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applications of Maxwell's equations. The homogeneous wave equation. Plane wave 
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Hertz potential. Simple radiating systems. Relativisitic covariance of Maxwell's equations..

TEXT: Modern Electrodynamics by Andrew Zangwill, Cambridge University Press,  ISBN 
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Course Components

HOMEWORK: Assignments will be posted on ELMS. Assignments may involve 
computation.

GRADING: Your course grade will be computed on the basis of 600 points 
apportioned as follows:

EXAM1 150
EXAM2 150
Homework 200

500



Topic Text Chapters Lectures

Dynamic and Quasistatic Fields
Faraday’s Law, Magnetic Energy, Self and Mutual 
Inductance, Maxwell’s Displacement Current

14 3

General Electromagnetic Fields
Potentials, Conservation Laws, Gauge 
transformations

15 2

Waves in Vaccum
Plane Waves, Polarization, Wave Packets, 
Diffraction

16 2

Waves in Simple Matter
Reflection at Discontinuities, Radiation pressure, 
Anisotropic matter

17 3

Waves in Dispersive Matter
Group velocity dispersion, attenuation, Foster’s 
theorem

18 2

Guided and Confined Waves
Transmission lines, conducting waveguides, optical 
waveguides, cavities

19 3

EXAM1 3/12/22 May Change

Retardation and Radiation,
Radiation by given current distributuib, antennas, 
coherent/incoherent

20 3

Scattering and Diffraction
Thomson and Rayleigh scattering

21 2

Special Relativity, transformations, Energy and 
Momentum, Charged Particle Motion in Strong 
Fields, Lagrangian Densitty

22 3

Radiation from moving charges
Cherenkov radiation, Bremstralung and 
Synchrotron radiation

23 2

Final Exam

Tentative Schedule



Overview
The goal of the course is to:
Introduce  the phenomena of wave of 
wave propagation
Develop an understanding of the 
properties of Electromagnetic waves
Learn how to solve problems involving 
wave propagation

Propagation
Attenuation
Polarization
Reflection
Refraction
Dispersion
Diffraction
Interference 



Reflection and Refraction



Diffraction and Interference

Incident Beam



Dispersion and Attenuation
Pulses contain a spectrum 
of frequencies.  

In dispersive media 
different frequency 
components propagate 
with different speeds.

Pulses spread out.

Losses lead to attenuation



Guided Waves

Pasternak  Enterprizes
https://www.pasternack.com/

Wikipedia



Radiation and Antennas

By Maveric149 (Daniel Mayer) - From Radio 
towers on Sandia Peak.JPG. Alterations to 
image: cropped out periphery of image., CC 
BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php
?curid=74044022



Review of Static Fields
Static: not changing in time
For us: changing sufficiently slowly

Start with Coulomb’s Law for the electric field

   

E(r) = 1
4πε0 charges−i

∑
qi r − ri( )

r − ri

3

r, E(r)

q1, r1
q2, r2

qi, ri

   

E(r) = 1
4πε0 V

∫
ρ( ′r ) r − ′r( )

r − ′r
3 d 3 ′r

Continuous charge distributions

r, E(r)

   d ′q = d 3 ′r ρ( ′r )

r’

Point Charges

   F = qE(r)Force on charge q



Electrostatic or not?

Circuit vs Transmission line?
When the switch is closed 
how long until current flows 
in R?

!!Δt = L/c L=1m, c = 3 x108 m/s !!Δt =3.3×10
−9s =3.3ns

How long until current reaches steady 
state?   Depends on reflections.

AC source,  What load does 
source see?

If  L < < wavelength = c/f  then R
However, once L = wavelength/4 
load is transformed.



Some Examples

Comcast signal: 55.25 MHz to 553 MHz Wavelength at 553 MHz  =  0.54 m

Verizon 5G signal: 28 GHz Wavelength at 28 GHz  =  0.01 m

Infrared laser:  3 x  1014 Hz Wavelength = 1 micron = 10-6 m

Bohr Radius = 5.29x10-11 m << 1 micron wavelength

Laser field in atom is electrostatic 

Fork in microwave oven:  f = 2 GHz Wavelength = 0.15 m >> fork prong



Three ways to say the same thing

da

Volume

:areaA

da

da

Gauss’ Law:

 
S

!
E ⋅d
!
A"∫ = Qin

ε0
= 1
ε0

ρd 3r
V
∫

 loop

!
E ⋅d
!
l"∫ = 0

   

