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Abstract

The statistical properties of wave chaotic systems of varying dimensionalities have been studied

extensively. These systems are commonly characterized by the statistics of the short-range and

long-range eigenmode-spacing, and the one-point and two-point eigenfunction correlations. Here,

we propose photonic crystal (PC) defect waveguide graphs as an alternative physical system for

chaotic graph studies. Experimental studies of chaotic graph eigenfunctions have generally been

confined to the wavefunction values at the nodes of the graph, because the graphs are usually con-

structed with coaxial cables that prevent direct access to the wave functions on the bonds. Recent

studies reveal that chaotic graphs possess non-universal properties, which may be better analyzed

and understood through eigenfunction analysis. Photonic crystal graphs have two novel features,

namely an unusual dispersion relation for the propagating modes, and complex scattering proper-

ties of the junctions and bends. Here we present numerically determined properties of an ensemble

of such PC-graphs including both eigenfunction amplitude and eigenmode-spacing studies. Our

proposed system is amenable to other statistical studies, and may be realized experimentally.
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I. INTRODUCTION

Wave-chaotic phenomena have been studied in various systems, ranging from 1D graphs

[1–4], 2D billiards [5–11] to 3D enclosures [12–17]. The statistical properties of many system

quantities, such as the closed system eigenvalues and the open system scattering/impedance

matrices, exhibit universal characteristics, which only depend on general symmetries (e.g.,

time-reversal, symplectic) and the system loss factors. The Random Coupling Model (RCM)

has found great success in characterizing the statistical properties of a variety of experimental

systems by removing the non-universal effects induced by port coupling and short-orbit

effects [8, 12, 13, 15, 16, 18–23]. Chaotic microwave graphs support complex scattering

phenomena despite their relatively simple structures, and allow for various useful circuit

components (such as phase shifters and attenuators) to be incorporated into the structure

[2–4]. Recent studies show that non-universal statistical features exist in chaotic graph

systems, which is caused by the finite reflection at the graph vertices. These reflections

create trapped modes that pollute the spectral statistics of the graph [3, 24–26]. However,

the experimental investigation of such phenomena is complicated by the fact that only the

node information is accessible from cable graph systems, which are the common choice for

conducting graph experiments.

Here, we introduce an alternative type of chaotic graph built with photonic crystal (PC)

systems. The PC graph bonds are realized with defect waveguides and the nodes are formed

by the waveguide junctions. The electromagnetic waves propagating in the graph bonds are

more accessible. With numerical simulation tools, we conduct a series of statistical tests of

the photonic crystal graph system including both eigenvalue and eigenfunction studies of

closed graphs. To our knowledge, PC graphs have not been previously utilized for chaotic
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FIG. 1. a. The open-plate view of the photonic crystal lattice with an L-shaped defect waveguide

region. b. The side view of the PC unit cell. A dielectric rod is sandwiched between two PEC

(perfect electric conductor) surfaces. The quantities h0 and d0 are the height and diameter of the

rod. c. The photonic band structure from a supercell defect waveguide simulation. The waveguide

modes appear in the bulk bandgap region (blue dashed lines). d. The E-field profile of one of

the waveguide mode solution (the red circle in c). The black dashed line marks the center of the

waveguide.

graph studies.

The paper is organized as follows. In Section II, we introduce the design details of the pro-

posed PC graph structure as well as its numerical implementation methods. We present the

closed-graph mode-spacing study in section III, and focus on the discussion of closed-graph

eigenfunction studies in section IV. Different methods of conducting eigenfunction statistical

studies are also discussed. We summarize the paper and discuss the future applications of

the proposed PC graphs in section V.

II. PHOTONIC CRYSTAL GRAPH

A photonic crystal system consists of a regular lattice of artificial atoms (or scatterers)

whose spacing is comparable to the operating wavelength [27, 28]. The material properties

and the geometrical details of the atom are carefully designed in order to achieve a specific
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functionality. A PC system is usually constructed as a 2D planar structure, which makes

it especially good for photonics applications. Importantly, a 2D PC can show a complete

bulk bandgap in its excitation spectrum [27, 28]. In PC-based devices, waveguides and

cavities can be constructed for example by making air defects (removing a certain number

of the atoms) in the original lattice. This creates guided propagating modes in the bulk

bandgap, which ensures that the modes are confined to the defect region. A variety of

defect waveguides can be realized by changing the atom properties [27]. Recent photonic

topological insulator studies present an alternative form of PC waveguide using a kinky

interface between two different topological domains [29–33]. Bulk PC systems have also

been employed to construct chaotic billiard systems [11, 34]. Here, we will utilize the defect

waveguide modes to build chaotic graph structures.

