Lecture 15

Periodic Structures

Filters
Gratings
Slow Wave Structures
particle accelerators
Cherenkov microwave generators
Metamaterials

Floquet Theory

Floquet Theory

$$
\begin{aligned}
& E(z, t)=\operatorname{Re}\left\{\hat{E}(z) e^{-i o t}\right\} \\
& \frac{\partial^{2}}{\partial z^{2}} \hat{E}(z)+\frac{\omega^{2}}{c^{2}} \varepsilon_{r e l}(z) \hat{E}(z)=0 \\
& \varepsilon_{r e l}(z)=\varepsilon_{r e l}(z+L)
\end{aligned}
$$

Time harmonic, spatially dependent field

Inhomogeneous relative dielectric

Dielectric is spatially periodic
Special case - homogeneous
$\partial \varepsilon_{\text {rel }} / \partial z=0$
$\hat{E}(z)=\hat{E}_{0} \exp (i k z)$
$\omega(k)= \pm k c / \sqrt{\varepsilon_{r e l}}$

Spatially Varying Case

$$
\begin{aligned}
& E(z, t)=\operatorname{Re}\left\{\hat{E}(z) e^{-i \omega t}\right\} \\
& \frac{\partial^{2}}{\partial z^{2}} \hat{E}(z)+\frac{\omega^{2}}{c^{2}} \varepsilon_{r e l}(z) \hat{E}(z)=0 \\
& \varepsilon_{r e l}(z)=\varepsilon_{r e l}(z+L) \\
& \hat{E}(z)=\hat{E}_{0}(k, z) \exp (i k z) \\
& \hat{E}_{0}(k, z)=\hat{E}_{0}(k, z+L) \\
& \omega(k)=\omega\left(k+k_{0}\right) \\
& k_{0}=2 \pi / L
\end{aligned}
$$

Smith Island Cake

The Smith Island Cake is the official dessert of the State of Maryland. It consists of alternating layers of two dielectric materials as pictured at right. Suppose the dielectric constants and the thicknesses of the two alternating layers are $\varepsilon_{1}, \varepsilon_{2}$ and d_{1}, d_{ν} respectively. In this sense the cake is a metamaterial.

$$
\begin{aligned}
& E(z)=\left[E_{+} e^{i k z}+E_{-} e^{-i k z}\right] \\
& H(z)=Z^{-1}\left[E_{+} e^{i k z}-E_{-} e^{-i k z}\right] \\
& E(0)=E_{+}+E_{-} \\
& H(0)=Z^{-1}\left[E_{+}-E_{-}\right] \quad k_{1,2}=\omega \sqrt{\mu_{0} / \varepsilon_{1,2}} \\
&
\end{aligned}
$$

d1 d2

$E(z)=\left[E_{+} e^{i k z}+E_{-} e^{-i k z}\right]$
$H(z)=Z^{-1}\left[E_{+} e^{i k z}-E_{-} e^{-i k z}\right]$
$E(0)=E_{+}+E_{-}$
$H(0)=Z^{-1}\left[E_{+}-E_{-}\right]$

Solve for $\mathrm{E}+/-$

$$
\begin{aligned}
& E_{+}=\frac{1}{2}[E(0)+Z H(0)] \\
& E_{+}=\frac{1}{2}[E(0)-Z H(0)] \quad Z=\sqrt{\mu_{0} / \varepsilon}
\end{aligned}
$$

Find fields at $z=d$

$$
\theta=k d=\omega \sqrt{\varepsilon \mu_{0}} d \quad\binom{E(d)}{H(d)}=\left[\begin{array}{cc}
\cos \theta & i Z \sin \theta \\
i Z^{-1} \sin \theta & \cos \theta
\end{array}\right]\binom{E(0)}{H(0)}
$$

Smith Island Cake

$$
\binom{E(d)}{H(d)}=\left[\begin{array}{cc}
\cos \theta & i Z \sin \theta \\
i Z^{-1} \sin \theta & \cos \theta
\end{array}\right]\binom{E(0)}{H(0)} \quad \begin{aligned}
& Z=\sqrt{\mu_{0} / \varepsilon} \\
& \theta=k d=\omega \sqrt{\varepsilon \mu_{0}} d
\end{aligned}
$$

