ENEE 680

Course Outline

Fall 2010

Chapter.Section	Topics	Lectures
1.1 – 1.13	Coulomb's Law, Electric Field, Gauss's law, Surface	5
	Charge distributions, Poisson and Laplace Equations,	
	Green's Theorem, Electrostatic Energy, Capacitance,	
	Variational and Iterative solutions to Poisson's	
2.1 – 2.12	equation Mathed of Images, Daint sharpes near spherical	4
	Method of Images, Point charges near spherical	4
	conductors, Spere's with prescribed potential,	
	Orthogonal functions and expansions, fields near	
	corners of conductors	
Exam I	Around Oct. 9	
3.1-3.12	Solutions of Laplace's equations and Greens functions	4
	in spherical and cylindrical coordinate systems	
4.1-4.7	Multipole expansions, dielectric material, boundary	4
	conditions in the presence of dielectrics, energy storage	
	with dielectrics, models for dielectrics	
Exam II	Around Nov. 13	
5.1-5.12	Biot-Savart Law, Ampere's law, vector potential,	4
5.15-5.18	Macroscopic equations and boundary conditions,	
	Faraday's law, Energy in a magnetic field inductors	
	and mutual inductance	
6.1-6.9	Maxwell's displacement current, vector and scalar	4
	potentials, Green's function for solution of wave	
	equation, Poynting's theorem.	
Final	Dec. 2010	