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Periodic Structures

Filters
Gratings
Slow Wave Structures

particle accelerators
Cherenkov microwave generators

Metamaterials

Floquet Theory



Floquet Theory

!!

E(z ,t)=Re Ê(z)e− iωt{ }

∂2

∂z2
Ê(z)+ω

2

c2
εrel(z)Ê(z)=0

εrel(z)= εrel(z +L)

Special!case!1!homogeneous
∂εrel /∂z =0

Ê(z)= Ê0 exp ikz( )

ω(k)= ±kc / εrel

Time harmonic, spatially 
dependent field

Inhomogeneous relative 
dielectric

Dielectric is spatially periodic

ω

!k

!!slope!=!c/ εrel



Spatially Varying Case

!!

E(z ,t)=Re Ê(z)e− iωt{ }

∂2

∂z2
Ê(z)+ω

2

c2
εrel(z)Ê(z)=0

εrel(z)= εrel(z +L)

Ê(z)= Ê0(k ,z)exp ikz( )

Ê0(k ,z)= Ê0(k ,z +L)

ω(k)=ω(k +k0)

k0 =2π /L

Stop Band



Smith Island Cake
The Smith Island Cake is the official 
dessert of the State of Maryland.  It 
consists of alternating layers of two 
dielectric materials as pictured at right.  
Suppose the dielectric constants and the 
thicknesses of the two alternating layers 
are           and        , respectively. In this 
sense the cake is a metamaterial.

ε1, ε2 d1, d2

yumsugar.com

E(z) = E+e
ikz + E−e

− ikz⎡⎣ ⎤⎦
H (z) = Z −1 E+e

ikz − E−e
− ikz⎡⎣ ⎤⎦

E(0) = E+ + E−

H (0) = Z −1 E+ − E−⎡⎣ ⎤⎦

d1  d2 …

Z = µ0 ε1,2

k1,2 =ω ε1,2µ0



E(z) = E+e
ikz + E−e

− ikz⎡⎣ ⎤⎦
H (z) = Z −1 E+e

ikz − E−e
− ikz⎡⎣ ⎤⎦

E(0) = E+ + E−

H (0) = Z −1 E+ − E−⎡⎣ ⎤⎦
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!!Z = µ0 ε

!!θ = kd =ω εµ0d

d1  d2 …

E+ =
1
2
E(0)+ ZH (0)⎡⎣ ⎤⎦

E+ =
1
2
E(0)− ZH (0)⎡⎣ ⎤⎦

Solve for E+/-

Find fields at  z=d



Smith Island Cake
yumsugar.com
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Two layers of different material
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After Multiple layers
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Find eigenfunctions and eigenvalues of M

M =
cosθ1 cosθ2 −

Z2
Z1
sinθ1 sinθ2 i Z1 sinθ1 cosθ2 + Z2 cosθ1 sinθ2( )

i Z 1
−1 sinθ1 cosθ2 + Z2

−1 cosθ1 sinθ2( ) cosθ1 cosθ2 −
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det M − λ1⎡⎣ ⎤⎦ = 0

λ 2 + bλ +1= 0

b =
Z2
Z1

+
Z1
Z2

⎛

⎝⎜
⎞

⎠⎟
sinθ1 sinθ2 − 2cosθ1 cosθ2

λ = λ± =
−b± b2 − 4

2

λ+λ− = 1
λ± = exp(±iφ) or λ± − real

b = −2cos θ1 +θ2( )+ Δsinθ1 sinθ2

Δ =
Z1 − Z2( )2
Z1Z2

Fields advance by phase on each layer
Or decay exponentially 

cosφ = cos(θ1 +θ2 )− Δ
2

sin(θ1)sin(θ2 )

Δ =
Z1 − Z2( )2

Z1Z2

Special case:   θ1 = θ2

cos(θ1 +θ2 ) = cosφ + Δ / 4
1+ Δ / 4

θ1 +θ2 =
ω
c
d1 ε1 + d2 ε2( )



Solutions

!!θ = kd =ω εµ0d

cosφ = cos(θ1 +θ2 )− Δ
2

sin(θ1)sin(θ2 )

Δ =
Z1 − Z2( )2

Z1Z2

Special case:   θ1 = θ2

cos(θ1 +θ2 ) = cosφ + Δ / 4
1+ Δ / 4

θ1 +θ2 =
ω
c
d1 ε1 + d2 ε2( )

Stop Band

E(z + d1 + d2 )

