ENEE681

Lecture 2 Displacement Current Fields in Matter Boundary Conditions

Maxwell's Displacement Current

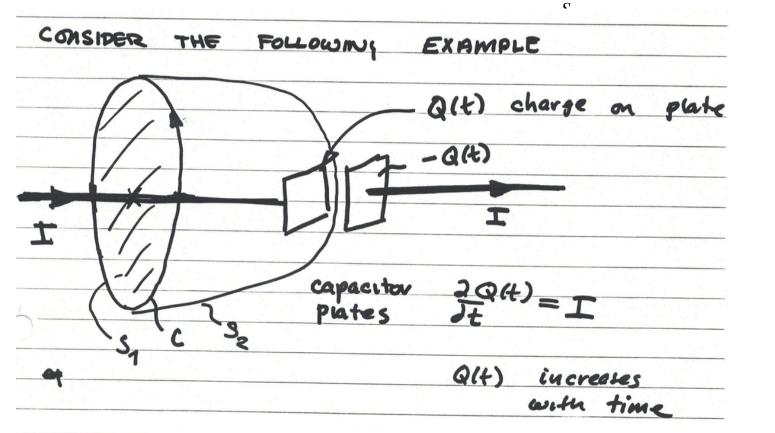
It is not really a current. It just acts like one.

Maxwell determined the static Ampere's Law could not be correct. Inconsistent with charge conservation

$$\oint_{Loop} \vec{\mathbf{B}}(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{l}} = \mu_0 \int d\vec{\mathbf{A}} \cdot \vec{\mathbf{J}} = \mu_0 \vec{\mathbf{A}}$$

 $\int d\vec{\mathbf{A}} \cdot \vec{\mathbf{J}} = I$

 $\int d\vec{\mathbf{A}} \cdot \vec{\mathbf{J}} = 0$



Remember for Faraday's Law Any surface with the same perimeter gave the correct answer.

$$\oint_{loop} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = -\int_{S} d\vec{\mathbf{A}} \cdot \frac{\partial \vec{\mathbf{B}}}{\partial t}$$

 $\vec{\mathbf{B}}$.

 S_1+S_2

From Gauss' Law
$$\int_{S_1+S_2} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$$

Sz

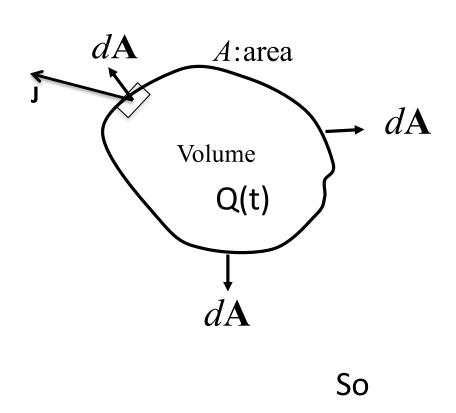
de

$$d\vec{\mathbf{S}}_{1} = d\vec{\mathbf{S}}$$

$$d\vec{\mathbf{S}}_{2} = -d\vec{\mathbf{S}}$$

$$\int_{S_{1}+S_{2}} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} = 0 \Rightarrow \int_{S_{1}} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}}_{1} = \int_{S_{2}} \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}}_{2}$$

Conservation of Charge

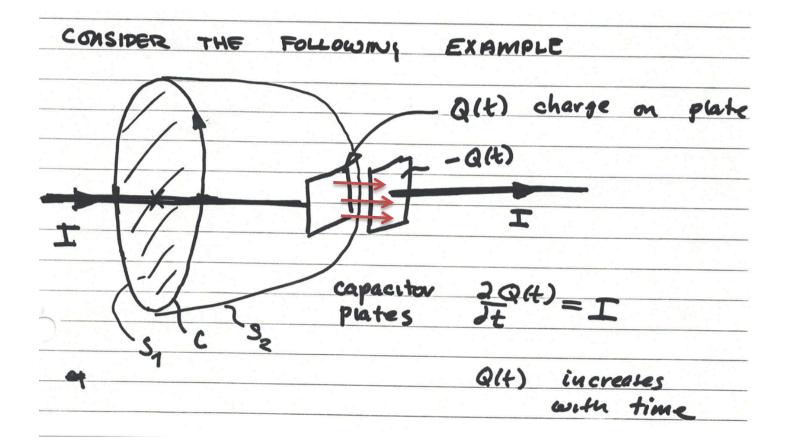


$$\int_{S} d\vec{\mathbf{A}} \cdot \vec{\mathbf{J}} + \frac{dQ}{dt} = 0$$

But

$$\oint_{S} \varepsilon_{0} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = Q$$