E(r) = 1
4πε0 V

∫
ρ( ′r ) r − ′r( )

r − ′r
3 d 3 ′r

 
∇ ⋅
!
E =

ρ
ε0

 ∇×
!
E = 0

Poisson Equation:

Coulomb’s Law:



Magnetostatics

Ampere’s Law:

 S

!
B ⋅d
!
A"∫ = 0

 

loop

!
B ⋅d
!
S"∫ = µ0Ienclosed

= µ0
!
J ⋅d
!
A

S
"∫

   

B(r) =
µ0

4π V
∫

J( ′r )× r − ′r( )
r − ′r

3 d 3 ′r

 ∇⋅
!
B = 0

 ∇×
!
B = µ0

!
J

Gauss’ Law:

Biot-Savart Law:



MKS-SI Units
E Volts/meter
Q Coulombs
B Tesla
I Amperes

 
S

!
E ⋅d
!
A"∫ = Qin

ε0
ε0[ ] = Coulombs/ Volts-Meters

ε0[ ] = 8.8542 ×10−12 Farads/meter

Force on a moving charge  q

 
!
F = q

!
E+ !v ×

!
B( ) [B] = Volts-seconds/meter2

 loop

!
B ⋅d
!
l"∫ = µ0Ienclosed

Ampere’s Law

[B.dl] = Volts-seconds/meter = Amperes µ0[ ]
µ0 = 4π ×10−7 Volt-seconds/Ampere-meters = Henry's/meter

What to remember:

1/ ε0µ0 = c = 3×108 m/s     µ0 / ε0 = 377 Ohms = impedance of free space 



Why such funny numbers?
ε0 = 8.8542 ×10

−12 Farads/meter

µ0 = 4π ×10−7 Henry's/meter

The size of the Ampere is set by the requirement that two infinitely long 
parallel wires separated by 1 meter and each carrying 1 Ampere of current feel 
a force of µ0 = 4π ×10−7 Newtons/meter

1 m

1 A

1 A

Given the size of an Ampere and the unit of time, 
1 second, the unit of charge is defined,

1 Coulomb = 1 Ampere X 1 second



Statics to Dynamics

Integrals around closed loops

Poisson:
 
!
E ⋅d
!
A"∫ =Q / ε0 Gauss’ Law:

 
!
B ⋅d
!
A"∫ = 0

 
Loop

!
B(!r) ⋅d

!
l ="∫ µ0 d

!
A ⋅
!
J + ε0

∂
!
E
∂t

⎡

⎣
⎢

⎤

⎦
⎥

S
∫

Ampere’s Law:

 
loop

!
E ⋅d
!
l"∫ = − d

!
A ⋅ ∂
!
B
∂tS

∫
Faraday’s Law:

Integrals over closed surfaces



Dynamic Fields

Integrals around closed loops

Loop

!
B(!r) ⋅d

!
l =!∫ µ0 d

!
A ⋅
!
J + ε0

∂
!
E
∂t

⎡

⎣
⎢

⎤

⎦
⎥

S
∫

Ampere’s Law:

 
loop

!
E ⋅d
!
l"∫ = − d

!
A ⋅ ∂
!
B
∂tS

∫

Faraday’s Law:

Faraday’s Law Maxwell’s Displacement Current

∇×
!
E = − ∂

!
B
∂t

∇×
!
B(!r) = µ0

!
J + ε0

∂
!
E
∂t

⎡

⎣
⎢

⎤

⎦
⎥



As the magnet was moved a voltage appeared on the meter.

The polarity of the voltage depended on whether the 
magnetic flux threading the loop was increasing or 
decreasing



Experimentally deduced relation

For stationary loops .



Sign determined by right 
hand rule

Lenz Law
E would induce I 
to cancel change 
in B



Which surface S1 or S2?

Answer: Either one

 

!
B ⋅d
!
S

S1+S2
∫ = 0

From Gauss’ Law

 

d
!
S1 = d

!
S

d
!
S2 = −d

!
S

!
B ⋅d
!
S

S1+S2
∫ = 0⇒

!
B ⋅d
!
S1
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∫ =

!
B ⋅d
!
S2

S2
∫

Loop C



Using Stokes’ Theorem

True for any loop and any surface

Faraday’s Law in differential form



Time varying B induces E

Find E in the gap



Gap Field

Evaluate on a loop of radius r.

