Introduction

A consequence of the laws of Physics is that certain quantities are conserved once a closed system has been properly defined.

Some of these are:

Charge
Energy (and mass via $\mathrm{E}=\mathrm{mc}^{2}$)
Linear Momentum
Angular Momentum

Conservation Laws

Noether's Theorem

Conservation laws in physics are a direct consequence of symmetries in nature
Conservation of energy(mass) \rightarrow time invariance
Conservation of linear momentum \rightarrow translation invariance
Conservation of angular momentum \rightarrow rotation invariance
Conservation of electric charge \rightarrow gauge invariance (TBE)

Example: conservation of kinetic + potential energy
 $\frac{d}{d t} m \mathbf{v}=q[\mathbf{E}+\mathbf{v} \times \mathbf{B}]$
 Newton's law of motion (F=ma)

Quasi-Static Fields: $\mathbf{E}=-\nabla \Phi(\mathbf{x}, t)$
$\mathbf{v} \cdot \frac{d}{d t} m \mathbf{v}=\frac{d}{d t} \frac{m|\mathbf{v}|^{2}}{2}=q \mathbf{v} \cdot[\mathbf{E}+\mathbf{v} \times \mathbf{B}]=-q \mathbf{v} \cdot \nabla \Phi$

Rate of change of potential following a trajectory
$\frac{d}{d t} q \Phi(t, \mathbf{x}(t))=\frac{\partial}{\partial t} q \Phi+q \mathbf{v} \cdot \nabla \Phi$
$\frac{d}{d t}\left(\frac{m|\mathbf{v}|^{2}}{2}+q \Phi\right)=\frac{\partial}{\partial t} q \Phi \quad \begin{aligned} & \text { Kinetic }+ \text { Potential Energy is conserved } \\ & \text { only if potential is time independent }\end{aligned}$

Conservation of Linear Momentum

$\frac{d}{d t} m_{i} \mathbf{V}_{i}=q_{i} \mathbf{E}\left(\mathbf{x}_{i} t\right) \quad \mathbf{E}\left(\mathbf{x}_{i} t\right)=\sum_{j \neq 1} \frac{q_{j}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)}{\left.4 \pi \varepsilon_{0} \mid \mathbf{x}_{i}-\mathbf{x}_{j}\right]^{3}}$
$\frac{d}{d t} \sum_{i} m_{i} \mathbf{v}_{i}=\frac{d}{d t} \mathbf{P}=\sum_{i, j \neq i} \frac{q_{i} q_{j}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)}{4 \pi \varepsilon_{0}\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|^{3}}=0$
Momentum \mathbf{P} is constant, velocity of center of mass is constant
$\frac{d}{d t} \mathbf{X}_{c m}=\frac{d}{d t} \frac{\sum_{i} m_{i} \mathbf{X}_{i}}{\sum_{i} m_{i}}=\frac{\mathbf{P}}{M}=$ constant
If $P=0, X_{c m}$ can not change

System is symmetric wrt translation in 3 directions. Three constants of motion: 3 components of \mathbf{P}.

Conservation of Angular Momentum

$$
\begin{aligned}
& \frac{d}{d t} m_{i} \mathbf{v}_{i}=q_{i} \mathbf{E}\left(\mathbf{x}_{i}, t\right) \quad \mathbf{E}\left(\mathbf{x}_{i}, t\right)=\sum_{j \neq i} \frac{q_{j}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)}{\left.4 \pi \varepsilon_{0}\right|_{i}-\left.\mathbf{x}_{j}\right|^{3}} \\
& \frac{d}{d t} \mathbf{L}=\frac{d}{d t} \sum_{i} \mathbf{x}_{i} \times m_{i} \mathbf{v}_{i}=\sum_{i}\left(\frac{d \mathbf{x}_{i}}{d t} \times m_{i} \mathbf{v}_{i}+\mathbf{x}_{i} \times \frac{d}{d t} m_{i} \mathbf{v}_{i}\right) \\
& =\sum_{i, j \neq i} \mathbf{x}_{i} \times \frac{q_{i} q_{j}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)}{4 \pi \varepsilon_{0} \mathbf{x}_{i}-\left.\mathbf{x}_{j}\right|^{3}}=0
\end{aligned}
$$

System is symmetric wrt rotation in 3 directions. Three constants of motion: 3 components of \mathbf{L}.