 $\int_{S} d\vec{\mathbf{A}} \cdot \left(\vec{\mathbf{J}} + \varepsilon_0 \frac{\partial}{\partial t} \vec{\mathbf{E}}\right) = 0$



$$\int_{S} d\vec{\mathbf{A}} \cdot \left(\vec{\mathbf{J}} + \boldsymbol{\varepsilon}_{0} \frac{\partial}{\partial t} \vec{\mathbf{E}}\right) = 0$$

Faraday: time varying B makes an E

$$\oint_{loop} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} == -\frac{d}{dt} \int_{\mathbf{S}} \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}}$$

example
$$E_{\theta}(r) = -\frac{r}{2} \frac{\partial B_z}{\partial t}$$

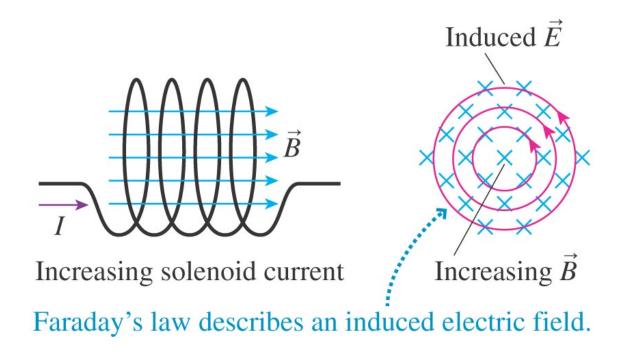
Ampere-Maxwell: time varying E makes a B

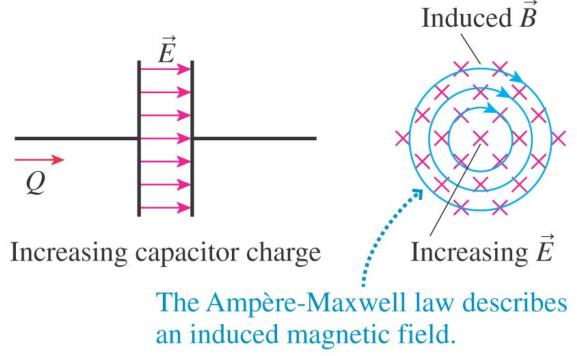
$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \mu_0 \varepsilon_0 \frac{d}{dt} \int_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

example

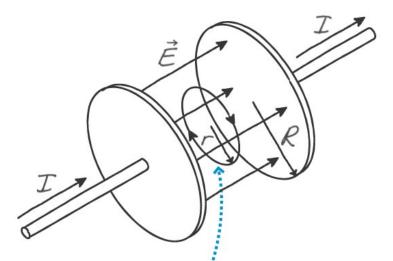
$$B_{\theta}(r) = \frac{\mu_0 \varepsilon_0 r}{2} \frac{\partial E_z}{\partial t}$$

Put together, fields can sustain themselves - Electromagnetic Waves





Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.



$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = B_{\theta}(r) 2\pi r$$
$$\Phi_{e} = \int_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \pi r^{2} E_{z}$$

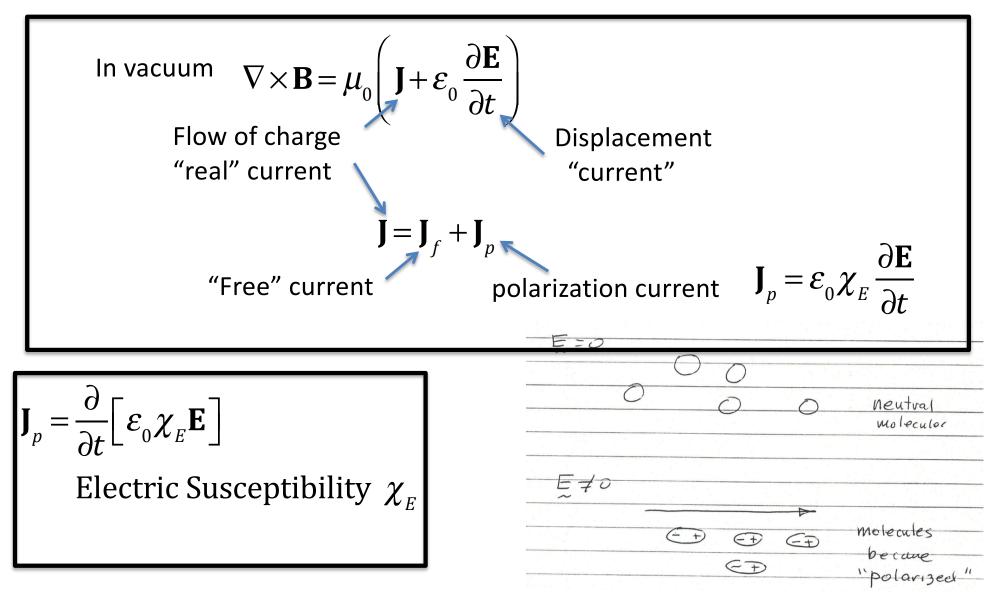
$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \mu_0 (I + \varepsilon_0 \frac{d\Phi_e}{dt})$$

