right)=\gamma \frac{v}{c^{2}} L
\end{array}
$$

FOR THE PRIMED OBSERVER EVENT \#1 occured before event \#2 Could event \#2 have caused event \#1 ?

$$
\begin{gathered}
t_{2}^{\prime}-t_{1}^{\prime}=\frac{2(L \gamma)}{c}\left(\frac{\gamma v}{c}\right)<\frac{2(\alpha)}{c}=\frac{\text { separation }}{c} \\
\frac{\gamma v}{c}=\frac{\beta}{\sqrt{1-\beta^{2}}} \quad \beta=v / c
\end{gathered}
$$

Separation bens tween two events is said to be space like

Time and Space-like separations

Invariant separation $\quad s_{21}^{2}=c^{2}\left(t_{1}-t_{2}\right)^{2}-\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{2}$ $s_{21}^{2}>0$ Time-like,$\quad s_{21}^{2}<0 \quad$ Space-like

IF the separations are time like it is always possible to fined a coordinate system where $x_{1}=x_{2}$ but $t_{1} \neq t_{2}$

If the separation is space alike it is possible to find a coovelinate frame where $t_{1}=t_{2}$

Time dilation and length contraction

An observer in reference frame K sees a meter stick moving at speed v in the z direction.

How long does it appear to be?

Construct events that give the relation between the length of the stick as measured in K and as measured in K' a frame co-moving with the stick

Time dilation and length contraction

An observer in reference frame K sees a meter stick moving at speed v in the z direction.

How long does it appear to be?

Construct events that give the relation between the length of the stick as measured in K and as measured in K' a frame co-moving with the stick

In K^{\prime} Length is $2 \gamma \mathrm{~L}=1 \mathrm{~m}$
 Length in K is $2 \mathrm{~L}=1 \mathrm{~m} / \gamma$

Time Dilation

A vehicle goes by at speed v, on the vehicle there is a light timed to flash periodically with period T^{\prime}.

What is the period as observed in the frame K in which the vehicle is moving?

In co-moving frame $\mathrm{K}^{\prime} \quad \mathrm{z}_{1}{ }^{\prime}=\mathrm{z}_{2}{ }^{\prime}=0, \quad \mathrm{t}_{1}{ }^{\prime}=0, \quad \mathrm{t}_{2}{ }^{\prime}=\mathrm{T}^{\prime}$
Inverse transformation

$$
\begin{aligned}
& \mathrm{z}=\gamma\left(z^{\prime}+v t^{\prime}\right) \\
& t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} z^{\prime}\right) \\
& t_{2}=\gamma T
\end{aligned}
$$

Time between flashes as observed in K is longer than as observed in K^{\prime}

Proper Time

Proper time
Consteler an object moving with velocity $u(t)$. Suppose the consider object two events at the locatrar af the object separated by small time difference $d t$

$$
t_{2}=t_{1}+d t
$$

$$
x_{2} \cong x_{1}+u_{n} d t
$$

$\mathrm{S}_{21}{ }^{2}$ is the same for all observers

$$
s_{21}^{2}=c^{2} d t^{2}-u^{2} d t^{2}=\frac{c^{2} d t^{2}}{\gamma_{u}^{2}}
$$

define $\quad d \tau=\sqrt{\frac{s_{21}^{2}}{c^{2}}}=\frac{d t}{\gamma(t)} \quad \gamma_{u}=\frac{1}{\sqrt{1-u_{1} / c^{2}}}$
$d Y=$ interval of proper time
same for all inertial observers.

Proper Time is a Lorentz Invariant

Minkowski diagram

Consider the four vector $\mathbf{x}^{\mu}=(c t, \mathbf{x})$
All four vectors transform

$$
\text { the same way as } \mathbf{x}^{\mu}=(c t, \mathbf{x})
$$

Two points on the world line very close to each other

$$
(\Delta \mathrm{s})^{2}=-c^{2}(\Delta t)^{2}+(\Delta x)^{2}=-c^{2}(\Delta t)^{2}\left(1-u^{2} / c^{2}\right)
$$

$$
\Delta \tau=\frac{\Delta t}{\gamma} \text { proper time interval }
$$

The quantity $\tau^{2}=t^{2}-\left(x^{2}+y^{2}+z^{2}\right) / c^{2} \rightarrow$ Lorentz invariant
The value of τ is the same in all inertial referrence frames, τ is the proper time

$$
\begin{aligned}
& \tau^{2}=t^{2}-x^{2} / c^{2}-y^{2} / c^{2}-z^{2} / c^{2}=\left(t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2} / c^{2}-\left(y^{\prime}\right)^{2} / c^{2}-\left(z^{\prime}\right)^{2} / c^{2} \\
& x^{\prime}=\gamma(x-u t) \quad y^{\prime}=y \quad z^{\prime}=z \quad t^{\prime}=\gamma\left(t-u x / c^{2}\right)
\end{aligned}
$$

