Electrodynamics

Topics to be covered
Antennas:
Arrays, Impedance, Gain, Reciprocity

Radiation from Moving Charges

Notes Courtesy of Professor Phil Sprangle

Radiation

Fourier transform of the current density

$$
\begin{aligned}
& \hat{\mathbf{C}}(\mathbf{k})=\int_{V o l} d \tau^{\prime} \hat{\mathbf{J}}\left(\mathbf{r}^{\prime}\right) e^{-i \mathbf{k} \mathbf{r}^{\prime}} \\
& d \tau^{\prime}=d x^{\prime} d y^{\prime} d z^{\prime} \\
& \mathbf{k}=k \hat{\mathbf{n}} \\
& \hat{\mathbf{A}}(\mathbf{r}) \simeq \frac{\mu_{0}}{4 \pi r} e^{i k r} \hat{\mathbf{C}}(\mathbf{k}) \\
& \text { H } \\
& \text { J } \\
& \begin{array}{r}
\hat{\mathbf{B}}(\mathbf{r})=i \frac{\mu_{0}}{4 \pi r} e^{i k r} \mathbf{k} \times \hat{\mathbf{C}}(\mathbf{k}) \\
\hat{\mathbf{E}}(\mathbf{r})=-i \frac{e^{i k r}}{4 \pi r} \frac{1}{\varepsilon_{0} \omega} \mathbf{k} \times(\mathbf{k} \times \hat{\mathbf{C}}(\mathbf{k}))
\end{array}
\end{aligned}
$$

$\hat{\mathbf{B}}(\mathbf{r})$ is transverse to $\hat{\mathbf{J}}, \mathbf{k}=k \hat{\mathbf{n}}$ and $\hat{\mathbf{E}}$

Radiated Power Flux

$$
\langle\mathbf{S}\rangle=\frac{Z_{0}}{32 \pi^{2}} \frac{|\mathbf{k} \times \hat{\mathbf{C}}(\mathbf{k})|^{2}}{r^{2}} \hat{\mathbf{n}}
$$

The power flux falls off like $1 / r^{2}$ and is in the direction of $\mathbf{k}=k \hat{\mathbf{n}}$

Power radiated into the solid angle $d \Omega$

$$
\frac{d P_{T}}{d \Omega}=\hat{\mathbf{n}} \cdot\langle\mathbf{S}\rangle \mathrm{r}^{2}=\frac{Z_{0}}{32 \pi^{2}}|\mathbf{k} \times \hat{\mathbf{C}}(\mathbf{k})|^{2}
$$

$Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\frac{1}{c \varepsilon_{0}}=377 \Omega$ impedance of vacuum $\quad c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$

In short antennas current varies ~ linearly with z

Current density $\hat{\mathbf{J}}(\mathbf{r})=I_{0} \delta(x) \delta(y)\left(1-2 \frac{|z|}{d}\right) \hat{\mathbf{z}} \quad|z| \leq \frac{d}{2}$
for $r \gg r^{\prime}$
$\hat{\mathbf{A}}(\mathbf{r}) \simeq \frac{\mu_{0}}{4 \pi r} e^{i k r} \int_{V_{o l}} d \tau^{\prime} \hat{\mathbf{J}}\left(\mathbf{r}^{\prime}\right) e^{-i \mathbf{k} \cdot \mathbf{r}^{\prime}}=\frac{\mu_{0}}{4 \pi r} e^{i k r} I_{0} \hat{\mathbf{z}} \int_{-d / 2}^{d / 2} d z^{\prime}\left(1-2 \frac{\left|z^{\prime}\right|}{d}\right) e^{-i k z^{\prime} \cos \theta}$

