| ENEE 380/380H | Course Outline | Fall 2013 | |---|--|-----------| | Topic | Textbook Sections | Lectures | | Electromagnetic Model
Introduction
SI units | 1.1, 1.2
1.3 | 1 | | Static Electric Field Coulomb's Law Guass' Law Electric Potential Conductors, Dielectrics Boundary conditions Capacitors Energy | 3.3-3.3
3.4
3.5
3.7, 3.7
3.9
3.10
3.11 | 7 | | | Exam 1:(TBD) | | | Solution of Electrostatic Proposition and Laplace Equations Uniqueness of solution Method of images Boundary value problems | | 5 | | Steady Currents Current density and Ohm's law Electromotive force Continuity of current Power dissipation Resistance | 5.1, 5.2
5.3
5.4
5.5
5.6, 5.7 | 3 | | | Exam 2:(TBD) | | | Static Magnetic Fields Magnetostatics postulates Vector magnetic Potential Biot-Savart law Magnetization and permeability Magnetic circuits Inductors | 6.1, 6.2
6.3
6.4
9 6.5-6.7
6.8-6.10
6.11 | 5 | | Time Varying EM fields Magnetic induction Displacement current Maxwell's equations Boundary conditions Time harmonic fields Summary | 7.1,7.2
7.3
7.3
7.5
7.7 | 4 |