The magnetic field line is a circle concentric with the capacitor. The electric flux through this circle is $\pi r^2 E$.

$$B_{\theta}(r) = \frac{\mu_0 \varepsilon_0 r}{2} \frac{\partial E_z}{\partial t}$$

Recall from Faraday:
$$E_{\theta}(r) = -\frac{r}{2} \frac{\partial B_z}{\partial t}$$

Conduction current, Displacement current, Polarization current



Dielectric Terminology

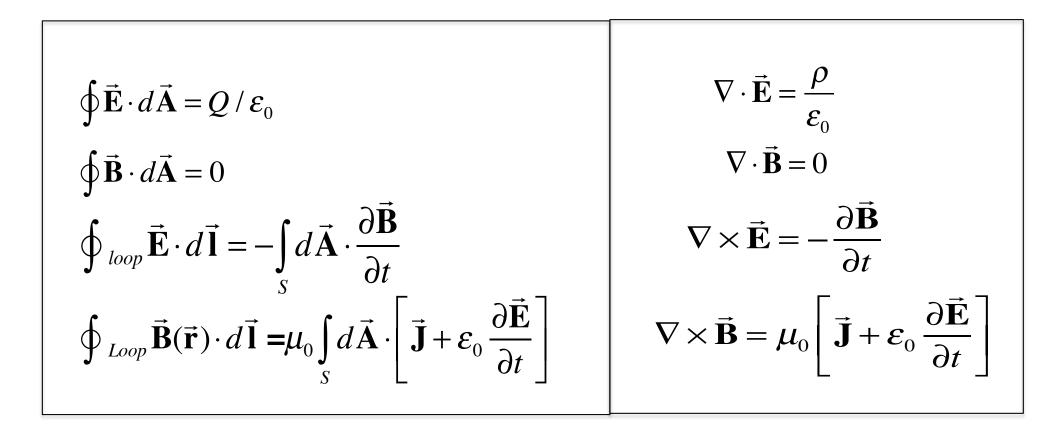
$$\nabla \times \frac{\mathbf{B}}{\mu_0} = \mathbf{J}_f + \frac{\partial}{\partial t} \Big[\varepsilon_0 \Big(1 + \chi_E \Big) \mathbf{E} \Big]$$
$$\nabla \times \frac{\mathbf{B}}{\mu_0} = \mathbf{J}_f + \frac{\partial}{\partial t} \mathbf{D}$$
$$\mathbf{D} = \varepsilon_0 \Big(1 + \chi_E \Big) \mathbf{E} = \varepsilon \mathbf{E}$$

D Electric flux density

$$\varepsilon = \varepsilon_0 (1 + \chi_E)$$
 Dielectric contant

 $(1 + \chi_E)$ Relative Dielectric constant

Maxwell's Equations in Vacuum

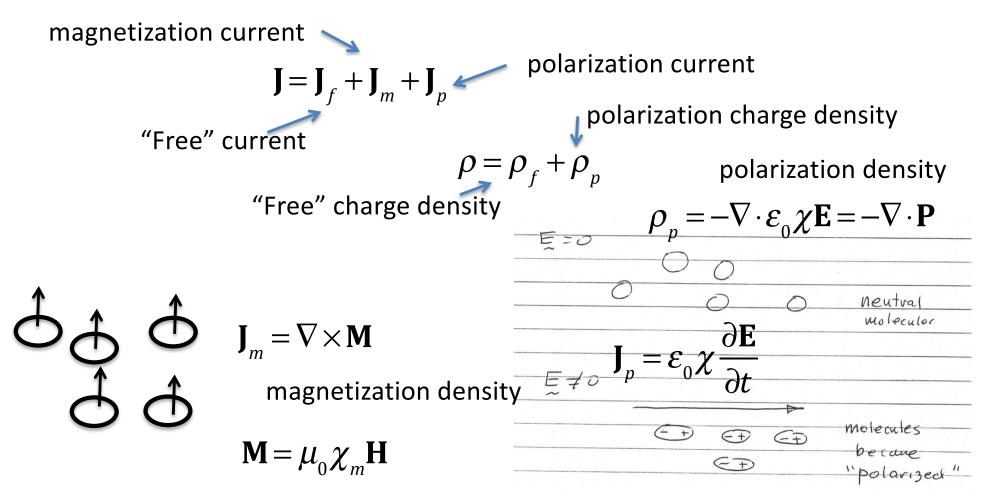


Here ho and J are the <u>total charge and current densities</u>

Includes charge and current densities induced in dielectric and magnetic materials