The construction of the chaotic PC graph starts by building a square lattice with identical

dielectric rods (the blue lattice in Fig. 1a). The lattice constant is a0 = 36.8mm. The

dielectric rod lattice is sandwiched between two metallic surfaces and installed in a vacuum

background. The defect waveguide is created by simply taking out one row or column of the

dielectric rods. The detailed shape of the dielectric rod is shown in Fig. 1b. The diameter

of the dielectric rod is d0 = 13.2mm and the height is h0 = 0.1a0 = 3.68mm. Because the

PC lattice is thin in the vertical direction (z-direction), the waveguide modes considered

here are transverse magnetic (TM) polarized (Ez 6= 0, Ex,y = 0, Hz = 0 and Hx,y 6= 0).

The relative permitivity and permeability of the dielectric rods are εr = 11.56 and µr = 1.

We realize the proposed PC structure numerically with COMSOL Multiphysics Software.

The presence of the waveguide mode is clearly demonstrated by the supercell photonic band

structure (PBS) simulation (Fig. 1c). The supercell simulation model consists of a single

column of PC lattice with Floquet periodic boundaries on the two long sides. The two short-
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FIG. 2. a. The simulated S-parameters of the PC-graph right-angle L-junction (solid), as well

as the S-parameter from a coaxial cable 3-port connector (dashed), which serves as a reference.

b. The simulated S-parameters of the PC-graph T-junction (solid) and the S-parameters from

a coaxial cable 3-port connector (dashed). All PC-junction S-parameters are frequency averaged

with a 500MHz window to remove the effect of spurious reflections.

end surfaces are assigned totally absorbing boundary condition. We remove the center rod

to create the defect waveguide region. The PBS simulation is conducted by computing the

system eigenmodes while varying the wavenumber kx in the range [−π/a0, π/a0]. As shown

in Fig. 1c, the defect waveguide modes have emerged inside of the bulk bandgap region

from 2.5 ∼ 3.6GHz. Here we see the first unique feature of PC graphs – the PC waveguide

modes present a more complicated dispersion relationship between ω and kx (e.g., modes

near 2.6GHz in Fig. 1c) as compared with coaxial cable (ω = ckx). In Fig. 1d, the |Ez|

profile of the entire simulation domain shows clearly that the mode solution is indeed a

guided wave because its amplitude is highly localized in the defect region.

The PC graph structure is realized by connecting multiple defect waveguides with both

right-angle and T-shaped junctions. We have characterized the scattering matrix of both

types of the junctions with COMSOL and CST Microwave STUDIO. For the right-angle

bends, non-zero transmission is found only in the bulk bandgap region. As shown in Fig.

2a, The transmission values vary systematically near but below 1 as a function of frequency,
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which qualifies the right-angle bends as vertices with a non-trivial scattering matrix in

a graph. The PC-graph T-junction presents a complex scattering profile over the entire

bandgap region. As shown in Fig. 2b, the magnitude of the reflection (transmission) coef-

ficient deviates systematically from 1/3 (2/3) as a function of frequency. These nontrivial

scattering parameters are a second unique feature of PC graphs, and can be expected to

influence the properties of the graph eigenmodes. We note that alternative methods of mak-

ing waveguide bends or connecting waveguides can be applied, for example by removing or

adding dielectric rods at the right-angle turn, in order to tune the transmission property of

the waveguide joints [35]. The engineering of the node transmission property is beyond the

scope of this paper.

We simulate the closed PC graphs with the COMSOL eigenvalue solver. The PC graph

system is drawn and sandwiched between two metallic surfaces (PEC boundaries). The

graph topology is that of a flattened tetrahedral graph having 14 straight segments and

13 junctions (including 3-way junctions and right-angle bends). The four exterior faces of

the PC structure are assigned totally absorbing boundary conditions. The total length of

the simulated graph is on the scale of ∼ 9m, which hosts about 80 eigenmodes (within the

bulk PC bandgap) in a typical realization. We note that one is able to decrease the mode-

spacing by enlarging the size of the PC graph, and we choose the current system scale due

to limited computational power. One can create a statistical ensemble of chaotic PC graphs

by changing the length of the bonds for a given graph topology.

The E-field profile for a particular eigenmode solution of a graph is shown in Fig. 3b.