Assume: ∂Eθ

∂θ
= 0

 

!
B ⋅d
!
S

S
∫ =

πr2Bz , r < a

πa2Bz , r > a

⎧
⎨
⎪

⎩⎪

 

!
E ⋅d
!
l

C
∫ = 2πrEθ (r)

2πrEθ (r) = − ∂
∂t

πr2Bz (t), r < a

πa2Bz (t), r > a

⎧
⎨
⎪

⎩⎪



Eθ (r) = −

r
2
∂
∂t
Bz (t), r < a

a2

2r
∂
∂t
Bz (t), r > a

⎧

⎨
⎪⎪

⎩
⎪
⎪

− a
2
∂
∂t
Bz (t)



Moving Loops

What is the rate of change of flux through a moving loop?
So far we have considered stationary loops.

It can be shown

Contribution from time changing B,  Contribution from moving loop.



Rate of change of flux

dψ
dt

= limΔt→0
ψ (t + Δt)−ψ (t)

Δt



Contribution from moving loop



EMF – electromotive force

Convert surface integral to line integral



Two ways to compute EMF

 
EMF = loop d

!
l"∫ ⋅
!
E+ !v ×

!
B( )

 
EMF = − d

dt
ψ = − d

dt
d
!
A ⋅
!
B

S(t )
∫

Both are always true.  One may be easier to 
determine than the other.

Note: same combination of E, B, and v appears in 
force

 
!
F = q

!
E+ !v ×

!
B( )



EMF = − d
dt
ψ (t) = − d

dt
πR2 (t)Bz (t)

= −πR2 (t) d
dt
Bz (t)− 2πR(t)Bz (t)

d
dt
R(t)

 
EMF = − d

!
A ⋅ ∂
!
B
∂tS

∫ + d
!
l ⋅ !v ×

C
∫

!
B

 

+ d
!
l ⋅ !v ×

C
∫

!
B = −2πR dR

dt
Bz  

    θ̂ ⋅ r̂ × ẑ = −1
                           



Calculate the EMF
B(x, y, z,t) =

B0 ẑ, x > 0
0, x < 0

⎧
⎨
⎪

⎩⎪

Three cases:
1. Loop is nonconducting
2. Loop is partially conducting
3. Loop is fully conducting



Case #1 non-conducting
B(x, y, z,t) =

B0 ẑ, x > 0
0, x < 0

⎧
⎨
⎪

⎩⎪

EMF = − d
dt
ψ = − d

dt
h(vt)B0[ ] = −hvB0



Case #1 non-conducting
B(x, y, z,t) =

B0 ẑ, x > 0
0, x < 0

⎧
⎨
⎪

⎩⎪

 

∂
!
B
∂t

= 0→∇×E = 0→ E = −∇φ → loop d
!
l"∫ ⋅E = 0

EMF = loop d
!
l"∫ ⋅ E+ !v ×

!
B( ) = loop d

!
l"∫ ⋅ !v ×

!
B( )

= dyvB0 (ŷ ⋅ x̂ ×∫ ẑ) = −hvB0



Case #1 non-conducting
B(x, y, z,t) =

B0 ẑ, x > 0
0, x < 0

⎧
⎨
⎪

⎩⎪

 

EMF = loop d
!
l"∫ ⋅
!
E+ !v ×

!
B( ) =

loop d
!
l"∫ ⋅
!
0 + !v ×

!
B( ) = dyvB0 (ŷ ⋅ x̂ ×∫ ẑ) = −hvB0

EMF = − d
dt
ψ = − d

dt
h(vt)B0[ ] = −hvB0



Case #2: partially conducting

Open circuit

Good conductor

No current flows in conductor,  B is unchanged,

EMF = − d
dt
ψ = −hvB0

 
EMF = loop d

!
l"∫ ⋅
!
E+ !v ×

!
B( )

 
!
E+ !v ×

!
B( ) = 0In conductor



 

!
E+ !v ×

!
B( ) = 0

!
E+ !v ×

!
B( )y = Ey − vxB0 = 0

On right end of moving loop

Electrostatic field
 
!
E = -∇φ, loop d

!
l"∫ ⋅
!
E = 0

 
EMF = loop d

!
l"∫ ⋅ !v ×

!
B( ) = −hvB0



Case #3: Conducting Loop

i

 
EMF = loop d

!
l"∫ ⋅
!
E+ !v ×

!
B( ) = 0

Induced currents keep flux constant