Center Fed Linear Antenna
$\hat{\mathbf{A}}(\mathbf{r}) \simeq I_{0} \hat{\mathbf{z}} \int_{-d / 2}^{d / 2} d z^{\prime}\left(1-2 \frac{\left|z^{\prime}\right|}{d}\right) e^{-i k z^{\prime} \cos \theta}$
use Euler's equ.
$=I_{0} \hat{\mathbf{z}} \int_{-d / 2}^{d / 2} d z^{\prime}\left(1-2 \frac{\left|z^{\prime}\right|}{d}\right)\left(\cos \left(k z^{\prime} \cos \theta\right)-i \sin (k / \cos \theta)\right)$

$$
\hat{\mathbf{A}}(\mathbf{r}) \simeq 2 I_{0} \hat{\mathbf{z}} \int_{0}^{d / 2} d z^{\prime}\left(1-2 \frac{z^{\prime}}{d}\right) \cos \left(k z^{\prime} \cos \theta\right)
$$

Center Fed Linear Antenna

To carry out the integration, let $\rho^{\prime}=k z^{\prime} \cos \theta$ and $\rho_{0}=\frac{k d \cos \theta}{2}$
$\hat{\mathbf{A}}(\mathbf{r}) \simeq 2 I_{0} \hat{\mathbf{z}} \frac{d}{\rho_{0}} \int_{0}^{\rho_{0}} d \rho^{\prime}\left(1-\frac{\rho^{\prime}}{\rho_{0}}\right) \cos \rho^{\prime}$
using $\int x \cos x d x=\cos x+x \sin x$
$\hat{\mathbf{A}}(\mathbf{r}) \simeq I_{0} \hat{\mathbf{z}} \frac{d}{\rho_{0}^{2}}\left(1-\cos \rho_{0}\right) \quad$ where $\rho_{0}=\frac{k d \cos \theta}{2}=\frac{\pi d \cos \theta}{\lambda}$

Antenna in the Dipoles Limit

In the dipole limit $\lambda \gg d \quad\left(\rho_{0} \ll 1\right)$
$\hat{\mathbf{A}}(\mathbf{r}) \simeq \frac{\mu_{0}}{4 \pi r} e^{i k r} I_{0} \frac{d}{2} \hat{\mathbf{z}} \quad \hat{\mathbf{A}}(\mathbf{r}) \simeq \frac{\mu_{0}}{4 \pi r} e^{i k r} \hat{\mathbf{C}}(\mathbf{k})$
hence, $\mathbf{C}(\mathbf{k})=I_{0} \frac{d}{2} \hat{\mathbf{z}}$

Power radiated into the solid angle $d \Omega$
$\frac{d P_{T}}{d \Omega}=\hat{\mathbf{n}} \cdot\langle\mathbf{S}\rangle \mathrm{r}^{2}=\frac{Z_{0}}{32 \pi^{2}}|\mathbf{k} \times \hat{\mathbf{C}}(\mathbf{k})|^{2}=\frac{Z_{0}}{32 \pi^{2}} k^{2} \frac{I_{0}^{2} d^{2}}{4} \sin ^{2} \theta$

Total Power Radiated and Radiation Resistance

The total power radiated is $P_{T}=\oint_{S} \frac{d P_{T}}{d \Omega} d \Omega$
where $d \Omega=\sin \theta d \theta d \varphi$ is the solid angle
$\frac{d P_{T}}{d \Omega}=\frac{Z_{0}}{32 \pi^{2}} k^{2} \frac{I_{0}^{2} d^{2}}{4} \sin ^{2} \theta \quad \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} \sin ^{3} \theta d \theta=2 \pi \frac{4}{3}$

$$
P_{T}=\frac{Z_{0}}{48 \pi} k^{2} d^{2} I_{0}^{2}=\frac{1}{2} R_{r a d} I_{0}^{2}
$$

where the radiation resistance is $R_{r a d}=\frac{Z_{0}}{24 \pi} k^{2} d^{2}[\Omega]$

Phased Array

$$
\begin{aligned}
& \triangle \triangle \underset{\square}{\square}-\triangle \\
& \hat{\mathbf{C}}(\mathbf{k})=\int_{V_{o l}} d \tau^{\prime} \hat{\mathbf{J}}\left(\mathbf{r}^{\prime}\right) e^{-i \mathbf{k} \mathbf{r}^{\prime}} \\
& \frac{d P_{T}}{d \Omega}=\hat{\mathbf{n}} \cdot\langle\mathbf{S}\rangle \mathrm{r}^{2}=\frac{Z_{0}}{32 \pi^{2}}|\mathbf{k} \times \hat{\mathbf{C}}(\mathbf{k})|^{2}
\end{aligned}
$$