It is clear that the graph mode is localized to the defect waveguide region and displays a

longitudinal sinusoidal standing wave pattern. The mode amplitude on a single bond is

uniform but varies between different bonds (shown by the color differences), where bonds
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FIG. 3. a. Schematic diagram of the PC waveguide graph system. The graph bonds are shown

as the clear gray channels and the rectangular lattice is shown as a lattice of dielectric rods (black

circles). b. The simulated |Ez| profile of the graph system eigenmode at 2.8GHz. c shows the

statistics of the normalized mode spacing from graph simulation (histogram). The theoretical

predictions for the GOE, GUE and GSE systems are shown in red, yellow and purple curves.

d shows the statistics of the consecutive mode spacing ratio r (histogram) and the theoretical

predictions for the GOE, GUE and GSE systems.

are defined as straight waveguide regions between 3-way junctions and right-angle bends.

III. EIGENMODE SPACING STATISTICAL ANALYSIS

We start by conducting the nearest neighbor mode spacing analysis of the proposed

PC graphs. An ensemble of 10 different graph realizations are studied numerically and

we obtained ∼ 800 eigenfrequency values from the ensemble. The graph topology ranges

from 13 ∼ 16 straight segments and 11 ∼ 14 junctions. We note that such an ensemble

of graphs are only used for mode-spacing studies. The graph topology is kept fixed in the

eigenfunction studies discussed below. Because the topology and the total length Ltot of each

graph realization is different, we normalize the system eigenmodes solutions with following

method. We first convert the eigenfrequency data into wavenumbers based on the PC-

waveguide PBS (Fig. 1c). The eigenmode wavenumbers are then normalized by fitting to

an integrated density of states n(k) = c1k+c2k
0.5+c3, where c1,2,3 are fitting parameters [36].
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PC-Graph GOE GUE GSE

〈r〉 1.89 1.75 1.37 1.18

〈r̃〉 0.51 0.54 0.60 0.68

TABLE I. The summarized consecutive mode spacing ratios of the photonic crystal graph (PC-

Graph) system and the theoretical predictions for the GOE, GUE and GSE systems [42].

Using the fitted c1,2,3 values, we computed the normalized level k and then obtain the nearest

neighbor spacing by ki+1 − ki, where i is the index of energy level. The distribution of the

normalized mode spacing values of the entire ensemble is shown as the histogram in Fig. 3c.

We have also included the theoretical predictions of the mode-spacing statistics for the GOE

(Gaussian Orthogonal Ensemble), GUE (Gaussian Unitary Ensemble), and GSE (Gaussian

Symplectic Ensemble) in the figure. The three theoretical predictions are based on Random

Matrix Theory (RMT) [37–39], which is widely studied as a seminal method of understanding

the universal statistical properties of wave-chaotic systems [40, 41]. As shown in Fig. 3c, the

distribution of the normalized mode-spacing matches reasonably well with the theoretical

prediction for the GOE class. Good agreement between the graph nearest neighbor mode-

spacing statistics and the RMT theoretical prediction is also reported in various works on

graphs, although long-range statistical quantities tend to show non-universal behaviors due

to the trapped-mode problem [3, 24–26].

In addition to the mode-spacing distribution test, we note that the method of consecutive

mode spacing ratios ri = si
si−1

and r̃i = min
(
ri,

1
ri

)
can also be adopted [42]. For the PC

graphs, the averaged values of 〈r〉 = 1.89 and 〈r̃〉 = 0.51, which are closer to the GOE

theoretical predictions than the GUE and GSE predictions (Table. I). We further present

the distribution of mode-spacing ratios r of the PC graphs and corresponding theoretical

predictions of the GOE, GUE and GSE systems in Fig. 3d. The statistics of r match

reasonably well with the GOE prediction.
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IV. EIGENFUNCTION ANALYSIS

We next study the statistics of the PC graph eigenfunctions. The eigenfunction statistics

have been studied experimentally in 2D chaotic systems by probing the electromagnetic (EM)

standing wave field inside a microwave cavity [5, 43–47]. In those studies, the experimental

probability amplitude distribution and two-point correlation function agree well with the

random plane wave conjecture. Here, the wave properties of the entire PC graph (nodes and

bonds) can be faithfully simulated. Here we employ the same eigenvalue simulation model

used in the mode-spacing studies above. For a graph system, the telegrapher’s equation is

formally equivalent to the 1D Schrödinger equation, where the wavefunction ψ is represented

by the wave voltage. For thin parallel plate waveguides, the wave voltage difference between

the top and bottom metallic plates is represented by the Ez value at the middle cutting plane

(at the height of z = h0/2). Because the PC graph bonds have a finite width, the bond

eigenfunction will be evaluated along a 1D line at the center of the waveguide (shown as the

black dashed line in Fig. 1d). We next examine two PC graph eigenfunction characterization

methods.

