Adjoint Methods in Charged Particle Dynamics

Or
When the solution to your problem is not your problem.

Thomas M. Antonsen Jr.
Department of Electrical and Computer Engineering
Department of Physics
Institute for Research in Electronics and Applied Physics
University of Maryland, College Park

Example
 Jackson, Classical Electrodynamics Problems 1.12 and 1.13

A charge q is placed at an arbitrary point, \mathbf{x}_{0}, relative to two grounded, conducting electrodes.

What is the charge q_{1} on the surface of electrode 1 ?
$\underline{\text { Repeat for different } \mathbf{x}_{\mathbf{0}}}$

Solution - Green's Reciprocation Theorem

$$
\begin{array}{lc}
\underline{\text { Prob \#1 }} & \nabla^{2} \phi=-q \delta\left(\mathbf{x}-\mathbf{x}_{0}\right) \quad \mathrm{BC}:\left.\quad \phi\right|_{B 1}=\left.\phi\right|_{B 2}=\phi(x \rightarrow \infty)=0 \\
\text { Your } & q_{1}=\int_{B 1} d^{2} x \mathbf{n} \cdot \nabla \phi \\
\text { Problem } &
\end{array}
$$

Prob \#2
Adjoint (Not

$$
\nabla^{2} \psi=0 \quad \mathrm{BC}:\left.\quad \psi\right|_{B 1}=1,\left.\quad \psi\right|_{B 2}=\psi(x \rightarrow \infty)=0
$$

your) Problem

Green's
Theorem

$$
\int_{V} d^{3} x\left(\psi \nabla^{2} \phi-\phi \nabla^{2} \psi\right)=\int_{S} d^{2} x n \cdot(\psi \nabla \phi-\phi \nabla \psi)
$$

When the dust settles:

$$
-q \psi\left(\mathbf{x}_{0}\right)=q_{1}
$$

George Green 1793-1841

The Green of Green Functions

In 1828, an English miller from Nottingham published a mathematical essay that generated little response. George Green's analysis, however, has since found applications in areas ranging from classical electrostatics to modern quantum field theory.
his family built a house next to the mill, Green spent most of his days and many of his nights working and indeed living in the mill. When he was 31, Jane Smith bore him a daughter. They had seven children in all but never married. It was said that Green's father felt that Jane was not a suitable wife for the son of a prosperous trades3 man and landowner and threatened to disinherit him.

- Born in Nottingham (Home of Robin Hood)
- Father was a baker
- At age 8 enrolled in Robert Goodacre's Academy
- Left after 18 months (extent of formal education pre age 40)
- Worked in bakery for 5 years
- Sent by father to town mill to learn to be a miller
- Fell in love with Jane, the miller's daughter.
- Green's father forbade marriage.
- Had 7 children with Jane.
- Self published work in 1828
- With help, entered Cambridge 1833, graduated 1837.
- Theory of Elasticity, refraction, evanescence
- "Discovered" by Lord Kelvin in 1840.
- Died of influenza, 1841

Green's Mill: still functions

Features of Problems Suited to an Adjoint Approach

1. Many computations need to be repeated. (many different locations of charge, q)
2. Only a limited amount of information about the solution is required. (only want to know charge on electrode \#1)

Relation to Reciprocity

Example:

- Antenna sending and receiving radiation patterns are equal due to time reversal symmetry of ME.
- Direct calculation of receiving pattern requires many simulations
- Instead, calculate sending pattern and invoke reciprocity

Receiving

Sending

Other Examples of Reciprocity

Electrostatics Symmetry of the Capacitance Matrix
Electromagnetics
Symmetry of the Inductance Matrix Symmetry of Scattering Matrix

Collisional Transport: Onsager Symmetry of off-diagonal elements of transport matrices.