Two layers of different material

$$
\binom{E\left(d_{2}+d_{1}\right)}{H\left(d_{2}+d_{1}\right)}=\left[\begin{array}{cc}
\cos \theta_{1} & i Z_{1} \sin \theta_{1} \\
i Z_{1}^{-1} \sin \theta_{1} & \cos \theta_{1}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta_{2} & i Z_{2} \sin \theta_{2} \\
i Z_{2}^{-1} \sin \theta_{2} & \cos \theta_{2}
\end{array}\right]\binom{E(0)}{H(0)}
$$

$$
\binom{E\left(d_{2}+d_{1}\right)}{H\left(d_{2}+d_{1}\right)}=\stackrel{\downarrow}{=}\binom{E(0)}{H(0)}
$$

After Multiple layers

$$
\binom{E\left(n\left(d_{2}+d_{1}\right)\right)}{H\left(n\left(d_{2}+d_{1}\right)\right)}=(\underline{\underline{M}})^{n}\binom{E(0)}{H(0)}
$$

Find eigenfunctions and eigenvalues of M

$$
\binom{E\left(z+d_{1}+d_{2}\right)}{H\left(z+d_{1}+d_{2}\right)}=\underline{\underline{M}}\binom{E(z)}{H(z)}=\lambda\binom{E(z)}{H(z)}
$$

$$
\underline{\underline{M}}=\left[\begin{array}{cc}
\cos \theta_{1} \cos \theta_{2}-\frac{Z_{2}}{Z_{1}} \sin \theta_{1} \sin \theta_{2} & i\left(Z_{1} \sin \theta_{1} \cos \theta_{2}+Z_{2} \cos \theta_{1} \sin \theta_{2}\right) \\
i\left(Z_{1}^{-1} \sin \theta_{1} \cos \theta_{2}+Z_{2}^{-1} \cos \theta_{1} \sin \theta_{2}\right) & \cos \theta_{1} \cos \theta_{2}-\frac{Z_{1}}{Z_{2}} \sin \theta_{1} \sin \theta_{2}
\end{array}\right]
$$

$$
\begin{array}{ll}
\operatorname{det}[\underline{\underline{M}-\lambda \underline{\underline{1}}]=0} & \lambda_{+} \lambda_{-}=1 \\
& \lambda_{ \pm}=\exp (\pm i \phi) \text { or } \lambda_{ \pm}-\text {real } \\
\lambda^{2}+b \lambda+1=0 &
\end{array}
$$

$$
b=\left(\frac{Z_{2}}{Z_{1}}+\frac{Z_{1}}{Z_{2}}\right) \sin \theta_{1} \sin \theta_{2}-2 \cos \theta_{1} \cos \theta_{2}
$$

Fields advance by phase on each layer Or decay exponentially

$$
\lambda=\lambda_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4}}{2}
$$

$$
\begin{aligned}
& \cos \phi=\cos \left(\theta_{1}+\theta_{2}\right)-\frac{\Delta}{2} \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \\
& \Delta=\frac{\left(Z_{1}-Z_{2}\right)^{2}}{Z_{1} Z_{2}}
\end{aligned}
$$

$$
b=-2 \cos \left(\theta_{1}+\theta_{2}\right)+\Delta \sin \theta_{1} \sin \theta_{2}
$$

Special case: $\theta_{1}=\theta_{2}$

$$
\Delta=\frac{\left(Z_{1}-Z_{2}\right)^{2}}{Z_{1} Z_{2}}
$$

$\cos \left(\theta_{1}+\theta_{2}\right)=\frac{\cos \phi+\Delta / 4}{1+\Delta / 4}$
$\theta_{1}+\theta_{2}=\frac{\omega}{c}\left(d_{1} \sqrt{\varepsilon_{1}}+d_{2} \sqrt{\varepsilon_{2}}\right)$

$$
\begin{aligned}
& \binom{E\left(z+d_{1}+d_{2}\right)}{H\left(z+d_{1}+d_{2}\right)}=\lambda\binom{E(z)}{H(z)} \quad \text { SOlutiOnS } \\
& \lambda=e^{i \phi} \\
& \theta=k d=\omega \sqrt{\varepsilon \mu_{0}} d
\end{aligned}
$$

$\cos \phi=\cos \left(\theta_{1}+\theta_{2}\right)-\frac{\Delta}{2} \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)$
$\Delta=\frac{\left(Z_{1}-Z_{2}\right)^{2}}{Z_{1} Z_{2}}$