H (z + d1 + d2 )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= λ

E(z)
H (z)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

λ = eiφ

φ =



Continuous Variations



Solution by Fourier Series























CHERNIN et al.: THIN TAPE HELIX 1473

Fig. 1. Right-handed tape helix surrounded by a single dielectric layer enclosed in a cylindrical metal waveguide. The helix radius is its width is
and its pitch is The waveguide radius is The developed helix (cut along and unrolled) is shown in (b). The tape cuts a plane of constant
in a width as shown in (b), where

physically reasonable. In particular, assumption (2) omits the
expected square root singularity of the parallel current density
at the tape edges, present even for narrow tapes. In the present
report it is shown how these common assumptions may be
eliminated and a formally exact dispersion relation obtained
for the (infinitely radially thin) metal tape helix supported by a
radially stratified dielectric layer, surrounded by a cylindrical
metal waveguide. An exact expression for the power flow,
from which the interaction impedance may be obtained, is
also given.
The assumption of an infinitely thin tape presents a question

of how the predictions of the theory presented here could
be compared with experimental measurements on real, finite
thickness tapes. In the usual case, in which the skin depth is
small compared to the actual tape thickness, slightly different
currents flow on the inner and outer surfaces of the tape. This
could be taken approximately into account, for example, by
treating two helical surface currents separated by a vacuum
gap representing the tape thickness, but no attempt to do this
is made in the present paper. Here we present the first exact
treatment of a single thin tape. Generalizations of the analysis
used here to treat multiple tapes, even counter-wound tapes,
are straightforward.
The tape helix model presented here has been incorporated

in the large signal TWT simulation code CHRISTINE [17].
This paper is organized as follows. Section II presents the

derivation of the dispersion relation and power flow for the
case of a single dielectric layer between the helix and the outer
wall. The formulation is such that it is easily generalized to the

case of an arbitrary number of dielectric layers; this is done in
Section III, where a simple matrix approach is used to propa-
gate the fields across the multiple layers. Section IV presents
some numerical examples, demonstrating the breakdown of the
narrow tape assumptions. It is also shown that there is a maxi-
mum in the interaction impedance as a function of tape width,
the maximum occurring at a value at which neither the narrow
tape nor narrow gap assumptions is expected to be valid.

II. SINGLE DIELECTRIC SUPPORTING LAYER
We begin by considering electromagnetic waves supported

by a tape helix centered inside a perfectly conducting circular
cylinder with a single azimuthally uniform dielectric lining, as
shown in Fig. 1. The radius of the helix is its width is
and its period or pitch in the axial direction is The tape
is taken to be infinitely thin in the radial direction. The radius
of the enclosing cylinder is The pitch angle of the helix,
is defined by Cylindrical coordinates
are used, as shown in the figure.
The interior of the helix region 1) is taken to

be vacuum. The region between the helix and the outer wall
region 2) is filled uniformly with a single layer of

dielectric material of permittivity where is the
permittivity of free space. Superscripts (1) and (2) are used
here and below to denote regions 1 and 2. The general case in
which the dielectric region between the helix and outer wall is
radially stratified into multiple layers with different dielectric
constants is treated in the next section.

Tape Helix

Approximate solution

!!

ω = kvp

vp = c
p

p2 + 2πr( )2



Crossings – not gaps

ω

!k

!!k0 =2π /p
!!nk0Consequence of helical symmetry
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TABLE I
TAPE HELIX PARAMETERS USED IN EXAMPLES

(a)

(b)

Fig. 6. (a) Phase velocity and (b) on-axis interaction impedance versus
frequency for a narrow tape helix with the parameters of Table I and

as computed using (1) the Chebyshev expansion with
[solid line], and (2) the assumptions that the

longitudinal current on the tape is constant, the transverse current is zero,
and the parallel electric field along the helix centerline vanishes [(45),

[dashed line].

ters. The matrix is truncated at a user-specified value of the
maximum order of Chebyshev polynomial to be used
in the expansions of the currents, (33a) and (33b). Each matrix
element is evaluated by including terms up to a user-specified

Fig. 7. Longitudinal and transverse currents versus for a narrow tape helix
with the parameters of Table I and as computed using the
Chebyshev expansion with The units have been
fixed by setting in (33a).

maximum spatial harmonic number1 in (37).
also evaluates, for special values of one of its arguments, the
approximate dispersion function on the left hand side of (45),
if needed for comparison purposes; this feature has been used
in preparing the comparison plots.
A FORTRAN subroutine has also been written to

compute the interaction impedance (46), using the approach
described in Section II.
Finally, a FORTRAN program, has been written

to find a root of using Newton’s method, and to call
2.

