Radiation by Moving Charges

4/22/21

Three Generic Forms

Radiation due to Acceleration

- Bremsrahlung "braking radiation"
- Synchrotron

Radiation due to "faster than light" motion

- Cherenkov

Radiation due to induced currents

- Transition Radiation

Bremstrahlung

As charged particles (usually electrons) slow down in matter they are accelerated both longitudinally and transversely.

Spectrum of the X-rays emitted by an X-ray tube with a rhodium target, operated at 60 kV . The smooth, continuous curve is due to bremsstrahlung, and the spikes are characteristic K lines for rhodium atoms. - Wikipedia

Synchrotron Radiation

Energy radiated per unit frequency per unit solid angle

$$
\frac{d U}{d \omega d \Omega}=\frac{Z_{0}}{32 \pi^{3}}|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2}
$$

$$
\overline{\mathbf{C}}(\mathbf{k}, \omega)=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega t} e^{-i \mathbf{k} \cdot \mathbf{r}(t)}=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega(t-\hat{\mathbf{n}} \cdot \mathbf{r}(t) / c)}
$$

Larmor's Formula

The total instantaneous power radiated

$$
P_{T}(t)=\frac{Z_{0}}{6 \pi} \frac{q^{2}}{c^{2}}|\mathbf{a}(t)|^{2}
$$

Nonrelativistic $\quad|\boldsymbol{a}|=\frac{v^{2}}{R}$ Relativistic $\quad|\boldsymbol{a}|=\gamma^{2} \frac{v^{2}}{R}$

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Circular Motion

$$
\begin{aligned}
& \overline{\mathbf{C}}(\mathbf{k}, \omega)=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega t} e^{-i \mathbf{k} \mathbf{r}(t)}=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega(t-\hat{\mathbf{n}} \mathbf{r}(t) / c)} \\
& \mathbf{n} \times \overline{\mathbf{C}}(\mathbf{k}, \omega) \\
& \underline{n}=\hat{\underline{x}} \cos \psi+\hat{z} \sin \psi \\
& r(t)=R[\hat{x} \sin \Omega t+\hat{y} \cos \Omega t] \\
& \underline{V}(t)=R \Omega[\hat{x} \cos \Omega t-\hat{y} \sin \Omega t]
\end{aligned}
$$

$$
\begin{aligned}
& \underline{n} \cdot \underline{r}(t)=R \cos \psi\{\sin \Omega t
\end{aligned}
$$

Rapidly Varying Exponent

Expand exponent for small t and angle

$$
\begin{gathered}
\phi=\omega(t-\boldsymbol{n} \cdot \boldsymbol{r}(t) / c) \simeq \omega\left[\left(1-\beta+\frac{1}{2} \beta \psi^{2}\right) t+\frac{1}{6} \frac{R}{c}(\Omega t)^{3}\right] \\
\beta=v / c
\end{gathered}
$$

Redefine variables in exponent

$$
\phi=\omega\left\{\left[1-\beta+\frac{1}{2} \beta \psi^{2}\right] t+\frac{1}{6} \frac{R}{C}(\Omega t)^{3}\right\}
$$

Introduce: $\quad \varepsilon=2(1-\beta)+\beta \psi^{2}$

$$
\tau=\Omega t \varepsilon^{-1 / 2} \quad \xi=\frac{\omega}{3 \Omega} \varepsilon^{3 / 2}
$$

Exponent becomes:

$$
\phi=\frac{3}{2} \xi\left(\tau+\frac{1}{3} \tau^{3}\right)
$$

Energy Radiated

$$
n \times \overline{\mathbf{C}}=-q R \int_{-\infty}^{\infty} d \tau\left[\hat{\mathbf{z}} \tau+\hat{y} \frac{\boldsymbol{\psi}}{\varepsilon}\right] \exp \left[i \frac{3}{2} \xi\left(\tau+\frac{1}{3} \tau^{3}\right)\right]
$$

Modified Bessel Functions
This gives

$$
\frac{d U}{d \omega d \Omega}=\frac{3 Z_{0} q^{2}}{32 \pi^{3}} \frac{\xi^{2}}{\varepsilon}\left[K_{2 / 3}^{2}(\xi)+\left(\frac{\psi}{\varepsilon}\right)^{2} K_{1 / 3}^{2}(\xi)\right]
$$

$$
\varepsilon=2(1-\beta)+\beta \psi^{2}
$$

$$
\hat{k} \hat{z} \quad \frac{\omega}{3 \Omega}\left[2(1-\beta)+\beta \psi^{2}\right]^{3 / 2} \quad \text { Width in angle }
$$

$$
|\psi|<\left[\frac{2(1-\beta)}{\beta}\right]^{1 / 2}
$$

Ultra Relativistic Limit

$$
\frac{d U}{d \omega d \Omega}=\frac{3 Z_{0} q^{2}}{32 \pi^{3}} \frac{\xi^{2}}{\varepsilon}\left[K_{2 / 3}^{2}(\xi)+\left(\frac{\psi}{\varepsilon}\right)^{2} K_{1 / 3}^{2}(\xi)\right]
$$