Separate charge and current densities into "free" and "induced" components

Somewhat arbitrary but very useful



Maxwell's Equations in Matter

Equations in linear media

 $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon \mathbf{E}$ $\mathbf{B} = \boldsymbol{\mu}_0 \mathbf{H} + \mathbf{M} = \boldsymbol{\mu} \mathbf{H}$ $\mathbf{P} = \varepsilon_0 \chi_E \mathbf{E}$ $\mathbf{M} = \boldsymbol{\mu}_{0} \boldsymbol{\chi}_{M} \mathbf{H}$ $\oint \vec{\mathbf{D}} \cdot d\vec{\mathbf{A}} = Q_{free}$ $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$ $\nabla \cdot \vec{\mathbf{D}} = \rho_{free}$ $\nabla \cdot \vec{\mathbf{B}} = 0$ $\oint_{loop} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = -\int_{S} d\vec{\mathbf{A}} \cdot \frac{\partial \vec{\mathbf{B}}}{\partial t}$ $\oint_{Loop} \vec{\mathbf{H}}(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{l}} = \int_{S} d\vec{\mathbf{A}} \cdot \left[\vec{\mathbf{J}}_{free} + \frac{\partial \vec{\mathbf{D}}}{\partial t}\right]$ $\nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial \vec{\mathbf{B}}}$ $\nabla \times \vec{\mathbf{H}} = \vec{\mathbf{J}}_{free} + \frac{\partial \vec{\mathbf{D}}}{\partial t}$

Maxwell's Equations in Matter

$$\nabla \cdot \mathbf{D} = \rho_{f} \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{H} = \mathbf{J}_{f} + \frac{\partial \mathbf{D}}{\partial t}$$
(linear and isotropic matter)

$$\mathbf{H} = \frac{1}{\mu_{0}} \mathbf{B} - \mathbf{M} = \frac{1}{\mu} \mathbf{B}, \quad \mathbf{J}_{b} = \nabla \times \mathbf{M}$$

$$\mathbf{D} = \varepsilon_{0} \mathbf{E} + \mathbf{P} = \varepsilon \mathbf{E}, \quad \rho_{b} = -\nabla \cdot \mathbf{P}$$

$$\mathbf{M} = \chi_{m} \mathbf{H}: \text{ Magnetization field} \qquad \mathbf{P} = \varepsilon_{0} \chi_{e} \mathbf{E}: \text{ Polarzation field}$$

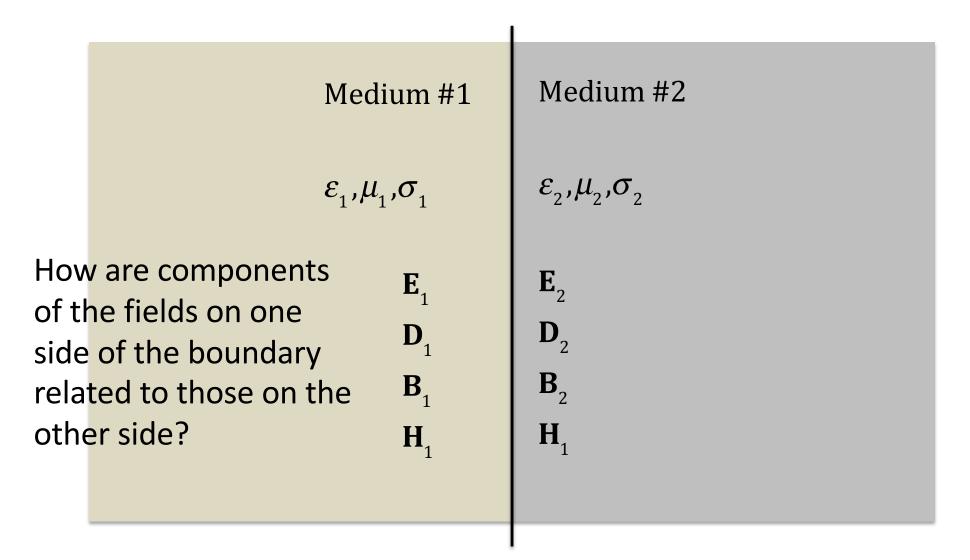
$$\mu = \mu_{0}(1 + \chi_{m}): \text{ permeability} \qquad \varepsilon_{r} = 1 + \chi_{e} \quad :\text{ relative permittivity}$$

$$\chi_{m}: \text{ magnetic susceptibility} \qquad \chi_{e}: \text{ electric suscepibility}$$