Temperature gradient Electric field
\rightarrow
\rightarrow

Electric current
Heat flux
Neoclassical Tokamak Transport
Pressure gradient
Toroidal E-field

\rightarrow

Bootstrap Current
Ware particle flux

Adjoint Methods in Engineering

JES Focus Issue on Mathematical Modelung of Electrochemical Systems at Muitiple Scales in Honor of John Newman
Adjoint Method for the Optimization of the Catalyst Distribution in Proton Exchange Membrane Fuel Cells
James Lamb, ${ }^{\text {a,b }}$ Grayson Mixon, ${ }^{\text {a,b }}$ and Petru Andrei ${ }^{\text {a,b,*,z }}$
${ }^{a}$ Department of Electrical and Computer Engineering, Florida A\&M University-Florida State University College of Engineering, Tallahassee, Florida 32310, USA
${ }^{b}$ Aero-Propulsion, Mechatronics and Energy Center, Florida State University, Tallahassee, Florida 32310, USA

Adjoint method for the optimization of insulated gate bipolar transistors

Adjoint shape optimization applied to electromagnetic design

Christopher M. Lalau-Keraly, ${ }^{1,{ }^{*}}$ Samarth Bhargava, ${ }^{1}$ Owen D. Miller, ${ }^{2}$ and Eli Yablonovitch ${ }^{1}$
${ }^{l}$ Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA
${ }^{2}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*.chrisker@eecs.berkeley.edu

Courtesy, Elizabeth Paul

Adjoint methods for car aerodynamics

Carsten Othmer ©

Journal of Mathematics in Industry 2014 4:6 DOI: 10.1186/2190-5983-4-6 \mid © Othmer; licensee Springer. 2014
Received: 30 March 2013 Accepted: 5 March $2014 \mid$ Published: 3 June 2014

Optimize shape to minimize drag.

Result is also aesthetically appealing.

Oops, coding error.

Adjoint Approach in Plasma and Beam Physics

- Neoclassical Transport, F. Hinton, and R. Hazeltine, Rev. Mod Phys, 48 (2) , 1976
- Calculation of beam driven currents in magnetized plasmas, S. Hirshman, PoF, 23, 1238 (1980).
- Calculation of RF current drive in magnetic confinement plasma configurations, TMA and K. Chu PoF 25, (1982)
- Calculation of RF induced transport in magnetic confinement plasmas, TMA and K. Yoshioka, PoF 29, (1986), Nucl. Fusion, 26 (1986).
- Shot noise on gyrotron beams, TMA, W. Manheimer and A. Fliflet, PoP (2001).

RF Current Drive in Fusion Plasmas

Magnetic Confinement: ITER
US-EU-Russia-Japan-India Collaboration Will be built in Cardarache France
Completion 2016??
http://www.iter.org/

Injecting RF waves can drive a toroidal current. N. Fisch PRL (1978)

RF Current Drive Efficiency

Original Langevin Treatment: Nat Fisch, PRL (1978)
RF pushes particles in velocity space.
Collisions relax distribution back to equilibrium.
$\vec{\Gamma}=\mathrm{RF}$ induced velocity space particle flux

What is the current generated per unit power dissipated? $\mathrm{J} / \mathrm{P}_{\mathrm{D}}$

$$
J=\int d^{3} v \vec{\Gamma} \cdot \frac{\partial}{\partial v} \Psi \quad P_{D}=\int d^{3} v \vec{\Gamma} \cdot \frac{\partial}{\partial v} \varepsilon
$$

ψ inversely proportional to collision rate

RF Current Drive Efficiency

RF pushes particles in velocity space. $\hat{\Gamma}$
Collisions relax distribution back to equilibrium.

$$
J=\int d^{3} v \vec{\Gamma} \cdot \frac{\partial}{\partial v} \Psi
$$

N. Fisch: Current generated in parallel direction even if push is in perpendicular direction

Adjoint Approach: s. Hirshman, PoF , 23, 1238 (1980), TMA and KR Chu, PoF 25, (1982)
For a Homogeneous Plasma, we want to solve steady state kinetic equation

$$
\frac{\partial f}{\partial t}=0=C(f)-\frac{\partial}{\partial \mathbf{v}} \cdot \Gamma
$$

Then find parallel current

$$
J_{\|}=-e \int d^{3} v v_{\|} f
$$

Adjoint problem: Spitzer-Harm Distribution function driven by a DC electric field.

