Cavities

ENEE 681

Role of Cavities

Cavities are resonant structures: Support EM modes at specific frequencies.

Used in: Filters Oscillators Amplifiers Measurement of material properties

Resonance

Enclosed Rectangular Prism

$$TE_{nm}: \quad \hat{H}_{z} = H_{0}\cos(k_{x}x)\cos(k_{y}y) \qquad k_{x} = \frac{n\pi}{a}, \quad k_{y} = \frac{m\pi}{b}: \quad n,m = 0^{*}, 1, 2, 3, ...$$

* one or the other, but not both

Cut-Off frequencies

$$\omega_{c,n,m} = v \sqrt{\left(\frac{n\pi}{a}\right)^2 + \left(\frac{m\pi}{b}\right)^2}$$

WG Dispersion Relations

 $k_z = p \frac{\pi}{L}$

Transmission Line – TEM mode

Operate at frequencies well below TE and TM cut-off

Fabry-Perot Cavity

Guoy Phase $\tan \phi = -z / Z_R$

Gaussian Beam

$$E_{x,y}(x,y,z) = \frac{E_0}{1 + iz/Z_R} \exp\left[-\frac{\left(x^2 + y^2\right)}{W_0^2\left(1 + iz/Z_R\right)} + ikz\right]$$

Pick parameters such that phase is constant on surface of mirror. The pick k such that the phase changes by $p\pi$ in going from one mirror to the next

Wavebeam phase
$$\begin{bmatrix} k_{z} + \frac{z(x^{2} + y^{2})}{Z_{R}W_{0}^{2}(1 + z^{2}/Z_{R}^{2})} + \phi_{G} \end{bmatrix}$$

Surface of mirror $z \approx \frac{L}{2} - \frac{(x^{2} + y^{2})}{2R_{c}}$
Will match if $\frac{L}{2R_{c}} = \frac{(L/2)^{2}}{Z_{R}^{2} + (L/2)^{2}} < 1$
Phase change mirror to mirror $2\left(k_{p}\frac{L}{2} + \phi_{G}\right) = p\pi$

For a given L and $R_c Z_R$ is determined above. Hence W_0 focal spot determined.

$$Z_{R} = \frac{1}{2}kW_{0}^{2}$$

Design a Fabrey-Perot resonator

Requirements: Wavelength 1 micron = 10^{-6} m. Focal spot size = 100 microns= -10^{-4} m. Spot size on mirrors = 300 microns = $3x10^{-4}$ m

Find L and R_c

Super bonus: How big must the mirrors be to keep "spill over" below 10%

Quality Factor

Frequency Domain

Full Width at Half Maximum (FWHM) = $\frac{\omega_{res}}{O}$

Response Function

Multiple Contributions to Loss

it. losses are small (Q>21) losses are additive different loss mechan $\frac{1}{Q} = \frac{P_d}{\omega U} = \frac{P_{o1}}{\omega U} + \frac{P_{a2}}{\omega U} + \frac{P_{o2}}{\omega U}$ $= \frac{1}{Q_1} + \frac{1}{Q_2} + \cdots - \cdots$ Reciprocals of Q add.

Dielectric and Conductor Loss

Q due to lossy direlectvic $E = E - \overline{I}E^{\prime\prime}$ Losses due to conductors $Q = \frac{\omega}{\kappa} \left(\frac{\kappa}{R_s}\right) \frac{\int dx/H/2}{\int da/H/2} = e^{nergr} stred$

Coupling to Cavities

closed bux is usiles be able to get power in need to it Adding a hole (or coupling port does two things) power can come in and power can 90 out

Coupling Also Characterized by Q

Universal Response

 $\left(\frac{\omega}{\omega_{\text{res}}}-1\right) = \left(\frac{1}{2Q; ZQe}\right)$ $\rho = \frac{V_{reflected}}{V_{incident}}$ $i\left(\frac{\omega}{\omega r_{a}}-1\right)-\left(\frac{1}{2Q}+\frac{1}{2N_{a}}\right)$ knowing Qi, Qe and Wres determines far from resonance P=-1. Reflectivity at resonance IPI2 = Q:-Qe Reflectivity at resonance 0-if Q:= Qe damping rate for firelds p-200 Wes=1#-i 200 & 00 Re

Waveguide Cavities

Waveguide fields

$$\mathbf{E} = \operatorname{Re}\left\{\hat{\mathbf{E}}(x, y) \exp\left[i\left(k_{z}z - \omega t\right)\right]\right\}$$
$$\mathbf{H} = \operatorname{Re}\left\{\hat{\mathbf{H}}(x, y) \exp\left[i\left(k_{z}z - \omega t\right)\right]\right\}$$

$$\left. \frac{\partial^2 \hat{H}_z}{\partial x^2} + \frac{\partial^2 \hat{H}_z}{\partial y^2} = -\left(\left(\omega / v \right)^2 - k_z^2 \right) \hat{H}_z$$

$$\frac{\partial^2 \hat{E}_z}{\partial x^2} + \frac{\partial^2 \hat{E}_z}{\partial y^2} = -\left(\left(\omega / v\right)^2 - k_z^2\right)\hat{E}_z$$