In a good conductor – Ohms' Law (point version)

$$\mathbf{J}_{f} = \mathbf{\sigma} \Big(\mathbf{E} + \mathbf{v} \times \mathbf{B} \Big)$$

Boundary Conditions



General Comments

Tangential components of **E** are always equal.

Normal components of **B** are always equal.

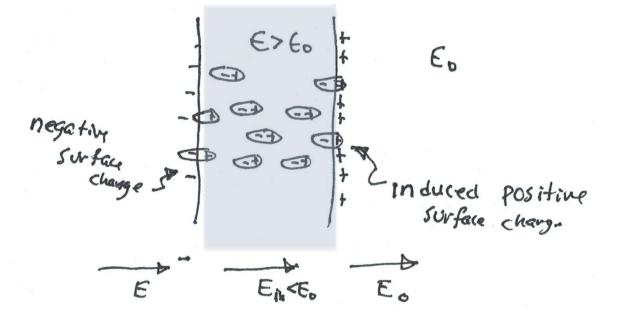
Normal component of **E** discontinuous implies a **surface charge density.**

Normal components of **D** discontinuous implies a **free** surface charge density

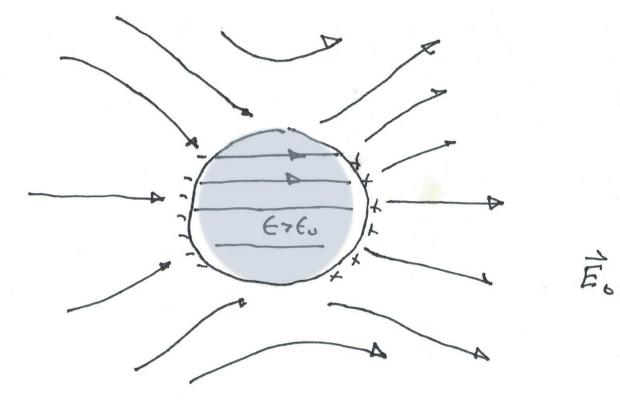
Tangential components of **B** discontinuous implies a **surface current density.**

Tangential components of **H** discontinuous implies a **free** surface current density.