N - identical antennas displaced by distance d and driven with different phases
$\hat{\mathbf{C}}(\mathbf{k})=\int_{V o l} d \tau^{\prime} \sum_{n=1}^{N} \hat{\mathbf{J}}\left(\mathbf{r}^{\prime}-\hat{\mathbf{x}} n d\right) e^{i n \Delta \widehat{\phi}} e^{-i \mathbf{k} \mathbf{r}^{\prime}}$
$\hat{\mathbf{C}}(\mathbf{k})=\hat{\mathbf{C}}_{\substack{ \\(\mathbf{k})}} \sum_{n=1}^{N} \exp [-i(k d \cos \theta-\Delta \phi) n]$
Single unit
Effect of multiple units unit

Radiated Power

$$
\begin{aligned}
& \frac{d P_{T}}{d \Omega}=\hat{\mathbf{n}} \cdot\langle\mathbf{S}\rangle \mathrm{r}^{2}=\frac{Z_{0}}{32 \pi^{2}}\left|\mathbf{k} \times \hat{\mathbf{C}}_{1}(\mathbf{k})\right|^{2} f(k, \theta) \\
& f(k, \theta)=\left|\sum_{n=1}^{N} \exp [-i(k d \cos \theta-\Delta \phi) n]\right|^{2}=\frac{1-\cos (N \psi)}{1-\cos \psi} \\
& \psi=k d \cos \theta-\Delta \phi \\
& \psi=0, \quad f=N^{2} \quad \text { Top view }
\end{aligned}
$$

Radiation Pattern

$$
\frac{d P_{T}}{d \Omega}=\hat{\mathbf{n}} \cdot\langle\mathbf{S}\rangle \mathrm{r}^{2}=\frac{Z_{0}}{32 \pi^{2}}\left|\mathbf{k} \times \hat{\mathbf{C}}_{1}(\mathbf{k})\right|^{2} f(k, \theta) \quad \text { Main lobe }
$$

Antenna Directivity and Gain

The total power radiated is $P_{T}=\oint_{S} \frac{d P_{T}}{d \Omega} d \Omega \quad$ where $d \Omega=\sin \theta d \theta d \varphi$

> Radiation Pattern of the Dipole Antenna.

For a dipole of length
$\mathrm{L}=0.01\left(\lambda_{0}\right)$.

Antenna Efficiency: (Radiated power/Input power) $\quad \varepsilon=P_{T} / P_{\text {in }}$
Antenna Directivity $\quad D(\Omega)=\frac{d P_{T}}{d \Omega} / \frac{P_{T}}{4 \pi}, \quad \int \frac{d \Omega}{4 \pi} D(\Omega)=1$
Antenna Gain $\quad G(\Omega)=\varepsilon D(\Omega)$

EM Reciprocity

Example:

- Antenna sending and receiving radiation patterns are equal due to time reversal symmetry of ME.
- Direct calculation of receiving pattern requires many simulations
- Instead, calculate sending pattern and invoke reciprocity

Receiving

Sending

Effective Area - Antenna Gain

Defining Antenna Impedance

Suppose there are multiple antennas, each with its own current profile, u_{p}

$$
\mathbf{J}(\mathbf{x})=\sum_{p} \mathbf{u}_{\mathbf{p}}(\mathbf{x}) I_{p} .
$$

We can define a voltage for each antenna, V_{p}

$$
V_{p}=-\int d^{3} x \mathbf{u}_{\mathbf{p}}(\mathbf{x}) \cdot \mathbf{E}(\mathbf{x})
$$

With this definition power balance is preserved

$$
P=\frac{1}{2} \operatorname{Re}\left[\int d^{3} x \mathbf{E} \cdot \mathbf{J}^{*}\right]=-\frac{1}{2} \operatorname{Re}\left[\sum_{p} V_{p} I_{p}^{*}\right] .
$$