For high energy $\quad 2(1-\beta)=2 \frac{(1-\beta)(1+\beta)}{1+\beta} \rightarrow \frac{1}{\gamma^{2}}$
Argument

$$
\begin{gathered}
\xi=\frac{\omega}{3 \Omega}\left[2(1-\beta)+\beta \psi^{2}\right]^{3 / 2} \rightarrow \frac{\omega}{3 \Omega \gamma^{3}}\left[1+\gamma^{2} \psi^{2}\right]^{3 / 2} \\
\omega \simeq \Omega \gamma^{3} \quad|\psi|<\frac{1}{\gamma}
\end{gathered}
$$

Cherenkov Radiation

Radiation if $V>\frac{1}{\sqrt{\varepsilon \mu}}$
$\delta(x) \delta(y) v \hat{z} \delta(z-v(t)$

$$
\begin{aligned}
& E\left(\underline{k}_{1}, z_{1} \omega\right)=\int d^{2} x_{1} d t \exp \left[i \omega t-i k_{2}, x_{2}\right] E\left(x_{\mu}, \xi, t\right) \\
& E\left(\underline{x}_{1}, z_{2} t\right)=\int \frac{d^{2} k_{1} d \omega}{(2 m)^{3}} \exp \left[i k_{\nu} x_{2}-i \omega t\right] \bar{E}
\end{aligned}
$$

Like arse for H, J
Maxwell's Equations

$$
\left(i k_{1}+\hat{Z} \frac{\partial}{\partial z}\right) \times \bar{E}=i \omega \mu \bar{E} \quad\left(i k_{2}+\hat{z} \frac{\partial}{\delta z}\right) \times \bar{H}=\vec{J}-i \omega \epsilon \bar{E}
$$

Evaluate current transform

Current Density $\quad J=q \delta(x) \delta(y) \vee \hat{z} \delta(z-v t)$

$$
\begin{aligned}
& \bar{J}=\int d^{2} x_{2} d t \exp \left(-i k_{1} \cdot x_{2}+i \omega t\right) \underline{ } \\
& \bar{J}=q \hat{z} \exp \left(i k_{v} z\right) \quad k_{v}=\frac{\omega}{v}
\end{aligned}
$$

Solution of ME
Particular Solution

$$
\overline{\vec{E}}_{1}=\frac{k_{v} k_{1}}{k^{2}-b^{2} \bar{E}_{\mu}} \overline{E_{z}}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial z} \Rightarrow i k_{v} \quad \vec{E}=\bar{E} e^{i k_{v} z} \\
& \bar{E}_{z}=q \frac{\left(k_{v}^{2}-\omega^{2} \epsilon \mu\right)}{i \omega \in\left[k_{v}^{2}+k_{z}^{2}-\omega^{2} \in \mu\right]}
\end{aligned}
$$

Inverse Transform

$$
E_{z}=\int \frac{d l_{1} d \omega}{\left(2 m^{3}\right.} \exp \left[i k_{1} \cdot x_{1}-i \omega t+i k_{v} z\right] \frac{q\left(k_{v}^{2}-\omega^{2} \in \mu\right)}{i \omega \in\left(k_{2}^{2}-k_{v}^{2}-\omega^{2} \mu \mu\right)}
$$

Replace ω by $k_{r}=\frac{\omega}{v}$

$$
\begin{array}{ll}
i k_{v} z-i w t=i k_{v}(z-v t) & \omega^{2} \sigma \mu=k_{v}^{2} \beta^{2} \\
\beta^{2}=\epsilon \mu v^{2}=v^{2} V_{p}^{2} & V_{p}=\text { phace velour }=\frac{1}{\sqrt{\epsilon \mu}}
\end{array}
$$

$V_{p}=c$ for vacum

$$
\mathrm{v}=0
$$

$$
\begin{aligned}
& \left.E_{z}=\int \frac{d_{2}^{2} d k}{(2 \pi)^{3}} \frac{k_{v}^{2}\left(1-\beta^{2}\right) q}{i k_{v} \in\left(k_{2}^{2}+k_{v}^{2}\left(1-\beta^{2}\right)\right.} \exp \left[i E_{2}-x_{i}+i k_{1}\right]\right] \\
& E_{z}\left(x_{1}, z-v t\right) \quad z=z \sim v
\end{aligned}
$$

Solution when $\beta=v / u p=0$

$$
\begin{gathered}
V \neq 0 \\
E_{z}=\int \frac{d^{2} k_{2} d k}{(2 \pi)^{3}} \frac{k_{v}^{2}\left(1-\beta^{2}\right) q}{i k_{v} \in\left(k_{1}^{2}+k_{v}^{2}\left(1-\beta^{2}\right)\right.} \exp \left[i k_{2}-x_{i}+i k_{v}\right] \\
E_{z}\left(x_{1, z} z t\right) \\
E_{z}\left(x_{1}, z^{\prime}(z-v z)\right.
\end{gathered}
$$