Special case: $\quad \theta_{1}=\theta_{2}$
$\cos \left(\theta_{1}+\theta_{2}\right)=\frac{\cos \phi+\Delta / 4}{1+\Delta / 4}$
$\theta_{1}+\theta_{2}=\frac{\omega}{c}\left(d_{1} \sqrt{\varepsilon_{1}}+d_{2} \sqrt{\varepsilon_{2}}\right)$

Continuous Variations

Mathien Equation

$$
\hat{E}_{0}=\sum_{n=-\infty}^{\infty} \hat{E}_{n} \exp \left(i k_{n} z\right) \quad k_{n}=n k_{0}
$$

Fourier Serried

Solution by Fourier Series

$$
\begin{gathered}
{\left[\begin{array}{c}
\frac{d^{2}}{d z^{2}}+\frac{\omega^{2}}{c^{2}}\left(1+\delta \cos k_{0} z\right) \\
T
\end{array}\right] \hat{E}(z)=0} \\
\int_{0}^{L} \frac{d z}{L} \exp \left(-i\left(k+n k_{0}\right) z\right) \cdot\{\text { Mathizw Equation }\}=0 . \\
{\left[-\left(k+n k_{0}\right)^{2}+\frac{\omega^{2}}{c^{2}}\right] E_{n}+\frac{\omega^{2}}{c^{2}} \delta \sum_{m} \int_{0}^{L} \frac{d z}{L} e^{-i n k_{0} z} \cos k_{0} z E_{m} e^{i b_{m} z}} \\
{[-=0}
\end{gathered}
$$

note

$$
\begin{aligned}
& \int_{0}^{L} \frac{d z}{L} \cos k_{0} z \exp \left[i k_{0} z(m-n)\right] \\
& \quad= \begin{cases}\frac{1}{2} & \text { if } m=n \pm 1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\left[\frac{\omega^{2}}{c^{2}}-\left(k+n k_{0}\right)^{2}\right] E_{n}+\frac{\omega^{2}}{c^{2}} \frac{\delta}{2}\left[E_{n+1}+E_{n-1}\right]=0
$$

note if $\omega(k)$ is a solution with E_{n}

Then $\quad k \rightarrow k+k_{0} \quad n \rightarrow n-1$ is also a solution

$$
\omega(k)=\omega\left(k+k_{0}\right)
$$

$$
\left[\frac{\omega^{2}}{c^{2}}-\left(k+n k_{0}\right)^{2}\right] E_{n}+\frac{\omega^{2}}{c^{2}} \frac{\delta}{2}\left[E_{n+1}+E_{n-1}\right]=0
$$

Approximat sometions for $/ \delta / \ll 1$

For each $n \quad \omega^{2}=\left(k+n k_{0}\right)^{2}$ is a solutron

Pattem repect with period ko

Solution breaks clown where lines cross

$$
\begin{aligned}
& n=0 \\
& {\left[\frac{\omega^{2}}{c^{2}}-k^{2}\right] E_{0}+\frac{w^{2}}{c^{2}} \frac{\delta}{2} E_{-1}=0 } \\
& n=-1 \\
& {\left[\frac{w^{2}}{c^{2}}-\left(k-k_{0}\right)^{2}\right] E_{-1}+\frac{\omega^{1}}{c^{2}} \frac{\delta}{2} E_{0}=0 }
\end{aligned}
$$

combine

$$
\left[\frac{\omega^{2}}{c^{2}}-k^{2}\right]\left[\frac{\omega^{2}}{c^{2}}-\left(k-k_{0}\right)^{7}\right]-\left(\frac{\omega^{2}}{c^{2}} \frac{\delta}{2}\right)^{2}
$$

Combine

$$
\left[\frac{\omega^{2}}{c^{2}}-k^{2}\right]\left[\frac{\omega^{2}}{c^{2}}-\left(k-k_{0}\right)^{2}\right]-\left(\frac{\omega^{2}}{c^{2}} \frac{\delta}{2}\right)^{2}
$$