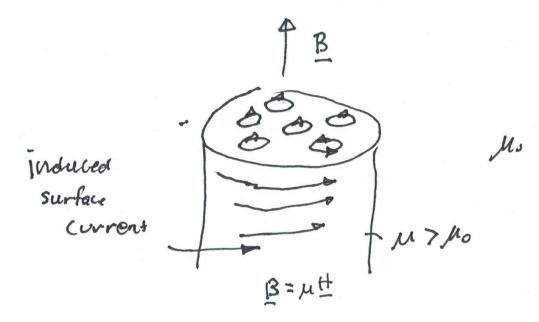
Induced surface charge density



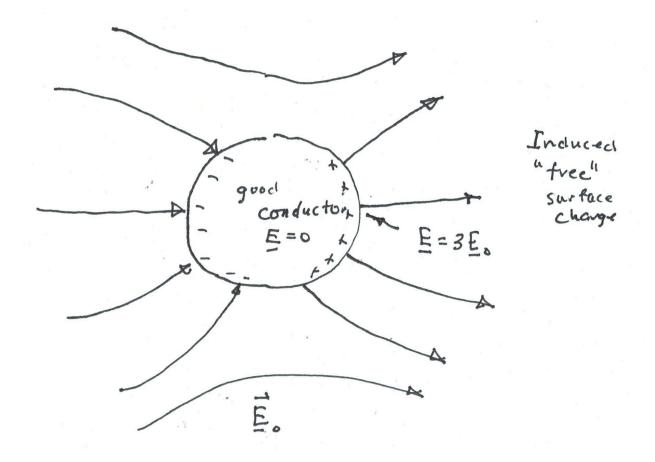
Dielectric Sphere



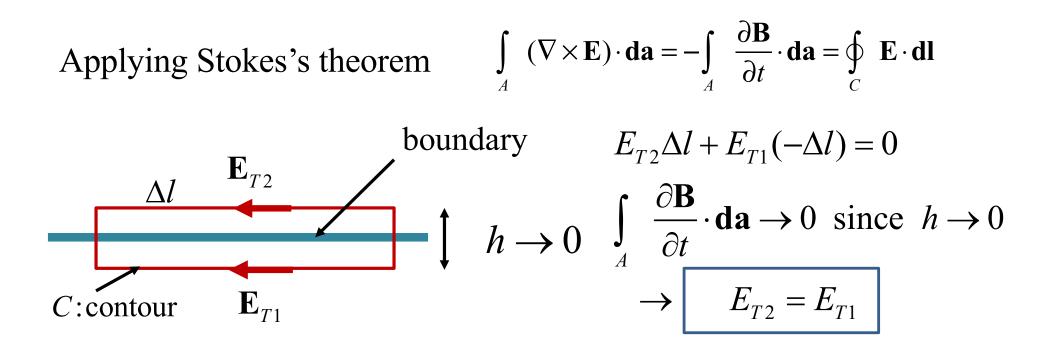
Magnetized Rod



Conducting Sphere



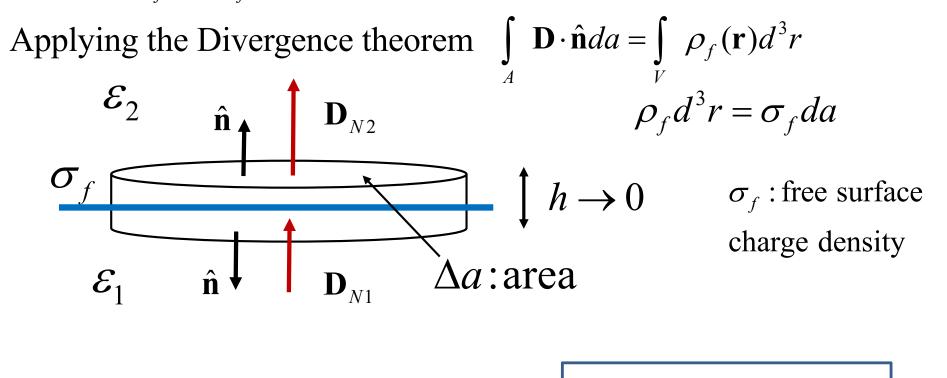
Tangential Component of E Boundary Conditions



 The tangential component of electric field E is continuous across a boundary

Normal Component of **D**

Consider the electric flux field: $\mathbf{D} = \varepsilon \mathbf{E} = \varepsilon_0 (1 + \chi_e) \mathbf{E}$ (linear/isotropic matter) $\nabla \cdot \mathbf{D} = \rho_f \qquad \rho_f$ = free charge density



$$(\mathbf{D}_{N2} - \mathbf{D}_{N1}) \cdot \hat{\mathbf{n}} \Delta a = Q_f = \sigma_f \Delta a \quad \rightarrow \quad \varepsilon_2 E_{N2} - \varepsilon_1 E_{N1} = \sigma_f$$

• The normal component of the electric flux field D is discontinuous by the free surface charge density

Normal E?

 $\nabla \cdot \varepsilon_0 \mathbf{E} = \rho_t$, ρ_t = total charge density Applying the Divergence theorem $\int_{A} \varepsilon_0 \mathbf{E} \cdot \hat{\mathbf{n}} da = \int_{V} \rho_t(\mathbf{r}) d^3 r$ $\varepsilon_2 \qquad \hat{\mathbf{n}} \quad \mathbf{E}_{N2} \qquad \rho_t d^3 r = \sigma_t da$ \mathbf{E}_{N2} $[h \to 0 \quad \sigma_t: \text{total surface}$ charge density Δa :area ĥ $\mathbf{E}_{N^{\dagger}}$ $\varepsilon_0(\mathbf{E}_{N2} - \mathbf{E}_{N1}) \cdot \hat{\mathbf{n}} \Delta a = Q_t = \sigma_t \Delta a \quad \rightarrow \left| \begin{array}{c} \varepsilon_0 E_{N2} - \varepsilon_0 E_{N1} = \sigma_t \end{array} \right|$

The normal component of the electric field E is discontinuous by the total surface charge density/ E₀