Linked Quantities

What does a conservation

law for continuous systems look like?

$$
\begin{aligned}
& \frac{d Q}{d t}+\int_{S} d \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{J}}=0 \\
& Q=\int_{V} d^{3} r \rho(\mathbf{r}, t) \\
& \int_{S} d \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{J}}=\int_{V} d^{3} r \nabla \cdot \overrightarrow{\mathbf{J}}
\end{aligned}
$$

Conservation of Energy

$\frac{\partial}{\partial t}\left[u_{E}+u_{M}\right]+\nabla \cdot \overrightarrow{\mathbf{S}}=-\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{J}}$

Rate at which energy is transferred to current J

$$
u_{E}+u_{M}=\frac{\varepsilon_{0}}{2} \mathbf{E} \cdot \mathbf{E}+\frac{1}{2 \mu_{0}} \mathbf{B} \cdot \mathbf{B} \quad \text { Energy density in fields }
$$

$\mathbf{S}=\mathbf{E} \times \mathbf{H}$: Poynting vector

Flow of local energy density

Conservation of energy

$$
\begin{gathered}
\nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \quad \nabla \times \overrightarrow{\mathbf{B}}=\mu_{0}\left[\overrightarrow{\mathbf{J}}+\varepsilon_{0} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}\right] \\
\frac{\overrightarrow{\mathbf{B}}}{\mu_{0}} \cdot \nabla \times \mathbf{E}=-\frac{\overrightarrow{\mathbf{B}}}{\mu_{0}} \cdot \frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \quad \mathbf{E} \cdot \nabla \times \frac{\overrightarrow{\mathbf{B}}}{\mu_{0}}=\left[\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{J}} \cdot+\varepsilon_{0} \overrightarrow{\mathbf{E}} \cdot \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}\right] \\
\varepsilon_{0} \overrightarrow{\mathbf{E}} \cdot \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}+\frac{\overrightarrow{\mathbf{B}}}{\mu_{0}} \cdot \frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}+\frac{\overrightarrow{\mathbf{B}}}{\mu_{0}} \cdot \nabla \times \mathbf{E}-\mathbf{E} \cdot \nabla \times \frac{\overrightarrow{\mathbf{B}}}{\mu_{0}}=-\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{J}} \\
\vdots \downarrow \\
\frac{\partial}{\partial t}\left(\frac{\varepsilon_{0}|\overrightarrow{\mathbf{E}}|^{2}}{2}+\frac{|\overrightarrow{\mathbf{B}}|^{2}}{2 \mu_{0}}\right)+\nabla \cdot\left(\mathbf{E} \times \frac{\overrightarrow{\mathbf{B}}}{\mu_{0}}\right)=-\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{J}}
\end{gathered}
$$

Poynting's Theorem

$$
\frac{\partial}{\partial t}\left(\frac{\varepsilon_{0}|\mathbf{E}|^{2}}{2}+\frac{\mu_{0}|\mathbf{H}|^{2}}{2}\right)+\nabla \cdot(\mathbf{E} \times \mathbf{H})=-\mathbf{E} \cdot \mathbf{J}
$$

Energy density

$$
\left(\frac{\varepsilon_{0}|\mathbf{E}|^{2}}{2}+\frac{\mu_{0}|\mathbf{H}|^{2}}{2}\right)
$$

Power Flux
$\mathbf{S}=(\mathbf{E} \times \mathbf{H})$

Watts/m²

Rate of work done by E on J
$\mathbf{E} \cdot \mathbf{J}$

Watts/m ${ }^{3}$

Poynting Example

d
$\longrightarrow a$

$$
\begin{aligned}
& E_{z}=J_{z} / \sigma=I /\left(\pi a^{2} \sigma\right) \\
& S_{r}=-E_{z} H_{\theta} \quad \overrightarrow{\mathbf{S}}=(\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{H}})
\end{aligned}
$$

$$
\begin{array}{ll}
H_{\theta}=\frac{I}{2 \pi a} & \begin{array}{l}
S_{r}=-E_{z} H_{\theta} \\
=-I^{2} /\left(2 \pi^{2} a^{3} \sigma\right)
\end{array}
\end{array}
$$

Area of side
Power in: $\quad P=2 \pi a d\left|S_{r}\right|=$

$$
=I^{2} /\left(\pi a^{2} \sigma\right)=R I^{2}
$$

Resistance

Only divergence of Poynting flux matters

Find S:
What direction?
What does it mean?