Solving Maxwell's Equations gives

$$
V_{p}=\sum_{p^{\prime}} Z_{p p^{\prime}}^{r a d}\left(k_{0}\right) I_{p^{\prime}},
$$

$$
Z_{p p^{\prime}}^{r a d}=Z_{p^{\prime} p}^{r a d}
$$

Formal Expression of Reciprocity

Consider two solutions of Maxwell's Equations in the same medium

$$
\begin{aligned}
& \nabla \times \hat{\mathbf{E}}_{1}=i \omega \mu(x) \hat{\mathbf{H}}_{1} \\
& \nabla \times \hat{\mathbf{H}}_{1}=-i \omega \varepsilon(x) \hat{\mathbf{E}}_{1}+\hat{\mathbf{J}}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times \hat{\mathbf{E}}_{2}=i \omega \mu(x) \hat{\mathbf{H}}_{2} \\
& \nabla \times \hat{\mathbf{H}}_{2}=-i \omega \varepsilon(x) \hat{\mathbf{E}}_{2}+\hat{\mathbf{J}}_{2}
\end{aligned}
$$

Can Show

$$
\begin{array}{ll}
\qquad \int_{V} d^{3} x\left[\hat{\mathbf{J}}_{2} \cdot \hat{\mathbf{E}}_{1}-\hat{\mathbf{J}}_{1} \cdot \hat{\mathbf{E}}_{2}\right]=\int_{S} d a n \cdot\left[\hat{\mathbf{H}}_{2} \times \hat{\mathbf{E}}_{1}-\hat{\mathbf{H}}_{1} \times \hat{\mathbf{E}}_{2}\right] \\
\begin{array}{ll}
\mathrm{E} \text { due to J1 at J2 same as } & =0 \text { if conducting BC } \\
\mathrm{E} \text { due to J2 at J1 } & \text { Or outgoing waves }
\end{array}
\end{array}
$$

E due to J2 at J1

Expression for Impedance Elements

Fourier transform
in space $\begin{cases}\text { Ampere: } & -i \omega \varepsilon \overline{\mathbf{E}}(\mathbf{k})=i \mathbf{k} \times \overline{\mathbf{H}}(\mathbf{k})-\sum_{p} I_{p} \overline{\mathbf{u}}_{p}(\mathbf{k}), \\ \text { Faraday: } & i \omega \mu \overline{\mathbf{H}}(\mathbf{k})=i \mathbf{k} \times \overline{\mathbf{E}}(\mathbf{k})\end{cases}$

Solve for Electric field

$$
\left(k_{0}^{2}-k^{2}\right) \overline{\mathbf{E}}+\mathbf{k} \mathbf{k} \cdot \overline{\mathbf{E}}=-i k \eta \sum_{p^{\prime}} I_{p^{\prime}} \overline{\mathbf{u}}_{p^{\prime}}
$$

Project Electric field onto current

$$
Z_{p p^{\prime}}^{r a d}\left(k_{0}=\omega / c\right)=\sqrt{\frac{\mu}{\varepsilon}} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{i k_{0}}{k_{0}^{2}-k^{2}} \overline{\mathbf{u}}_{p}^{*} \cdot \underline{\underline{\Delta}}_{1} \cdot \overline{\mathbf{u}}_{p^{\prime}} .
$$

profile function

$$
\underline{\Delta}_{1}=\frac{1 k^{2}-\mathrm{kk}}{k^{2}}+\frac{\mathrm{kk}}{k^{2} k_{0}^{2}}\left(k_{0}^{2}-k^{2}\right)
$$

Radiation from transient currents

Suppose we have a transient, time-dependent current,

$$
J(x, t)
$$

How do we treat that?