Parallel current

$$
J_{\|}=\int d^{3} v \Gamma \cdot \frac{\partial}{\partial \mathbf{v}}\left(\frac{g}{f_{M}}\right)
$$

Toroidal Geometry Makes a Difference,

TMA and KR Chu, PoF 25, (1982)
streaming

$$
\begin{aligned}
& v_{11} \mathbf{b} \cdot \nabla g-e v_{\|} f_{M}=C(g) \\
& J=\int d^{3} v \Gamma \cdot \frac{\partial}{\partial v} g / f_{M}
\end{aligned}
$$

$\Psi=$ const.

(a)
(b)

Recent Adjoint Approaches

- Beam optics sensitivity function, TMA, D. Chernin, J. Petillo, Phys. Plasmas 26, 013109 (2019); doi: 10.1063/1.5079629
- Stellarator Optimization and Sensitivity, E. Paul, M. Landreman, TMA, J. Plasma Phys. (2019), vol. 85, 905850207, J. Plasma Phys. (2021), vol. 87, 905870214
- Optimization of Flat to Round Transformers in Particle Accelerators, L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and TMA, Phys Rev Accel and Beams V25, 044002 (2022).
- Adjoint Equations for Beam-Wave Interaction and Optimization of TWT Design, A. Vlasov, TMA, D. Chernin and I. Chernyavskiy, IEEE Trans. Plasma Sci. V. March (2022).

Give a child a hammer and everything becomes a nail.

Global Beam Sensitivity Function for Electron Guns

Goal

Derive and Calculate a function that gives the variation of specific beam parameters to

- variations in electrode potential/position
- variations in magnet current/position

Can be used to

- establish manufacturing tolerances
- optimize gun designs

Should be embedded in gun code (e.g. Michelle)

Thermionic Cathode Electron Gun

Solid Model of Electrodes

Beam is compressed
Cut away view of trajectories

What shape to make electrodes?

Michelle: Petillo, J; Eppley, K;
Panagos, D; et al., IEEE TPS 30, 12381264 (2002).

Code (Michelle) solves the following equations:
Equations of motion for N particles $\mathrm{j}=1, \mathrm{~N}$

Start with vacuum fields

$$
\frac{d \boldsymbol{x}_{j}}{d t}=\frac{\partial H}{\partial \boldsymbol{p}} \quad \frac{d \boldsymbol{p}_{j}}{d t}=-\frac{\partial H}{\partial \boldsymbol{x}}
$$

Accumulates a charge density

$$
\rho(\boldsymbol{x})=\sum_{j} I_{j} \int_{0}^{T_{j}} d t \delta\left(\boldsymbol{x}-\boldsymbol{x}_{j}(t)\right)
$$

Solves Poisson Equation

$$
-\nabla^{2} \Phi=\rho / \varepsilon_{0}
$$

Sensitivity Function

Basic question: How do small changes in

Conventional approach: trial and error. Do many simulations with different anode potentials or positions select the best based on some metric measured at the exit.

It will be shown ...

Problem \#1

 $\delta \Phi_{A}(\mathbf{x})=\Delta(\mathbf{x}) \cdot \nabla \Phi \quad$ Wall displacement changes

Leads to change in RMS beam radius $\Delta R_{R M S}$

Problem \#2

0

Reverse and perturb electron coordinates
δE_{n} Is the sensitivity function

Electrons run backwards

Sensitivity function
$\Delta R_{R M S} \propto \int_{S} d a \delta \Phi_{A}(\mathbf{x}) \delta E_{n}(\mathbf{x})$

Hamilton's Equations $H(\boldsymbol{p}, \boldsymbol{q}, t)$ Conserve Symplectic Area

$$
\frac{d}{d t}\left(\delta \mathbf{p}_{1} \cdot \delta \mathbf{q}_{2}-\delta \mathbf{p}_{2} \cdot \delta \mathbf{q}_{1}\right)=0
$$