Poynting's theorem addresses EM energy, what about mechanical energy?

$$
\frac{\partial}{\partial t}\left(\frac{\varepsilon_{0}|\mathbf{E}|^{2}}{2}+\frac{\mu_{0}|\mathbf{H}|^{2}}{2}\right)+\nabla \cdot(\mathbf{E} \times \mathbf{H})=-\mathbf{E} \cdot \mathbf{J}
$$

Rate of work done by E on J

$$
\begin{aligned}
& \text { Newton's Law ma=F } m \frac{d}{d t} \mathbf{v}_{i}=q\left[\mathbf{E}+\mathbf{v}_{i} \times \mathbf{B}\right] \\
& m \sum_{i} \mathbf{v}_{i} \cdot \frac{d}{d t} \mathbf{v}_{i}=\sum_{i} \mathbf{v}_{i} \cdot q\left[\mathbf{E}+\mathbf{v}_{i} \times \mathbf{B}\right]=\sum_{i} \mathbf{v}_{i} \cdot q \mathbf{E}=\int_{V} d^{3} r \mathbf{v}_{i} \cdot q \mathbf{E} \\
& \sum_{i} \frac{d}{d t} \frac{m\left|\mathbf{v}_{i}\right|^{2}}{2}=\int_{V} d^{3} r \mathbf{v}_{i} \cdot q \mathbf{E}=\int_{V} d^{3} r \mathbf{J} \cdot \mathbf{E}
\end{aligned}
$$

Combining EM and Mechanical Energy

$$
\frac{d}{d t}\left\{\int_{V} d^{3} r\left(\frac{\varepsilon_{0}|\mathbf{E}|^{2}}{2}+\frac{\mu_{0}|\mathbf{H}|^{2}}{2}\right)+\sum_{i} \frac{m\left|\mathbf{v}_{i}\right|^{2}}{2}\right\}+\int_{S} d \mathbf{A} \cdot(\mathbf{E} \times \mathbf{H})=0
$$

EM + Mechanical Energy

Conservation of EM Momentum

The total EM force on charges in a volume can be written as

$$
\frac{d \mathbf{P}_{\text {mech }}}{d t}=\sum_{i} q\left(\mathbf{E}\left(\mathbf{x}_{i}\right)+\mathbf{v}_{i} \times \mathbf{B}\left(\mathbf{x}_{i}\right)\right)=\int_{V}(\rho \mathbf{E}+\mathbf{J} \times \mathbf{B}) d^{3} r
$$

After some Math $\frac{d \mathbf{P}_{\text {mech }}}{d t}+\frac{d \mathbf{P}_{E M}}{d t}=\oint_{A} \overline{\overline{\mathbf{T}}} \cdot \hat{\mathbf{n}} d a$
Total EM linear momentum: $\mathbf{P}_{E M}=\varepsilon_{0} \mu_{0} \int_{V} \mathbf{E} \times \mathbf{H} d^{3} r$
EM linear momentum density: $\varepsilon_{0} \mu_{0} \mathbf{E} \times \mathbf{H}=\mathbf{S} / c^{2}$
Poynting vector: $\mathbf{S}=\mathbf{E} \times \mathbf{H}, \quad \mu_{0} \varepsilon_{0}=1 / c^{2}$
Maxwell Stress Tensor: $\overline{\overline{\mathbf{T}}}=\varepsilon_{0} \mathbf{E} \mathbf{E}+\frac{1}{\mu_{0}} \mathbf{B B}-\frac{1}{2}\left(\varepsilon_{0} \mathbf{E} \cdot \mathbf{E}+\frac{1}{\mu_{0}} \mathbf{B} \cdot \mathbf{B}\right) \overline{\overline{\mathbf{I}}}$

Force on what's inside

Maxwell Stress Tensor: $\overline{\overline{\mathbf{T}}}=\varepsilon_{0} \mathbf{E E}+\frac{1}{\mu_{0}} \mathbf{B B}-\frac{1}{2}\left(\varepsilon_{0} \mathbf{E} \cdot \mathbf{E}+\frac{1}{\mu_{0}} \mathbf{B} \cdot \mathbf{B}\right) \overline{\overline{\mathbf{I}}}$

Viscous Fluid Stress

Eneroy and Nonénentum

$\left(\frac{\varepsilon_{0}|\mathbf{E}|^{2}}{2}+\frac{\mu_{0}|\mathbf{H}|^{2}}{2}\right)$
Energy density
Units: Joules $/ \mathrm{m}^{3}$

$$
\overrightarrow{\mathbf{S}}=(\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{H}})
$$