Method I: grid-wise representation. For each eigenmode of each graph realization, we will

use the entire set of the graph bond |Ez|2 vs. longitudinal position along the center-line of

the waveguide data points to represent the eigenfunction. The name ‘grid-wise’ comes from

the granular nature of this method, where the total number of eigenfunction data points is

inversely proportional to the computational grid size. We study the wavefunction statistics

of the PC graph by computing the distribution of the normalized probability density v,

which is defined as the square of the eigenfunction values vj = |ψ(rj)|2 =
|Ez(rj)|2·Ltot∑
j |Ez(rj)|2·∆Lj

,

where Ltot is the total length of the graph, rj and ∆Lj are the location and the grid size of
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FIG. 4. a. Probability amplitude distribution of photonic crystal defect waveguide graph eigen-

modes obtained from the grid-wise method (symbols connected by blue line). The theoretical

prediction for systems with GOE statistics is in red. b. shows the statistics of the normalized

bond amplitude value |a| (symbols connected by blue line) and the Gaussian distribution (red

dashed).

the j′th grid point, |Ez(rj)| is the z-directed electric field magnitude at the j′th grid point,

and the summation in the denominator runs over every graph grid point. In our simulation,

the grid size ∆Lj ∼ 0.05λop where λop = 10cm is the operating wavelength at 3GHz. The

distribution of the probability density values is computed using the data from all simulated

eigenmode solutions (48 in specific) for a single realization of the graph, and the results are

shown in Fig. 4a, and discussed below.

Method II: bond-value representation. For each graph realization, the eigenfunction of a

mode is represented by a set of ‘bond-values’ Ez(bm) which is the defined as the amplitude

of the standing-wave wavefunction on the graph bond bm. The quantity m is the index of

the bond and runs from 1 to 14. The standing wave on the bond is made up of two counter

propagation waves ψ(x) = am e
ikx + a∗m e

−ikx, where am is the wavefunction amplitude at

bond bm and x is the distance from a vertex along the bond. We first conduct a sine-fit

of the raw Ez(x) values on each bond, which yields the amplitude, and the value of |am| is

obtained as 1/2 of the amplitude value. The normalization process follows the same method
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FIG. 5. a. The inverse participation ratio (IPR) of graph eigenmodes obtained from the bond-

value method, computed based on the method. IIa. The simulated |Ez| profile of the red (black)

circled mode in a is shown in c (d). b. The inverse participation ratio (IPR) of graph eigenmodes

computed based on the method. II b. The simulated |Ez| profile of the red (black) circled mode

in b is shown in e (f).

as in Ref. [48] which ensures that
∑

m L(bm)|am|2 = Ltot where L(bm) is the length of bond

bm. Here the distribution of the probability density values is computed over 14 × 78 data

points, where 14 is the number of the bonds and 78 is the number of eigenmode solutions

from one realization of the graph, and the results for P (|a|) are shown in Fig. 4b.

We first discuss the eigenfunction statistics obtained using the grid-wise method in Fig.

4a. The theoretical prediction of the GOE systems, given by P (x) = 1√
2πx

e−x/2, is shown

as solid lines. We find that the simulated PC graph result matches reasonably well with

the GOE prediction. We notice that a mismatch between the graph data and the GOE

prediction exists at the small and large probability density values. One possibility is that this

method tends to over-count the appearance of medium-sized eigenfunction values (similar

to the systematic errors experienced in Ref. [5]). It may also indicate that the data simply

does not match the GOE prediction. In addition to the discrete eigenfunction imaging
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method, we note that the eigenfunction statistics may also be tested through resonance

width distributions in transmission measurements (Porter-Thomas statistics) [7, 49].

The random plane wave hypothesis underlying RMT eigenfunction treatments [37, 50]

predicts that the complex coefficients am should have Gaussian random fluctuations [48, 51].

Here we use Method II to study the distribution of the normalized bond-values |a|, in Fig.

4b, and find some degree of agreement with the random plane-wave prediction. However, a

clear deviation from Gaussian statistics is seen for low amplitudes, similar to the deviation

observed with Method I. Together, these results suggest that the wavefunction statistics of

this simple graph are not fully consistent with the random plane wave hypothesis.