Area conserved for any choice of 1 and 2

Reference Solution + Two Linearized Solutions

$$
\begin{gathered}
\left(\mathbf{x}_{j}, \mathbf{p}_{j}\right) \rightarrow\left(\mathbf{x}_{j}, \mathbf{p}_{j}\right)+\left(\delta \mathbf{x}_{j}, \delta \mathbf{p}_{j}\right) \\
\rho(\mathbf{x}) \rightarrow \rho(\mathbf{x})+\delta \rho(\mathbf{x}) \\
\Phi(\mathbf{x}) \rightarrow \Phi(\mathbf{x})+\delta \Phi(\mathbf{x})
\end{gathered}
$$

Reference Solution Perturbation

Two Linearized Solutions

$\left[\delta x_{j}(t), \delta p_{j}(t)\right] \quad$ true
$\left[\delta \hat{x}_{j}(t), \delta \hat{p}_{j}(t)\right] \quad$ adjoint
subject to different BC's

Can show

$$
\left.\sum_{j} I_{j}\left(\delta \hat{\mathbf{p}}_{j} \cdot \delta \mathbf{x}_{j}-\delta \mathbf{p}_{j} \cdot \delta \hat{\mathbf{x}}_{j}\right)\right|_{0} ^{T_{j}}=-q \varepsilon_{0} \int_{S} d a \mathbf{n} \cdot[\delta \Phi \nabla \delta \hat{\Phi}-\delta \hat{\Phi} \nabla \delta \Phi]
$$

Generalized Green Theorem

Generalized Green's Theorem

$$
\left.\sum_{j} I_{j}\left(\delta \hat{\mathbf{p}}_{j} \cdot \delta \mathbf{x}_{j}-\delta \mathbf{p}_{j} \cdot \delta \hat{\mathbf{x}}_{j}\right)\right|_{0} ^{T_{j}}=-q \varepsilon_{0} \int_{S} d a \mathbf{n} \cdot[\delta \Phi \nabla \delta \hat{\Phi}-\delta \hat{\Phi} \nabla \delta \Phi]
$$

Problem \#1 (true problem) Unperturbed trajectories at cathode, Perturbed potential on boundary.

$$
\left.\delta p_{j}\right|_{0}=0,\left.\quad \delta x_{j}\right|_{0}=0, \delta \Phi(\mathbf{x}) \neq 0
$$

Problem \#2 (adjoint problem) Perturbed trajectories at exit, Unperturbed potential on boundary.

$$
\begin{gathered}
\qquad\left.\delta \hat{p}_{j}\right|_{T}=\lambda \mathbf{x}_{\perp j},\left.\quad \delta x_{j}\right|_{T}=0, \delta \hat{\Phi}(\mathbf{x})=0 \\
\lambda I R_{R M S} \delta R_{R M S}=\left.\lambda \sum_{j} I_{j}\left(\mathbf{x}_{j} \cdot \delta \mathbf{x}_{j}\right)\right|_{T_{j}}=-q \varepsilon_{0} \int_{S} d a \delta \Phi(\mathbf{n} \cdot \nabla \delta \hat{\Phi}) \\
\text { Sensitivity Function }
\end{gathered}
$$

Vertical Displacement of the Beam

Numerical Accuracy

Problem \#1 (true problem) Change anode voltage, find change in RMS radius.

Problem \#2 (adjoint problem) Perturbed trajectories at exit, Unperturbed potential on boundary.

$$
\left.\delta \hat{p}_{j}\right|_{T}=\lambda \mathbf{x}_{\perp j},
$$

$\lambda I R_{R M S} \delta R_{R M S}=\left.\lambda \sum_{j} I_{j}\left(\mathbf{x}_{j} \cdot \delta \mathbf{x}_{j}\right)\right|_{T_{j}}=-q \varepsilon_{0} \int_{S} d a \delta \Phi(\mathbf{n} \cdot \nabla \delta \hat{\Phi})$

AO 2.4-4: John Petillo, Serguei Ovtchinnikov, Aaron Jensen (Leidos), Philipp Borchard (Dymenso) Kyle Kuhn, Heather Shannon, Brain Beaudoin TMA. (U. Maryland) Application: 2D parallel plate sheet beam