Power Flux

$$
\text { Watts } / \mathrm{m}^{2}
$$

Power Flux = c Energy Density

Pulse also contains momentum
EM linear momentum density: $\varepsilon_{0} \mu_{0} \mathbf{E} \times \mathbf{H}=\mathbf{S} / c^{2}$

$$
\frac{\text { Energy Density }}{\text { Momentum Density }}=\frac{S / c}{S / c^{2}}=c
$$

A pulse of light carries energy and momentum: ratio $=\mathrm{c}$

Mass Energy Equivalence $\mathrm{E}=\mathrm{mc}^{2}$

Isolated box of mass M and length L in space. A light on the wall on one side sends out a pulse of energy E toward the right.
The pulse has momentum $\mathrm{p}=\mathrm{E} / \mathrm{c}$.
The box recoils with velocity $v=p / M$ to the left.
The pulse is absorbed on the other side after a time $\mathrm{T}=\mathrm{L} / \mathrm{c}$.
The box absorbs the momentum and stops moving.
Displacement of the box $\quad \Delta x=v T=\frac{E L}{M c^{2}}$
Has the center of mass moved?
We would like to say no.
The box should not be able to move its center of mass.

$$
\Delta x M=L\left(E / c^{2}\right)=L m
$$

We can say that the CM has not moved if the pulse reduced the mass of the left side by $\mathrm{m}=\mathrm{E} / \mathrm{c}^{2}$ and increased the right side by the same
$E=m c^{2}$
amount.

Stress Tensor

$$
\overline{\overline{\mathbf{T}}}=\varepsilon_{0} \mathbf{E E}+\frac{1}{\mu_{0}} \mathbf{B B}-\frac{1}{2}\left(\varepsilon_{0} \mathbf{E} \cdot \mathbf{E}+\frac{1}{\mu_{0}} \mathbf{B} \cdot \mathbf{B}\right) \overline{\overline{\mathbf{I}}}
$$

Force transmitted through surface

$$
\mathbf{F}=\oint_{A} \overline{\overline{\mathbf{T}}} \cdot \hat{\mathbf{n}} d a
$$

The component normal to the surface is like a pressure force
$\mathbf{n} \cdot \overline{\overline{\mathbf{T}}} \cdot \mathbf{n}=-p$

$$
\mathbf{n} \cdot \overline{\overline{\mathbf{T}}} \cdot \mathbf{n}=\varepsilon_{0}\left[\frac{1}{2}(\mathbf{n} \cdot \mathbf{E})^{2}-\frac{1}{2}\left|\mathbf{E}_{t}\right|^{2}\right]+\frac{1}{\mu_{0}}\left[\frac{1}{2}(\mathbf{n} \cdot \mathbf{B})^{2}-\frac{1}{2}\left|\mathbf{B}_{t}\right|^{2}\right]
$$

Remember BC's
E_{t} and B_{n} are continuous

Normal E pulls on surface Tangential B pushes

Surface of conductor
$\mathbf{n} \cdot \overline{\overline{\mathbf{T}}} \cdot \mathbf{n}=\varepsilon_{0}\left[\frac{1}{2}(\mathbf{n} \cdot \mathbf{E})^{2}\right]+\frac{1}{\mu_{0}}\left[-\frac{1}{2}\left|\mathbf{B}_{t}\right|^{2}\right]$

Forces on Conductor

Force of attraction between capacitor plates

$$
\begin{aligned}
& \text { Area }=A \\
& \mathbf{F}=\oint_{A} \overline{\overline{\mathbf{T}}} \cdot \hat{\mathbf{n}} d a \\
& \mathbf{n} \cdot \overline{\overline{\mathbf{T}}} \cdot \mathbf{n}=\varepsilon_{0}\left[\frac{1}{2}(\mathbf{n} \cdot \mathbf{E})^{2}\right]=\frac{1}{2} \frac{Q^{2}}{A^{2} \varepsilon_{0}} \\
& \sigma=\mathrm{Q} / \mathrm{A} \\
& F=\frac{1}{2} \frac{Q^{2}}{A \varepsilon_{0}}
\end{aligned}
$$

How much work must be done to separate plates a distance h?

$$
\text { Work }=h F=\frac{h}{2} \frac{Q^{2}}{A \varepsilon_{0}}=\frac{1}{2} \frac{Q^{2}}{C}
$$

What is the force on the windings of a coil?