Let $\omega=\frac{k_{0}}{2} c+\delta \omega \quad k=\frac{k_{0}}{2}+\delta k$

$$
\begin{aligned}
& \left.\left[\frac{k_{0} c \delta \omega}{c^{2}}-k_{0} \delta k\right]\left[\frac{k_{0} \delta \delta \omega}{c^{2}}+k_{0} \delta k\right]=\frac{\delta^{2}}{2^{2}} \cdot \frac{k_{0} 4}{c}\right)^{4} \\
& {\left[\frac{\delta \omega}{c}-\delta k\right]\left[\frac{\delta \omega}{c}+\delta k\right]=\frac{\delta^{2}}{64} k_{0}^{2}}
\end{aligned}
$$

$$
\left(\frac{\delta w}{c}\right)^{2}=\delta k^{2}+\frac{k_{0}^{2}}{64} \delta^{2}
$$

Avoided Crossing

Gap is like band gap for electrons in a crystal structure

Grating

$$
\nabla^{2} \hat{E}(x, z)+\frac{\omega^{2}}{c^{2}} \hat{E}(x, z)=0
$$

Boundary Condition $\hat{E}(x=d(z), z)=0$

$$
d(z)=\sum_{m} d_{m} e^{i m k_{0} z}
$$

Inerdent Wave

$$
\begin{aligned}
& \hat{E}=\hat{E}_{i n c} \exp \left[i k_{z} z-i k_{x} x\right] \\
& k_{z}=\frac{\omega}{c} \sin \theta_{i} \quad k_{x}=\frac{\omega}{c} \cos \theta_{i}
\end{aligned}
$$

Reflected Waves

$$
\begin{array}{r}
\hat{E}_{\text {ref }}=\sum_{m} \hat{E}_{m} \exp \left[i k_{z} z+i m k_{0} z^{2}+i k_{x m} x\right] \\
\quad k_{x m}= \begin{cases}\sqrt{\frac{\omega^{2}}{c^{2}}-\left(k_{2}+m k_{0}\right)^{2}} & \left|k_{2}+m k_{0}\right|<\omega / c \\
+i \sqrt{\left(k_{2}+m k_{0}\right)^{2}-\frac{\omega^{2}}{c^{2}}} & \left|k_{2}+m k_{0}\right|>\omega / c\end{cases}
\end{array}
$$

Bound ary Condition

$$
\begin{aligned}
& e^{i k_{z} z}\left[\hat{E}_{i n c} \exp \left[-i k_{x} d(z)\right]+\sum_{m} \hat{E}_{m} \exp \left(i m k_{0} z\right.\right. \\
&\left.\left.+i k_{x m} d(z)\right)\right]=0
\end{aligned}
$$

Specialize to small $d(z)$

Specularly reflected wave ($m=0$)

$$
\hat{E}_{0}=-\hat{E}_{\text {inc }}
$$

OTHER waves

$$
\begin{aligned}
& \hat{E}_{i m}\left\{\left(1-i k_{x} d\right)-\left(1+i k_{c} d\right)+\sum_{m \neq 0} E_{m} \exp \left(i m k_{0} z\right)\right\}=0 \\
& E_{m}=2 i k_{x} t_{m} \sum_{m} \hat{E}_{-r} .
\end{aligned}
$$

Tape Helix

Approximate solution

$$
\omega=k v_{p}
$$

$$
v_{p}=c \frac{p}{\sqrt{p^{2}+(2 \pi r)^{2}}}
$$

Crossings - not gaps

$$
\nabla_{\text {Pierce }}=\frac{\left|\bar{F}_{z}\right|^{2}}{2 / k_{z}^{2} P}
$$

Pierce: Vacuum electronics pioneer Pulse code modulation
First communications satellite Bohlen-Pierce musical scale Coined name "Transistor"

Higher Dimensions

$$
\begin{aligned}
& \nabla^{2} E(x, y)+\frac{\omega^{2}}{c^{2}}(1+\chi(x, y)) E(x, y)=0 \\
& \chi(x, y)=\chi(x+d, y)=\chi(x, y+d) \\
& E(x, y)=\sum_{m, n} \bar{E}_{m, n} \exp \left[i\left(k_{x}+n k_{o}\right) x+i\left(k_{y}+m k_{o}\right)\right] \\
& \quad \omega\left(k_{x}, k_{y}\right)=\omega\left(k_{x}+q k_{0}, k_{y}+p k_{0}\right) \\
& \quad k_{0}=2 \pi / d
\end{aligned}
$$