Fourier Transform in time

$$
\overline{\mathbf{J}}(\mathbf{r}, \omega)=\int_{-\infty}^{\infty} \mathbf{J}(\mathbf{r}, t) e^{i \omega t} d \omega \quad \mathbf{J}(\mathbf{r}, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{\mathbf{J}}(\mathbf{r}, \omega) e^{-i \omega t} d \omega
$$

Everything follows from steady state equations

Radiation from Moving (Accelerating) Charges

The fields and sources can be written in terms of their Fourier transforms in time

$$
\begin{array}{ll}
\mathbf{E}(\mathbf{r}, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{\mathbf{E}}(\mathbf{r}, \omega) e^{-i \omega t} d \omega & \mathbf{H}(\mathbf{r}, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{\mathbf{H}}(\mathbf{r}, \omega) e^{-i \omega t} d \omega \\
\mathbf{A}(\mathbf{r}, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{\mathbf{A}}(\mathbf{r}, \omega) e^{-i \omega t} d \omega & \mathbf{J}(\mathbf{r}, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{\mathbf{J}}(\mathbf{r}, \omega) e^{-i \omega t} d \omega
\end{array}
$$

Radiation from Moving (Accelerating) Charges

In the far field zone $k r=\frac{2 \pi}{\lambda} r \gg 1$

Poynting Flux (Far field zone)

$$
\begin{aligned}
& S(\mathbf{r}, t)=\hat{\mathbf{n}} \cdot(\mathbf{E}(\mathbf{r}, t) \times \mathbf{H}(\mathbf{r}, t)) \\
& =\hat{\mathbf{n}} \cdot\left(\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \overline{\mathbf{E}}(\mathbf{r}, \omega) e^{-i \omega t} \times \int_{-\infty}^{\infty} \frac{d \omega^{\prime}}{2 \pi} \overline{\mathbf{H}}\left(\mathbf{r}, \omega^{\prime}\right) e^{-i \omega^{\prime} t}\right) \\
& =\hat{\mathbf{n}} \cdot\left(\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \int_{-\infty}^{\infty} \frac{d \omega^{\prime}}{2 \pi} e^{-i\left(\omega+\omega^{\prime}\right) t}\left\{-i \frac{e^{i k r}}{4 \pi r} \frac{1}{\varepsilon_{0} \omega} \mathbf{k} \times(\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega))\right\} \times\left\{\frac{i}{4 \pi r} e^{i k^{\prime} r} \mathbf{k}^{\prime} \times \overline{\mathbf{C}}\left(\mathbf{k}^{\prime}, \omega^{\prime}\right)\right\}\right)
\end{aligned}
$$

$$
\mathbf{k}=\frac{\omega}{c} \hat{\mathbf{n}}, \quad \mathbf{k}^{\prime}=\frac{\omega^{\prime}}{c} \hat{\mathbf{n}}
$$

The total energy radiated is $\quad U=\int_{-\infty}^{\infty} d t \int d \Omega r^{2} S(\mathbf{r}, t)$

$$
\text { since } \int_{-\infty}^{\infty} d t e^{-i\left(\omega+\omega^{\prime}\right) t}=2 \pi \delta\left(\omega+\omega^{\prime}\right)
$$

$$
\int d \omega \delta\left(\omega+\omega^{\prime}\right) F\left(\omega, \omega^{\prime}\right)=F(\omega,-\omega) \text { hence } \omega^{\prime} \rightarrow-\omega \text { and } k^{\prime} \rightarrow-k
$$

Radiated Energy

$$
U=\int d \Omega \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\frac{1}{4 \pi}\right)^{2} \frac{1}{\varepsilon_{0} \omega} \hat{\mathbf{n}} \cdot\{\mathbf{k} \times(\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega))\} \times\{-\mathbf{k} \times \overline{\mathbf{C}}(-\mathbf{k},-\omega)\}
$$

$$
\mathbf{k} \times(\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)) \times \mathbf{k} \times \overline{\mathbf{C}}^{*}(\mathbf{k}, \omega)=-|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2} \mathbf{k} \quad \text { and } \quad \hat{\mathbf{n}} \cdot \mathbf{k}=k
$$

$$
U=\int d \Omega \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\frac{1}{4 \pi}\right)^{2} \frac{k}{\varepsilon_{0} \omega}|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2}=\int d \Omega \int_{-\infty}^{\infty} d \omega\left(\frac{Z_{0}}{32 \pi^{3}}|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2}\right)
$$