Maxwell's Equations in Matter

Basic Equations (Vacuum)

$$
\begin{array}{l|c}
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=Q / \varepsilon_{0} & \nabla \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\varepsilon_{0}} \\
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0 & \nabla \cdot \overrightarrow{\mathbf{B}}=0 \\
\oint_{\text {Loop }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{l}}=-\int_{S} d \overrightarrow{\mathbf{A}} \cdot \frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} & \nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \\
\oint_{\text {Loop }} \overrightarrow{\mathbf{B}}(\overrightarrow{\mathbf{r}}) \cdot d \overrightarrow{\mathbf{l}}=\mu_{0} \int_{S} d \overrightarrow{\mathbf{A}} \cdot\left[\overrightarrow{\mathbf{J}}+\varepsilon_{0} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}\right] & \nabla \times \overrightarrow{\mathbf{B}}=\mu_{0}\left[\overrightarrow{\mathbf{J}}+\varepsilon_{0} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}\right]
\end{array}
$$

Here ρ and J are the total charge and current densities
Includes charge and current densities induced in dielectric and magnetic materials

Separate charge and current densities into "free" and "induced" components

Somewhat arbitrary but very useful

 magnetization current$$
\mathbf{J}=\mathbf{J}_{f}+\mathbf{J}_{m}+\mathbf{J}_{p} \curvearrowleft \text { polarization current }
$$

"Free" current

$$
\mathbf{J}_{m}=\nabla \times \mathbf{M}
$$

Maxwell's Equations in Matter

Equations in linear media

$$
\begin{array}{cc}
\mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}=\varepsilon \mathbf{E} & \mathbf{B}=\mu_{0} \mathbf{H}+\mathbf{M}=\mu \mathbf{H} \\
\mathbf{P}=\varepsilon_{0} \chi_{E} \mathbf{E} & \mathbf{M}=\mu_{0} \chi_{M} \mathbf{H}
\end{array}
$$

$\oint \overrightarrow{\mathbf{D}} \cdot d \overrightarrow{\mathbf{A}}=Q_{\text {free }}$
$\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0$
$\oint_{\text {loo }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{l}}=-\int_{S} d \overrightarrow{\mathbf{A}} \cdot \frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}$
$\oint_{\text {Loop }} \overrightarrow{\mathbf{H}}(\overrightarrow{\mathbf{r}}) \cdot d \overrightarrow{\mathbf{l}}=\int_{s} d \overrightarrow{\mathbf{A}} \cdot\left[\overrightarrow{\mathbf{J}}_{\text {fre }}+\frac{\partial \overrightarrow{\mathbf{D}}}{\partial t}\right]$

$$
\begin{gathered}
\nabla \cdot \overrightarrow{\mathbf{D}}=\rho_{\text {free }} \\
\nabla \cdot \overrightarrow{\mathbf{B}}=0 \\
\nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \\
\nabla \times \overrightarrow{\mathbf{H}}=\overrightarrow{\mathbf{J}}_{\text {free }}+\frac{\partial \overrightarrow{\mathbf{D}}}{\partial t}
\end{gathered}
$$

Energy Density in a Linear Medium

Field Energy

$$
\begin{array}{lcc}
\begin{array}{c}
\text { Energy density } \\
\left.\begin{array}{c}
\varepsilon_{0}|\overrightarrow{\mathbf{E}}|^{2} \\
2
\end{array}+\frac{|\overrightarrow{\mathbf{B}}|^{2}}{2 \mu_{0}}\right) \quad \overrightarrow{\mathbf{S}}=(\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{H}}) \quad
\end{array} \begin{array}{c}
\text { Rate of work done Flux } \\
\text { by E on J } \\
\mathbf{E} \cdot \overrightarrow{\mathbf{J}}
\end{array} \\
\overrightarrow{\mathbf{B}}=\mu \overrightarrow{\mathbf{H}} \quad \overrightarrow{\mathbf{D}}=\varepsilon \overrightarrow{\mathbf{E}} \\
\text { Energy density } & \text { Power Flux } & \begin{array}{l}
\text { Rate of work done } \\
\text { by E on J }
\end{array} \\
\left(\begin{array}{l}
\left.\frac{\varepsilon|\overrightarrow{\mathbf{E}}|^{2}}{2}+\frac{\mu|\overrightarrow{\mathbf{H}}|^{2}}{2}\right) \\
\overrightarrow{\mathbf{S}}=(\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{H}})
\end{array} \quad \overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{J}}\right.
\end{array}
$$

$$
\frac{\partial}{\partial \omega}\left(\frac{\omega \varepsilon|\overrightarrow{\mathbf{E}}|^{2}}{2}+\frac{\omega \mu|\overrightarrow{\mathbf{H}}|^{2}}{2}\right)
$$