As an example, we consider a tape helix supported by a
single dielectric layer with parameters shown in Table I.
Two different tape widths, one narrow and

one wide are used to make the phase velocity
and impedance versus frequency plots shown below. Two
different approximations are used to produce the results shown
in each plot. These are (I) truncated Chebyshev expansion
of the currents, with and and (II)
constant longitudinal helix current, zero transverse current,
and longitudinal on tape centerline [Re: (45), with

and [The use of (45) with
produced plots in all cases indistinguishable from those using

In all cases, 24 spatial harmonics are retained in
the sums; though this may seem excessive, we find this to
be required to obtain reasonably good representations of the
tape currents (see Figs. 7 and 9). Use of and

gives results for phase velocity and impedance
(but not currents!) that agree to three or four digits with those
obtained using the higher order expansions. With and
1Care must be taken to choose a sufficiently large cutoff to ensure

convergence of the sum in (37). Generally, the maximum value of should
satisfy so the Bessel functions in (37) are of
order Referring to the definition of [(30)], this means that
narrow tapes (small require the retention of more spatial harmonics than
wide tapes near 1). For sufficiently large values of it may be shown
that all elements in the summand of (37) are of order
2Electronic copies of and are available from one of

the authors, subject to approval by NRL. Contact: chernin@apo.saic.com.
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!!
ZPierce =

Ez
2

2kz2P

Pierce:  Vacuum electronics pioneer
Pulse code modulation
First communications satellite
Bohlen-Pierce musical scale
Coined name “Transistor”



Higher Dimensions

x

y

d

!!

∇2E(x , y)+ω
2

c2
1+ χ(x , y)( )E(x , y)=0

χ(x , y)= χ(x +d , y)= χ(x , y +d)

E(x , y)= Em,nexp i kx +nko( )x + i ky +mko( )⎡
⎣

⎤
⎦

m,n
∑

!!

ω(kx ,ky )=ω(kx +qk0 ,ky + pk0)

k0 =2π /d



kx

ky

!ω1!
ω2

!ω3

!!k0

!!k0

!!

ω(kx ,ky )=ω(kx +qk0 ,ky + pk0)

k0 =2π /d

Level curves of 
frequency in the k 
plane
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y

d

Creation of Stop Band

E(n,m)

E(n,m+1)

E(n+1,m)E(n-1,m)

E(n,m-1)

!!

ω 2 −ω c
2⎡⎣ ⎤⎦E(n,m)=

δ
2ω c

2 E(n+1,m)+E(n−1,m)+E(n,m+1)+E(n,m−1)⎡⎣ ⎤⎦

E(n,m)= E(0,0)exp i(kxdn+kydm)⎡⎣ ⎤⎦

ω 2 −ω c
2⎡⎣ ⎤⎦ =δω c

2 cos(kxd)+cos(kyd)⎡⎣ ⎤⎦ =δω c
2cos (kx −ky )d⎡⎣ ⎤⎦cos (kx +ky )d⎡⎣ ⎤⎦



kx

ky

!!

Individual!cavities!have!a!set!of!modes,!!!ω c
2 = !ω c1

2 ,!ω c2
2 ,!!ω c3

2 ....
If!the!spacing!between!modes!is!greater!that!the!frequency!shift!induced!by!coupling
ω cp

2 − !!ω cp+1
2 <δω c

2

then!gaps!in!the!spectrum!with!no!propagating!modes!appear.

!!

ω 2 −ω c
2⎡⎣ ⎤⎦E(n,m)=

δ
2ω c

2 E(n+1,m)+E(n−1,m)+E(n,m+1)+E(n,m−1)⎡⎣ ⎤⎦

E(n,m)= E(0,0)exp i(kxdn+kydm)⎡⎣ ⎤⎦

ω 2 −ω c
2⎡⎣ ⎤⎦ =δω c

2 cos(kxd)+cos(kyd)⎡⎣ ⎤⎦

=δω c
2cos (kx −ky )d⎡⎣ ⎤⎦cos (kx +ky )d⎡⎣ ⎤⎦



Metamaterials

Metamaterials are periodic structures that have engineered 
properties in the long wave length limit,

kd<<1

By Jeffrey.D.Wilson@nasa.gov
(Glenn research contact) -
NASA Glenn Research, Public 
Domain, 
https://commons.wikimedia.o
rg/w/index.php?curid=745577
1



Negative epsilon and negative mu

In a restricted range of frequencies the effective constituitive
parameters may be negative.

If both are positive or both are negative waves propagate.

!!k
2 =ω 2εµ >0

If both are negative waves satisfy the left hand rule.

!k×E =ωµH



!!

For!ε<0!or!µ<0!they!must!be!functions!of!frequency.

Media!are!passive,!stored!energy!is!positive.

UE =
1
2

∂
∂ω

ωε(ω )( ) E 2
>0,!!!!! ∂

∂ω
ωε(ω )( ) = ε(ω )+ω ∂

∂ω
ε(ω )>0

If!both!ε<0!and!µ<0!group!and!phase!velocities!are!opposite



!!

If!both!ε<0!and!µ<0!group!and!phase!velocities!are!opposite

1
vg

= ∂
∂ω

k = ∂
∂ω

ω εµ( )= εµ + ω
2 εµ

∂
∂ω

εµ( )

1
vg

= 1
2 εµ

µ ∂
∂ω

ωε(ω )( )+ ε ∂
∂ω

ωµ(ω )( )⎡

⎣
⎢

⎤

⎦
⎥ <0!!!if!both!ε !&!η !<0

1
vp

= 1
εµ

Backward Waves