Solution when $\beta=v / V_{p} \neq 0$
Let $k_{v}\left(1-\beta^{2}\right)^{1 / 2}=k_{v}^{\prime}$

$$
\begin{gathered}
z^{\prime} /\left(1-\beta^{2}\right)^{4^{\prime 2}}=z^{\prime \prime} \\
E_{z}=\int \frac{d^{2} k_{2} d k_{v}^{\prime}}{\left(2 \pi j^{3}\right.} \frac{q k_{v}^{\prime 2}}{i k_{v}^{\prime} \in\left(k_{2}^{2}+k_{v}^{\prime 2}\right)} \exp \left[i k_{1} \underline{x}_{2}+i k_{v}^{\prime} z^{\prime}\right]
\end{gathered}
$$

Lorentz contraction

$$
E_{z}=E_{z_{0}}\left(x_{1}, \gamma(z \vee \not)\right) \quad \gamma=\left(1-\beta^{2}\right)^{-1 / 2}
$$

Field Lines Near a charge

Stationary
Charge

$$
\mathrm{V} \longrightarrow
$$

Moving Charge

$$
\begin{gathered}
V>V_{p} \\
E_{z}=\int \frac{d^{2} k_{2} d k_{2}}{(2 \pi)^{3}} \frac{k_{r}^{2}\left(1-\beta^{2}\right) q}{i k_{2} \in\left(k_{2}^{2}+k_{2}^{2}\left(1-\beta^{2}\right)\right.} \exp \left[i k_{2}-x_{i}+i k_{1} z^{\prime}\right] \\
E_{z}\left(x_{1}, z-v+\right)
\end{gathered}
$$

What happens when $\beta>1$?
Denominator $\rightarrow 0$ when $\left|\underline{k}_{1}\right|^{2}=k_{v}^{2}\left(\beta^{2}-1\right)$ Radiation

Transition Radiation

Previous solution

Should be 0 at $\mathrm{z}=0$

Add homogeneous solution

For particular Solution

$$
\bar{E}_{1}(z=0)=\frac{q k_{2} k_{1}}{i w \in\left[k_{v}^{2}\left(1-\beta^{2}\right)+k_{y}^{2}\right]}
$$

For Homogeneous Solution - outgoing radiation

$$
\begin{aligned}
& V_{k} E_{1 n}= \\
& i \omega \in\left[k_{v}^{2}\left(1-\beta^{2}\right)+k_{2}^{2}\right.
\end{aligned} \exp \left[k_{2} x_{2}+k_{2} z\right]
$$

Special Relativity
, The formulation of classical mechanics we have considered so far is based on Newton's law. It is thus limited to situations where

$$
v=|\dot{r}| \ll C
$$

Where c is speak of light.

Associated with the rise of Newton's low is the concept of Galilean invariance. Tao obsemers tin reference frames that are moving with respect to each other with constant velocity both agree that particles follow trajectories in accord with Neuters Laws and both agree that time passe, at the same rate.

A consequence of Galilean invariance is law of addition at relocitros

observer \#1 sees $\quad n(t)$ as position of m
observer $\# 2$ sees $\quad r^{\prime}(t)=r(t)-r_{2}(t)$
$r_{2}(t)=V t$ 有 $V=V$ Velvoits of 12
as measured by $\# 1$
observer $\# 1$ sees velocity

$$
u=\frac{d r}{d t}
$$

observer $\# 2$ sees velocity \underline{u}^{\prime}

$$
\underline{u}^{\prime}=\frac{d r}{d t}-\underline{v}=\underset{\sim}{u}-\underline{v} \quad \text { velocities add }
$$

note same fine

A consequence of G_{a} bitean invariance
Is that observers will disognce on the speed of light. Who is correct?

Einstein introoluce theong of special relativity which deals with these problems. Solution requires correct transformations of space and time measurements of the two observers.

Correct transformations satin) two postulates

* The laws of physics ane the same for all inertial observers
* The speed of light is the same for all inertial obseverers

Skipping to the End
Newton's Law in an

$$
\frac{d}{d t} P=F
$$

$$
\underset{\sim}{P}=m \underset{\sim}{v}
$$

+ Rules for E

Em-force $\quad \underset{\sim}{F}=q(\underset{\sim}{E}+\underset{\sim}{V} \underline{B})$
+Maxwell's Equations

Skipping to the End
Newtons Law in an inertial ref $\frac{d}{d t} P=F$

$$
\underset{\sim}{P}=\gamma m v
$$

$$
\gamma=\frac{1}{\left(1-v^{2} / c^{2}\right)^{1 / 2}}
$$

+ Rules for F

Em-force $\quad \underset{\sim}{F}=q(\underset{\sim}{E}+\underset{\sim}{V} \underline{B})$

+ Maxwell's Equations