Tangential Component of H

Magnetic field: $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t} \quad \mathbf{D} = \varepsilon \mathbf{E}$ (linear/isotropic matter) $\mathbf{H} = \mathbf{B}/\mu$ (linear/isotropic matter and nonferromagnetic) $\oint_{C} \mathbf{H} \cdot \mathbf{dl} = \int_{A} \mathbf{J}_{f} \cdot \mathbf{da} + \int_{A} \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{da}$ Applying Stokes's theorem $\int_{A} \mathbf{J}_{f} \cdot \mathbf{d} \mathbf{a} \rightarrow \mathbf{J}_{f} \Delta l h \rightarrow \mathbf{K}_{f} \Delta l$ boundary *C*:contour ĥ as $h \to 0$ $h \to 0$ $\int \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{da} \to 0$ since $h \to 0$ \mathbf{H}_{T2} \mathbf{H}_{T1} \mathbf{K}_{f} $\mathbf{H}_{T2}\Delta l + \mathbf{H}_{T1}(-\Delta l) = \Delta l \mathbf{K}_{f} \times \hat{\mathbf{n}}$ free surface $\mathbf{H}_{T2} - \mathbf{H}_{T1} = \mathbf{K}_{f} \times \hat{\mathbf{n}}$ current density **n** : outward normal to the surface boundary

• The tangential component of magnetic field H is discontinuous by the free surface current

Tangential B

$$\mathbf{H}_{T2} - \mathbf{H}_{T1} = \mathbf{K}_f \times \hat{\mathbf{n}}$$
$$\mathbf{B}_{T2} - \mathbf{B}_{T1} = \mu_0 \mathbf{K}_t \times \hat{\mathbf{n}}$$

• The tangential component of magnetic flux density B is discontinuous by the total surface current $\times \mu_0$

Normal Component of **B**

 $\nabla \cdot \mathbf{B} = 0$ Magnetic flux density : **B**

$$\hat{\mathbf{n}} + \mathbf{B}_{N2} \quad \Delta a : \text{area} \qquad \oint_{A} \mathbf{B} \cdot \hat{\mathbf{n}} da = 0$$

$$\hat{\mathbf{n}} + \mathbf{B}_{N1} \quad h \to 0$$

$$(\mathbf{B}_{N2} - \mathbf{B}_{N1}) \cdot \hat{\mathbf{n}} \Delta a = 0 \quad \to \quad \mathbf{B}_{N2} = \mathbf{B}_{N1}$$

Normal compontent of \mathbf{H} $\nabla \cdot \mathbf{H} = -\nabla \cdot \mathbf{M}$

$$\rightarrow \qquad H_{N2} - H_{N1} = -(M_{N2} - M_{N1})$$

• The normal component of the magnetic flux field B is continuous across boundary

Boundary Condition Summary

Tangential Components

$$\mathbf{E}_{T2} = \mathbf{E}_{T1} \qquad \mathbf{H}_{T2} - \mathbf{H}_{T1} = \mathbf{K}_{f} \times \hat{\mathbf{n}} \qquad \mathbf{B}_{T2} - \mathbf{B}_{T1} = \boldsymbol{\mu}_{0} \mathbf{K}_{t} \times \hat{\mathbf{n}}$$