Energy radiated per unit frequency per unit solid angle
$\frac{d U}{d \omega d \Omega}$
$\frac{d U}{d \omega d \Omega}=\frac{Z_{0}}{32 \pi^{3}}|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2}$

Accelerating Charges Radiate

The current density of a moving charge is $\mathbf{J}\left(\mathbf{r}^{\prime}, t\right)=q \mathbf{v}(t) \delta^{3}\left(\mathbf{r}^{\prime}-\mathbf{r}(t)\right)$ In the far field zone
trajectory
$\overline{\mathbf{C}}(\mathbf{k}, \omega)=\int_{V o l} d \tau^{\prime} \overline{\mathbf{J}}\left(\mathbf{r}^{\prime}, \omega\right) e^{-i \mathbf{k} \mathbf{r}^{\prime}}=\int_{-\infty}^{\infty} d t e^{i \omega t} \int_{V o l} d \tau^{\prime} \mathbf{J}\left(\mathbf{r}^{\prime}, t\right) e^{-i \mathbf{k} \cdot \mathbf{r}^{\prime}}$
$\overline{\mathbf{C}}(\mathbf{k}, \omega)=\int_{-\infty}^{\infty} d t e^{i \omega t} \int_{V_{o l}} d \tau^{\prime} q \mathbf{v}(t) \delta^{3}\left(\mathbf{r}^{\prime}-\mathbf{r}(t)\right) e^{-i \mathbf{k} \mathbf{r}^{\prime}}$
$\overline{\mathbf{C}}(\mathbf{k}, \omega)=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega t} e^{-i \mathbf{k} \mathbf{r}(t)}=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega(t-\hat{\mathbf{n}} \mathbf{r}(t) / c)}$

Radiation from Constant Velocity Charges

Charges moving at constant velocity in vacuum do not radiate However, a constant velocity charge can radiate in a medium if its velocity is greater than the phase velocity of light $v>\omega / k$ (Cherenkov radiation)

For constant velocity in vacuum
$\overline{\mathbf{C}}(\mathbf{k}, \omega)=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega(t-\hat{\mathbf{n}} \cdot \mathbf{r}(t) / c)}=q \mathbf{v}_{0} \int_{-\infty}^{\infty} d t e^{i \omega\left(1-\hat{\mathbf{n}} \cdot \mathbf{v}_{0} / c\right) t}$
$\overline{\mathbf{C}}(\mathbf{k}, \omega)=2 \pi q \mathbf{v}_{0} \delta\left(\omega\left(1-\hat{\mathbf{n}} \cdot \mathbf{v}_{0} / c\right)\right)=0$
argument of delta function can not be zero except for $\omega=0$

Derivation of Larmor's Formula

If the velocity is nonrelativistic $|\mathbf{v} / c| \ll 1$

$$
\overline{\mathbf{C}}(\mathbf{k}, \omega)=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega(t-\hat{\mathbf{n}} \mathbf{r}(t) / c)}=\int_{-\infty}^{\infty} d t q \mathbf{v}(t) e^{i \omega t}
$$

The energy radiated per unit frequency per unit solid angle

$$
\begin{gathered}
\frac{d U}{d \omega d \Omega}=\frac{Z_{0}}{32 \pi^{3}}|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2} \quad \mathbf{k}=\frac{\omega}{c} \hat{\mathbf{n}} \\
\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)=\frac{q}{c} \hat{\mathbf{n}} \times \int_{-\infty}^{\infty} d t \mathbf{v}(t) \omega e^{i \omega t}=-i \frac{q}{c} \hat{\mathbf{n}} \times \int_{-\infty}^{\infty} d t \mathbf{v}(t) \frac{\partial e^{i \omega t}}{\partial t}
\end{gathered}
$$

Derivation of Larmor's Formula

$$
\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)=-i \frac{q}{c} \hat{\mathbf{n}} \times \int_{-\infty}^{\infty} d t \mathbf{v}(t) \frac{\partial e^{i \omega t}}{\partial t}
$$