Relativity

Addition of Velocities

$x(t)$ trajectory in K
$\mathrm{x}^{\prime}\left(\mathrm{t}^{\prime}\right)$ trajectory in K^{\prime}
K^{\prime} moves with velocity v in z direction in K

$$
\begin{aligned}
& \mathrm{dx}_{\perp}^{\prime}=\mathrm{dx}_{\perp} \\
& d z^{\prime}=\gamma(d z-v d t) \\
& d t^{\prime}=\gamma\left(d t-\frac{v}{c^{2}} d z\right)
\end{aligned}
$$

$$
\left.u_{\perp}^{\prime}=\frac{\mathrm{dx}_{\perp}^{\prime}}{d t^{\prime}}=\frac{\mathrm{dx}_{\perp}}{\gamma\left(d t-\frac{v}{c^{2}} d z\right)}=\frac{\mathrm{dx}_{\perp} / d t}{\gamma\left(1-\frac{v}{c^{2}} d z\right.}\right)=\frac{u_{\perp}}{\gamma\left(1-v u_{z} / c^{2}\right)}
$$

$$
u_{\perp}^{\prime}=\frac{u_{\perp}}{\gamma\left(1-v u_{z} / c^{2}\right)}
$$

$$
u_{z}^{\prime}=\frac{d z^{\prime}}{d t^{\prime}}=\frac{u_{z}-v}{\left(1-v u_{z} / c^{2}\right)}
$$

Four - Vectors

Quantities that transform from frame to frame according to Lorentz transformation

$$
\left(A_{0}, \mathbf{A}\right)=\left(A_{0}, A_{1}, A_{2}, A_{3}\right)
$$

Example: Space-time coordinate

$$
\begin{array}{ll}
A_{0}^{\prime}=\gamma\left(A_{0}-\beta A_{1}\right) & (c t, z, x, y) \\
A_{1}^{\prime}=\gamma\left(A_{1}-\beta A_{0}\right) & \text { Invariant Product } \\
A_{2}^{\prime}=A_{2} & \\
A_{3}^{\prime}=A_{3} & \mathrm{~A} \circ \mathrm{~B}=\mathrm{A}_{0} \mathrm{~B}_{0}-\left(\mathrm{A}_{1} \mathrm{~B}_{1}+\mathrm{A}_{2} \mathrm{~B}_{2}+\mathrm{A}_{3} \mathrm{~B}_{3}\right)
\end{array}
$$

Same for all observers

Examples

Space-time coordinate $\quad(c t, z, x, y) \equiv X$

Space-time wave vector $\left(\frac{\omega}{c}, k_{z}, k_{x}, k_{y}\right) \equiv K$
Invariant product
$\mathrm{K} \circ \mathrm{X}=\omega t-\mathbf{k} \cdot \mathbf{x}=\Phi$ wave phase

Same for all observers

Derivatives

Examples of 4-vectors

$$
(c t, \underbrace{x_{4}}_{x_{u}}, \underbrace{x_{2}, x_{3}}_{x_{1}})
$$

what about derivate?

$$
\left.\begin{array}{c}
{\underset{x}{2}}_{\prime}^{\prime}=\underline{x}_{1} \\
x_{11}^{\prime}=\gamma\left(x_{11}-\beta c t\right) \\
c t^{\prime}=\gamma\left(c t-\beta x_{11}\right)
\end{array}\right\}\left\{\begin{array}{l}
x_{2}=x_{1}^{\prime} \\
x_{k}=\gamma\left(x_{11}^{\prime}+\beta c t^{2}\right) \\
c t=\gamma\left(c t^{\prime}+\beta x_{11}^{\prime}\right)
\end{array}\right.
$$

$$
\begin{aligned}
&\left.\frac{\partial}{\partial x_{1}^{\prime}}\right|_{t^{\prime} x_{11}^{\prime}}=\frac{\partial x_{1}}{\partial x_{2}^{\prime}} \frac{\partial}{\partial x_{2}}+\frac{\partial x_{11}}{\partial x_{1}^{\prime}} \frac{\partial}{\partial x_{11}}+\frac{\partial c t^{\circ}}{\partial x_{1}^{\prime}} \frac{\partial}{\partial c t} \\
& \begin{aligned}
& \frac{\partial}{\partial x_{1}^{\prime}}=\frac{\partial}{\partial x_{1}} \\
& \begin{aligned}
\left.\frac{\partial}{\partial x_{11}^{\prime}}\right|_{t_{j}^{\prime} x_{2}^{\prime}} & =\frac{\partial x_{1}^{\prime}}{\partial \not x_{11}^{\prime}} \frac{\partial}{\partial x_{1}}+\frac{\partial x_{11}}{\partial x_{11}^{\prime}} \frac{\partial}{\partial x_{11}}+\frac{\partial c t}{\partial x_{11}^{\prime}} \frac{\partial}{\partial c t} \\
& =\gamma\left(\frac{\partial}{\partial x_{11}}+\beta \frac{\partial}{\partial c t}\right) \\
\frac{\partial}{\partial t^{\prime}} & =\gamma\left(\frac{\partial}{\partial c t}+\beta \frac{\partial}{\partial x_{11}}\right)
\end{aligned} \\
&\left.\left.=\frac{\partial}{\partial c t},-\frac{\partial}{\partial x_{11}}\right)-\frac{\partial}{\partial x_{1}}\right)
\end{aligned}
\end{aligned}
$$

THis mean if $\left(A_{0}, A_{11}, A_{1}\right)$ is a fourvecta

Then

$$
\begin{aligned}
& \frac{\partial A_{0}}{\partial e t}-\left(-\frac{\partial}{\partial x} \cdot \underline{A}\right)-\frac{\text { is a Lorentz }}{\text { invariant }} \\
& \frac{\partial}{\partial c t} A_{0}+\nabla \cdot \underline{A} \quad \text { is a Coverts } \\
& \text { invariant }
\end{aligned}
$$

contrite of charge

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho+\nabla \cdot J=0 \\
& \frac{\partial}{\partial c t} c \rho+\nabla \cdot \underline{J}=0 \quad(c \rho, J)
\end{aligned}
$$