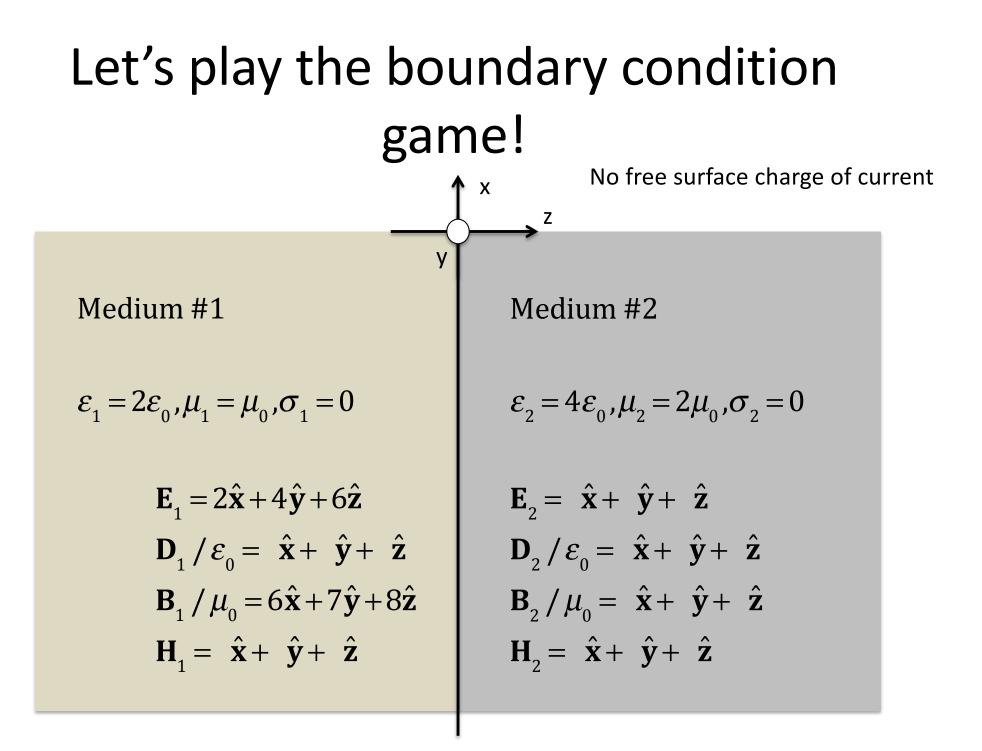
Normal Components

$$(\mathbf{D}_{N2} - \mathbf{D}_{N1}) \cdot \hat{\mathbf{n}} \Delta a = Q_f = \sigma_f \Delta a \quad \rightarrow \qquad \varepsilon_2 E_{N2} - \varepsilon_1 E_{N1} = \sigma_f$$

$$\varepsilon_0 (\mathbf{E}_{N2} - \mathbf{E}_{N1}) \cdot \hat{\mathbf{n}} \Delta a = Q_t = \sigma_t \Delta a \quad \rightarrow \qquad \varepsilon_0 E_{N2} - \varepsilon_0 E_{N1} = \sigma_t$$

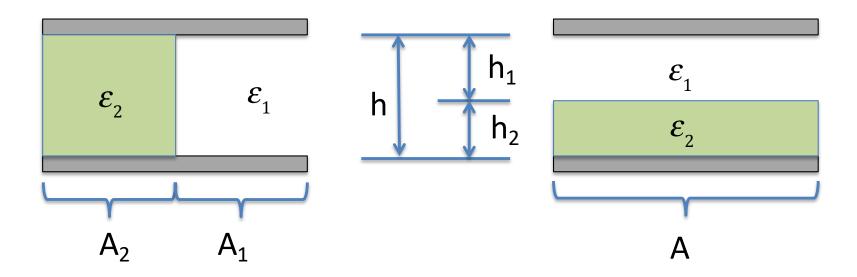
$$(\mathbf{B}_{N2} - \mathbf{B}_{N1}) \cdot \hat{\mathbf{n}} \Delta a = 0 \quad \rightarrow \qquad \mathbf{B}_{N2} = \mathbf{B}_{N1}$$

$$H_{N2} - H_{N1} = -(M_{N2} - M_{N1})$$



Boundary Conditions in a Capacitor

V, Q

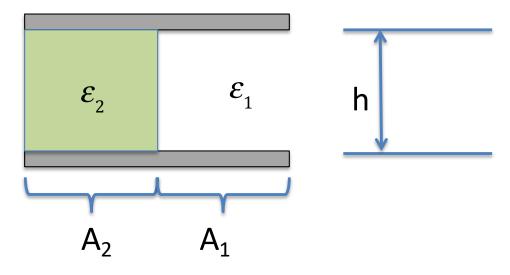


V, Q

Which boundary Conditions Apply?

Boundary Conditions in a Capacitor

V, Q



Case #1 $E_1 = E_2 = V/h$ tangential E $Q_1 = A_1 D_1 = A_1 \varepsilon_1 V/h$ $Q_2 = A_2 D_2 = A_2 \varepsilon_2 V/h$ Case #1 $Q = Q_1 + Q_2 = \left(\frac{A_1 \varepsilon_1 + A_2 \varepsilon_2}{h}\right) V$ $C = \left(\frac{A_1 \varepsilon_1 + A_2 \varepsilon_2}{h}\right)$ Capacitors in parallel

Boundary Conditions in a Capacitor

 h_1

 h_2

V, Q

Case #2

No free surface charge on boundary

between ε_1 and ε_2 .

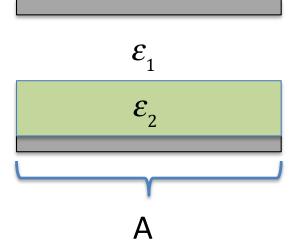
$$D_{1} = D_{2} = Q / A$$

$$E_{1} = D_{1} / \varepsilon_{1} = Q / (\varepsilon_{1}A)$$

$$E_{2} = D_{2} / \varepsilon_{2} = Q / (\varepsilon_{2}A)$$

Case #2

$$V = h_1 E_1 + h_2 E_2 = Q \left(\frac{h_1}{A\varepsilon_1} + \frac{h_2}{A\varepsilon_2} \right)$$
$$C^{-1} = \left(\frac{h_1}{A\varepsilon_1} + \frac{h_2}{A\varepsilon_2} \right)$$
Capacitors in series



Let's play the boundary condition game! With conductivity!!