We next present the inverse participation ratio (IPR) computation based on the bond-

value method (Method II ) in Fig. 5. IPR is a measure of the degree of localization for a

wave function [48, 51], and can be used to quantify the degree of deviation of wavefunction

statistics from the random plane wave hypothesis. Based on its IPR value, the eigenfunction

behavior varies between two limits, namely the maximum ergodic limit where the wave

function occupies each graph bond with equal chance, and the maximum localization limit

where the eigenmode is confined to only one bond. RMT predicts an IPR value by assuming

Gaussian random fluctuation of the eigenfunctions. Two different IPR definitions are tested

here. Method IIa follows the definition in Ref. [48], where the IPR value for each graph

mode is evaluated using the formula IPRIIa = 〈|am|4〉. As shown in Fig. 5a, the IPR values

of the photonic crystal graph modes vary erratically but lie between the maximum ergodic

limit (IPRIIa = 1) and the RMT prediction limit (IPRIIa = 2) [48]. In the maximum

localization limit the IPRIIa = B, where B = 14 is the number of graph bonds, and

the results are far from this limit. Method IIb follows the definition in Ref. [51] where

IPRIIb =
∑

m |ãm|
4 /
[∑

m |ãm|
2]2. The quantity ãm is the un-normalized bond wavefunction

12



amplitude. Here, the graph IPR values also vary erratically from mode to mode (Fig. 5b),

but lie well below the maximum localization limit (IPRIIb = 1) and closer to the RMT

prediction limit (IPRIIb = 1/B = 0.07) [51].

The conclusions we draw from the above two methods are not exactly the same. For

Method IIa, two exemplary eigenfunction profiles are shown in Figs. 5c and d, which cor-

respond to the RMT and ergodic limits, respectively. One may directly spot the different

nature of these two modes based on their eigenfunction patterns, which is a unique advan-

tage of the photonic crystal graph system. For Method IIb, we present the eigenfunction

profile of two neighboring graph modes in Figs. 5e and f. The eigenmode in Fig. 5e has a

larger value of IPRIIb and shows a strongly localized distribution. That in Fig. 5f has a

small value of IPRIIb and is more evenly distributed over the bonds. The average value of

IPR over all the modes are more meaningful in this case, and we have 〈IPRIIa〉 = 1.39 and

〈IPRIIb〉 = 0.10 which are closer to the ergodic and RMT limits, respectively, than to the

localization limit. Previous work [1, 48] on IPR on quantum graphs shows the surprising

results that larger graphs, with the number of vertices > 10, tend to show strong deviations

from RMT predictions, while smaller graphs show better agreement.

Taking into account the eigenfunction and IPR statistics, it would appear that PC graphs

are close to the random plane wave condition for tetrahedral graphs, but clear systematic

differences remain. The complex vertex scattering properties of right-angle bends and T-

junctions, along with the unusual ω(k) dispersion relation of PC defect waveguide modes,

suggest that PC defect graphs may be very effective for future wave chaotic studies.
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V. CONCLUSION

To conclude, we have designed and simulated an alternative chaotic graph system with

photonic crystal defect waveguides that show an unusual dispersion relation. We show that

a series of statistical studies can be carried out on closed graphs, including nearest-neighbor

spacing statistics and eigenfunction statistics studies. Because both the graph bonds and

nodes can be probed directly, one may better analyze the non-universal features of chaotic

graphs using a PC system. We note that the PC 3-way and right-angle junctions have

complicated scattering properties, and it is possible to adjust the degree of localization by

engineering the scattering properties of the PC waveguide junctions. These properties of

the PC waveguides may facilitate further studies of localization phenomena in graphs, for

example the emergence or suppression, and the further manipulation, of trapped modes.
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E 69, 056205 (2004).

[2] A. Rehemanjiang, M. Richter, U. Kuhl, and H.-J. Stöckmann, Physical Review Letters 124,

116801 (2020).

[3] J. Lu, J. Che, X. Zhang, and B. Dietz, Physical Review E 102, 022309 (2020).

[4] L. Chen, T. Kottos, and S. M. Anlage, Nature Communications 11, 5826 (2020).

[5] D. H. Wu, J. S. A. Bridgewater, A. Gokirmak, and S. M. Anlage, Physical Review Letters

14

mailto:skma@umd.edu
http://dx.doi.org/ 10.1103/PhysRevE.69.056205
http://dx.doi.org/ 10.1103/PhysRevE.69.056205
http://dx.doi.org/10.1103/PhysRevLett.124.116801
http://dx.doi.org/10.1103/PhysRevLett.124.116801
http://dx.doi.org/ 10.1103/PhysRevE.102.022309
http://dx.doi.org/10.1038/s41467-020-19645-5
http://dx.doi.org/10.1103/PhysRevLett.81.2890
http://dx.doi.org/10.1103/PhysRevLett.81.2890


81, 2890 (1998).
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