Integrating by parts $\quad \mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)=-i \frac{q}{c} \hat{\mathbf{n}} \times \int_{-\infty}^{\infty} d t e^{i \omega t} \frac{\partial \mathbf{v}(t)}{\partial t}$
Total energy radiated by the nonrelativistic charge

$$
U=\int d \Omega \int_{-\infty}^{\infty} d \omega \frac{d U}{d \omega d \Omega}=\int d \Omega \int_{-\infty}^{\infty} d \omega\left(\frac{Z_{0}}{32 \pi^{3}}|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2}\right)
$$

Derivation of Larmor's Formula

$$
U=\int d \Omega \int_{-\infty}^{\infty} d \omega\left(\frac{1}{2 \pi} \frac{Z_{0}}{16 \pi^{2}} \frac{q^{2}}{c^{2}}\left|\hat{\mathbf{n}} \times \int_{-\infty}^{\infty} d t e^{i \omega t} \frac{\partial \mathbf{v}(t)}{\partial t}\right|^{2}\right)
$$

Parseval's Theorem states that $\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}|\bar{g}(\omega)|^{2}=\int_{-\infty}^{\infty} d t g^{2}(t)$

$$
U=\int d \Omega \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\frac{Z_{0}}{16 \pi^{2}} \frac{q^{2}}{c^{2}}\left|\int_{-\infty}^{\infty} d t e^{i \omega t} \hat{\mathbf{n}} \times \frac{\partial \mathbf{v}(t)}{\partial t}\right|^{2}\right)
$$

but $\int_{-\infty}^{\infty} d t e^{i \omega t} \hat{\mathbf{n}} \times \frac{\partial \mathbf{v}(t)}{\partial t}=\hat{\mathbf{n}} \times \overline{\mathbf{a}}(\omega)$ where $\overline{\mathbf{a}}(\omega)$ is F-T of the acceleration $\mathbf{a}(\mathrm{t})$

Derivation of Larmor's Formula

Using Parseval's theorem

$$
\begin{array}{r}
U=\int_{-\infty}^{\infty} d t\left[\int d \Omega\left(\frac{Z_{0}}{16 \pi^{2}} \frac{q^{2}}{c^{2}}|\hat{\mathbf{n}} \times \mathbf{a}(t)|^{2}\right)\right]=\int_{-\infty}^{\infty} d t P_{T}(t) \\
P_{T}(t)=\int d \Omega\left(\frac{Z_{0}}{16 \pi^{2}} \frac{q^{2}}{c^{2}}|\hat{\mathbf{n}} \times \mathbf{a}(t)|^{2}\right) \rightarrow \text { total power radiated }
\end{array}
$$ by the accelerating charge

$$
d \Omega=\sin \theta d \theta d \varphi
$$

$$
P_{T}(t)=\int \sin \theta d \theta d \varphi \frac{Z_{0}}{16 \pi^{2}} \frac{q^{2}}{c^{2}} \sin ^{2} \theta|\mathbf{a}(t)|^{2}
$$

Larmor's Formula

The total instantaneous power radiated

$$
P_{T}(t)=\frac{Z_{0}}{6 \pi} \frac{q^{2}}{c^{2}}|\mathbf{a}(t)|^{2}
$$

$$
P_{T}(t) \sim q^{2}
$$

The radiation is polarized in the plane defined by $\hat{\mathbf{n}}$ and $\mathbf{a}(t)$

$$
Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\frac{1}{c \varepsilon_{0}}=377 \Omega \text { impedance of vacuum }
$$

Radiation from Multiple Charges

Consider a beam of individual charges all having the same trajectory t_{j} is the entrance time of the j th charge

$$
\begin{aligned}
& \mathbf{x}_{j}(t)=\mathbf{x}\left(t-t_{j}\right) \\
& \mathbf{v}_{j}(t)=\mathbf{v}\left(t-t_{j}\right)
\end{aligned}
$$

We want to obtain the energy radiated per unit frequency per unit solid angle

$$
\frac{d U}{d \omega d \Omega}=\frac{Z_{0}}{32 \pi^{3}}|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2}
$$