Creation of Stop Band

$$
\begin{aligned}
& {\left[\omega^{2}-\omega_{c}^{2}\right] E(n, m)=\frac{\delta}{2} \omega_{c}^{2}[E(n+1, m)+E(n-1, m)+E(n, m+1)+E(n, m-1)]} \\
& E(n, m)=E(0,0) \exp \left[i\left(k_{x} d n+k_{y} d m\right)\right] \\
& {\left[\omega^{2}-\omega_{c}^{2}\right]=\delta \omega_{c}^{2}\left[\cos \left(k_{x} d\right)+\cos \left(k_{y} d\right)\right]=\delta \omega_{c}^{2} \cos \left[\left(k_{x}-k_{y}\right) d\right] \cos \left[\left(k_{x}+k_{y}\right) d\right]}
\end{aligned}
$$

$$
\left[\omega^{2}-\omega_{c}^{2}\right] E(n, m)=\frac{\delta}{2} \omega_{c}^{2}[E(n+1, m)+E(n-1, m)+E(n, m+1)+E(n, m-1)]
$$

$$
E(n, m)=E(0,0) \exp \left[i\left(k_{x} d n+k_{y} d m\right)\right]
$$

$$
\left[\omega^{2}-\omega_{c}^{2}\right]=\delta \omega_{c}^{2}\left[\cos \left(k_{x} d\right)+\cos \left(k_{y} d\right)\right]
$$

$$
=\delta \omega_{c}^{2} \cos \left[\left(k_{x}-k_{y}\right) d\right] \cos \left[\left(k_{x}+k_{y}\right) d\right]
$$

Individual cavities have a set of modes, $\omega_{c}^{2}=\omega_{c 1}^{2}, \omega_{c 2}^{2}, \omega_{c 3}^{2} \cdots$
If the spacing between modes is greater that the frequency shift induced by coupling
$\left|\omega_{c p}^{2}-\omega_{c p+1}^{2}\right|<\delta \omega_{c}^{2}$
then gaps in the spectrum with no propagating modes appear.

Metamaterials

Metamaterials are periodic structures that have engineered properties in the long wave length limit, $k d \ll 1$

By Jeffrey.D.Wilson@nasa.gov (Glenn research contact) NASA Glenn Research, Public Domain, https://commons.wikimedia.o rg/w/index.php?curid=745577 1

Negative epsilon and negative mu

In a restricted range of frequencies the effective constituitive parameters may be negative.

If both are positive or both are negative waves propagate.

$$
k^{2}=\omega^{2} \varepsilon \mu>0
$$

If both are negative waves satisfy the left hand rule.

$$
\mathbf{k} \times \mathbf{E}=\omega \mu \mathbf{H}
$$

For $\varepsilon<0$ or $\mu<0$ they must be functions of frequency.

Media are passive, stored energy is positive.

$$
\mathrm{U}_{E}=\frac{1}{2} \frac{\partial}{\partial \omega}(\omega \varepsilon(\omega))|E|^{2}>0, \quad \frac{\partial}{\partial \omega}(\omega \varepsilon(\omega))=\varepsilon(\omega)+\omega \frac{\partial}{\partial \omega} \varepsilon(\omega)>0
$$

If both $\varepsilon<0$ and $\mu<0$ group and phase velocities are opposite

If both $\varepsilon<0$ and $\mu<0$ group and phase velocities are opposite

$$
\begin{aligned}
& \frac{1}{v_{g}}=\frac{\partial}{\partial \omega} k=\frac{\partial}{\partial \omega}(\omega \sqrt{\varepsilon \mu})=\sqrt{\varepsilon \mu}+\frac{\omega}{2 \sqrt{\varepsilon \mu}} \frac{\partial}{\partial \omega}(\varepsilon \mu) \\
& \frac{1}{v_{g}}=\frac{1}{2 \sqrt{\varepsilon \mu}}\left[\mu \frac{\partial}{\partial \omega}(\omega \varepsilon(\omega))+\varepsilon \frac{\partial}{\partial \omega}(\omega \mu(\omega))\right]<0 \text { if both } \varepsilon \& \eta<0 \\
& \frac{1}{v_{p}}=\frac{1}{\sqrt{\varepsilon \mu}}
\end{aligned}
$$

Backward Waves