- Forward Case: Grounded Inserts top and bottom
- Direct Perturbation Case: Electrode inserts on top and bottom set to $\Delta \mathrm{V}$
$\Delta \mathrm{V}$ tested from $1-10,000 \mathrm{~V}$

Mean Displacement: 2D parallel plate sheet beam - Manufacturing sensitivity to beam centering offset

- Results of direct vs. adjoint methods agree to within $\mathbf{0 . 2 0 \%}$.
- Verification: Hamiltonian Approach Excellent first successful Adjoint method to beam transport in a magnetic field.
- Results:
- As the perturbed-case voltage values became small enough it easily entered the linear regime.
- There is very a broad range of both Λ and $\Delta \mathrm{V}$ where the results are all in a linear regime.
- Sensitivity $\left[\left(q^{*} \varepsilon_{0}\right) /(\Lambda)^{*}\right.$ integral($\left.\left.\mathrm{E}^{*} \mathrm{dz}\right)\right]$ vs. Normalized Vertical Momentum (Λ) - Sensitivity $\left[I \mathrm{dx}^{*} \mathrm{~V}_{\mathrm{zo0}} / \Delta \mathrm{V}\right]$ vs. Normalized $\Delta V / V$

Adjoint method predicted the deflection sensitivity to within
0.2\%

AO 2.4-2 - Optimization of TWT Design by Using Adjoint Approach
A. Vlasov, T. M. Antonsen Jr., D. Chernin, I. Chernyavskiy

Optimization of Small Signal Gain

Distance between gaps (two sections).
3 different goal functions
2 optimization parameters
■ $p=L_{g 1}, L_{g 2}$
■ Maximize: $F_{1}(\boldsymbol{p})=\frac{1}{f_{2}-f_{1}} \int_{f_{1}}^{f_{2}} \boldsymbol{G}(\boldsymbol{f}) d \boldsymbol{f}$
■ Minimize: $\left.F_{2}(p)=\frac{1}{f_{2}-f_{B}} \int_{\frac{1}{f} \frac{f_{g}}{f}(G)}^{\sigma_{g}^{p}}(f)-\bar{G}\right)^{2} d f$

- Maximize: $\boldsymbol{F}_{3}(\boldsymbol{p})=$

3D MHD Equilibria

Wendelstein 7-X
Max Planck Institute for Plasma Physics (IPP)
Greifswald, Germany Completed 2015

Optimization of Stellarator Equilibria

\rightarrow Figures of Merit (FoM) - Examples
Plasma Beta, Rotational Transform, Quasi-symmetry
\rightarrow FoMs depend on boundary or coil shapes
\rightarrow Shape Gradient Sensitivity Functions
gradient based optimization establish tolerances

Landreman and Paul, 2018 Nucl. Fusion 58
076023,
E. Paul, M. Landreman, TMA, J. Plasma

Phys. (2019), vol. 85, 905850207,
J. Plasma Phys. (2021), vol. 87, 905870214
C. Othmer, J. Math. Industry 4, 6 (2014). DRAG

Surface Sensitivities

Rotational transform

Adjoint Symmetry Simplifies Calculations

Adjoint Approach to gradient calculation
> 500 X Speed - Up over direct calculation

Uses VMEC \& DIAGNO

Hirshman and Whitman, 1983 Phys. Fluids 253553
H.J. Gardner 1990 Nucl. Fusion 301417

Different Figures of Merit Possible
Plasma pressure - beta
Rotational transform
Toroidal current
Neoclassical radial transport $-1 / v$ regime Energetic particle drifts

Surface shape sensitivity

Quasi-symmetry
Others
Coil location sensitivity

3D MHD Toroidal Equilibrium

In vacuum
$\nabla \times \mathbf{B}=\frac{4 \pi}{c} \mathbf{J}_{C}$
coil current

$$
\begin{aligned}
& \text { Poloidal flux } \\
& \mathbf{B}=\nabla \alpha \times \nabla \theta-\nabla \Phi_{p}(\alpha) \times \nabla \zeta \\
& =\nabla \alpha \times \nabla(\theta-l(\alpha) \zeta) \\
& \text { Toroidal Flux } \\
& l(\alpha)=d \Phi_{p}(\alpha) / d \alpha
\end{aligned}
$$