$\overline{\mathbf{C}}(\mathbf{k}, \omega)$ is the $F-T$ in space and time of the current density

$$
\overline{\mathbf{C}}(\mathbf{k}, \omega)=\sum_{j=1}^{N} \int_{-\infty}^{\infty} d t q \mathbf{v}_{j}(t) e^{i \omega\left(t-\hat{\mathbf{n}} \mathbf{r}_{j}(t) / c\right)} \quad N \text { charges }
$$

Radiation from Multiple Charges

Since all the charges have the same trajectories

$$
\overline{\mathbf{C}}(\mathbf{k}, \omega)=\sum_{j=1}^{N} \int_{-\infty}^{\infty} d t q \mathbf{v}\left(t-t_{j}\right) e^{i \omega\left(t-\hat{\mathbf{n}} \mathbf{r}\left(t-t_{j}\right) / c\right)}
$$

letting $\tau=t-t_{j}$
$\overline{\mathbf{C}}(\mathbf{k}, \omega)=\sum_{j=1}^{N} e^{i \omega t_{j}} q \underbrace{\int_{-\infty}^{\infty} d \tau \mathbf{v}(\tau) e^{i \omega(\tau-\hat{\mathbf{n}} \mathbf{r}(\tau) / c)}}=\sum_{j=1}^{N} q e^{i \omega t_{j}} \mathbf{F}(\omega)$
this term is indepentent of t_{j}

Radiation from Multiple Charges

Consider the case were the charges flow in continuously not discretely
$\overline{\mathbf{C}}(\mathbf{k}, \omega)=\sum_{j=1}^{N} \Delta t_{j} q \frac{e^{i \omega t_{j}}}{\Delta t_{j}} \mathbf{F}(\omega) \rightarrow \int d t I(t) e^{i \omega t} \mathbf{F}(\omega)=\bar{I}(\omega) \mathbf{F}(\omega)$
where $I(t)$ is the beam current (time rate of change of charge)

If $I(t)$ varies slowly in time, $\bar{I}(\omega)$ will have only low frequency components

$$
\overline{\mathbf{C}}(\mathbf{k}, \omega)=\bar{I}(\omega) \mathbf{F}(\omega) \simeq 0 \rightarrow \text { little or no radiation }
$$

Things are very different if the charges are randomly distributed in entrance times

Radiation from Multiple Charges

Consider the case were the charges have random entrance times

$$
\overline{\mathbf{C}}(\mathbf{k}, \omega)=\sum_{j=1}^{N} q e^{i \omega t_{j}} \mathbf{F}(\omega)
$$

Energy radiated per unit frequency per unit solid angle

$$
\begin{aligned}
& \frac{d U}{d \omega d \Omega}=\frac{Z_{0}}{32 \pi^{3}}|\mathbf{k} \times \overline{\mathbf{C}}(\mathbf{k}, \omega)|^{2} \\
& \frac{d U}{d \omega d \Omega}=\frac{Z_{0}}{32 \pi^{3}} \frac{\omega^{2}}{c^{2}} q^{2}|\hat{\mathbf{n}} \times \mathbf{F}(\omega)|^{2} \sum_{j=1}^{N} \sum_{k=1}^{N} e^{i \omega\left(t_{j}-t_{k}\right)} \\
& \frac{d U}{d \omega d \Omega}=\frac{Z_{0}}{32 \pi^{3}} \frac{\omega^{2}}{c^{2}} q^{2}|\hat{\mathbf{n}} \times \mathbf{F}(\omega)|^{2}\left[N+N(N-1)\left\langle e^{i \omega\left(t_{j}-t_{k}\right)}\right\rangle\right] \\
& j=k \quad j \neq k
\end{aligned}
$$

Radiation from Multiple Charges

For random entrance times $\left\langle e^{i \omega\left(t_{j}-t_{k}\right)}\right\rangle=0 \quad j \neq k$

Energy radiated per unit frequency per unit solid angle

$$
\frac{d U}{d \omega d \Omega}=\frac{Z_{0}}{32 \pi^{3}} \frac{\omega^{2}}{c^{2}} q^{2}|\hat{\mathbf{n}} \times \mathbf{F}(\omega)|^{2} N \sim N
$$