$$\hat{\mathbf{E}}_{\perp} = \frac{i}{\left(\omega/\nu\right)^{2} - k_{z}^{2}} \begin{bmatrix} k_{z} \nabla_{\perp} \hat{E}_{z} - \omega \mu \hat{\mathbf{z}} \times \nabla_{\perp} \hat{H}_{z} \end{bmatrix} \qquad \hat{E}_{z} \Big|_{wall} = 0, \quad \mathbf{n} \cdot \nabla_{\perp} \hat{H}_{z} \Big|_{wall} = 0$$
$$\hat{\mathbf{H}}_{\perp} = \frac{i}{\left(\omega/\nu\right)^{2} - k_{z}^{2}} \begin{bmatrix} k_{z} \nabla_{\perp} \hat{H}_{z} + \omega \varepsilon \hat{\mathbf{z}} \times \nabla_{\perp} \hat{E}_{z} \end{bmatrix}$$

Forward and Backward Waves

TM modes

$$\hat{E}_{z} = \hat{E}_{z,nm}(x,y) \Big(A_{+} \exp(ik_{z}z) + A_{-} \exp(-ik_{z}z) \Big) \qquad A_{+} = A_{-} A_{+} = A_{-} e^{-2ik_{z}L}$$

$$\hat{E}_{\perp} = \frac{ik_{z}\nabla_{\perp}\hat{E}_{z,nm}}{(\omega/\nu)^{2} - k_{z}^{2}} \Big(A_{+} \exp(ik_{z}z) - A_{-} \exp(-ik_{z}z) \Big) \qquad k_{z}L = p\pi, \quad p = 0, 1, 2, ...$$

TE modes

$$\hat{H}_{z} = H_{z,nm}(x,y) \Big(A_{+} \exp(ik_{z}z) + A_{-} \exp(-ik_{z}z) \Big) \qquad A_{+} = -A_{-} \quad A_{+} = -A_{-}e^{-2ik_{z}L}$$

$$\hat{E}_{\perp} = \frac{-i\omega\mu\hat{z} \times \nabla_{\perp}\hat{H}_{z,nm}}{(\omega/\nu)^{2} - k_{z}^{2}} \Big(A_{+} \exp(ik_{z}z) + A_{-} \exp(-ik_{z}z) \Big) \qquad k_{z}L = p\pi, \quad p = 1,2,...$$

Resonant Frequencies

$$TM Modes$$

$$E_{z} = \frac{1}{2} \left\{ \hat{E}_{n}(x_{\lambda}) \left[A_{+} e^{i(k_{n}z \cdot \omega t)} + A_{-} e^{-ik_{n}z \cdot \omega t} \right] + c.c. \right\}$$

$$E_{\lambda} = \frac{1}{2} \left\{ \frac{i F k_{n} \nabla_{\lambda} \hat{E}_{n}}{k_{c}^{2}} \left[A_{+} e^{i(k_{n}z \cdot \omega t)} - A_{-} e^{-ik_{n}z \cdot \omega t} \right] \right\}$$

$$a + g = 0 \qquad A_{+} - A_{-} = 0 \qquad A_{+} = A_{-}$$

$$a + g = A_{+} e^{ik_{n}L} = A_{-} e^{-ik_{n}L}$$

$$a + g = A_{+} e^{ik_{n}L} = A_{-} e^{-ik_{n}L}$$

$$a + g = A_{+} e^{ik_{n}L} = A_{-} e^{-ik_{n}L}$$

Cavity Losses

Weyl's Formula

How many moder	in a cavity of volume V
have when < w?	· · · · · · · · · · · · · · · · · · ·
Consider a cubic	cavity of side L V=L3
	Resonant Frequencies
	$\omega_n = \pi c \sqrt{n_x^2 + n_y^2 + n_z^2}$
······································	$\tilde{L} = (N X^{2} N^{2}, N^{2})$

Estimate of Number of Modes

How many combinations of integen them (nx, Ny, nz) have $n_{\chi}^{2} + n_{\chi}^{2} + n_{Z}^{2} - (\frac{\omega L}{\pi c})^{2} + \frac{kL}{\pi c}^{2} \qquad \omega_{n} = \pi c \sqrt{n_{\chi}^{2} + n_{\chi}^{2} + n_{Z}^{2}}$ E= (NX, NY, NZ) 12 Spherical Surface of radius (KL/F) EACH combination occupies a cube of Unit Volume

Volume Inside Spherical Surface

But wait 1 For each set of integers there are 2 polarizations $\frac{N(k) = \frac{1}{3} \frac{k^3 V}{\pi^2}$ For EM modes

Example

High Q cavity model $e^{-i\omega t} \rightarrow e^{j\omega t}$

Integrated photonics (Courtesy Edo Waks)

Klystron – Beam Driven HPM source

Klystron: invented in 1937 by the Varian brothers. One of the first Palo Alto High Tech. firms.

High Power Source of Microwaves

Radar, Particle Accelerators, (LHC 16 x 300 kW), etc

Russell Varian (1898– 1959). Photograph by Ansel Adams.

Sigurd Varian (1901– 1961) Photograph by Ansel Adams.

Velocity Modulation Ballistic Bunching

Examples

170 GHz CPI Gyrotron IEEE IVEC http://ieeexplore.ieee.org

Experimental high power set-up showing the CPI 218.4 GHz EIK driving the compact NRL Serpentine Waveguide (SWG) TWT.