Rotational transform

Linear Perturbations to Equilibrium Generalized Forces:

$$
\begin{gathered}
\mathbf{J}_{C} \Rightarrow \mathbf{J}_{C}+\delta \mathbf{J}_{C} \\
\nabla p \Rightarrow \nabla p+\nabla \cdot \delta \underline{\underline{\mathbf{P}}} \\
\Phi_{p}(\alpha) \Rightarrow \Phi_{p}(\alpha)+\delta \Phi_{p}(\alpha) \\
\imath(\alpha)=d \Phi_{p}(\alpha) / d \alpha
\end{gathered}
$$

Changes in current/shape/location of coils

Added pressure tensor
Change in poloidal flux profile

Generalized responses:

$$
\begin{aligned}
\mathbf{A}_{V} & \Rightarrow \mathbf{A}_{V}+\delta \mathbf{A}_{V} \\
\mathbf{B} & \Rightarrow \mathbf{B}+\nabla \times\left(\xi \times \mathbf{B}-\delta \Phi_{P} \nabla \zeta\right) \\
I_{T} & \Rightarrow I_{T}+\delta I_{T}(\alpha)
\end{aligned}
$$

Changes in vacuum fields
Changes in magnetic field
Changes in toroidal current profile

Generalized Forces and Responses

More generically, for two different perturbations

$$
\delta x_{i}^{(1)}=\sum_{j} O_{i j} \delta F_{j}^{(1)} \quad \delta x_{i}^{(2)}=\sum_{j} O_{i j} \delta F_{j}^{(2)}
$$

Onsager Symmetry Gives

$$
\sum_{j}\left\{\delta x_{i}^{(1)} \delta F_{i}^{(2)}-\delta x_{i}^{(2)} \delta F_{i}^{(1)}\right\}=0
$$

Onsager Symmetry for 3D MHD Equilibria Self-adjoint MHD Force Operator

$$
\int_{V P} d^{3} x\left(\xi^{(1)} \cdot \nabla \cdot \delta \underline{\underline{\mathbf{P}}}_{L}^{(2)}-\xi^{(2)} \cdot \nabla \cdot \delta \underline{\underline{\mathbf{P}}}_{L}^{(1)}\right)
$$

True
Adjoint

Pressure - Displacement

$$
-\frac{2 \pi}{c} \int_{V P} d \alpha\left(\delta I_{T}^{(2)} \frac{d}{d \alpha} \delta \Phi_{p}^{(1)}-\delta I_{T}^{(1)} \frac{d}{d \alpha} \delta \Phi_{p}^{(2)}\right)
$$

Rotational transform -Toroidal current
$+\frac{1}{4 \pi} \int_{S} d^{2} x \mathbf{n} \cdot\left(\xi^{(1)} \delta \mathbf{B}^{(2)} \cdot \mathbf{B}-\xi^{(2)} \delta \mathbf{B}^{(1)} \cdot \mathbf{B}\right)=0$
Surface displacement

Specify BC's \& Constraints

Make this appear to be change in FoM

$$
\int_{V P} d^{3} x\left(\xi^{(1)} \cdot \nabla \cdot \delta \underline{\mathbf{P}}_{L}^{(2)}-\xi^{(2)} \cdot \nabla \cdot \delta \mathbf{P}_{L}^{(1)}\right)
$$

True
Adjoint

Pressure - Displacement

$$
-\frac{2 \pi}{c} \int_{V P} d \alpha\left(\delta I_{T}^{(2)} \frac{d}{d \alpha} \delta \Phi_{p}^{(1)}-\delta I_{T}^{(1)} \frac{d}{d \alpha} \delta \Phi_{p}^{(2)}\right)
$$

Rotational transform -Toroidal current

$$
+\frac{1}{4 \pi} \int_{S} d^{2} x \mathbf{n} \cdot\left(\xi^{(1)} \delta \mathbf{B}^{(2)} \cdot \mathbf{B}-\xi^{(2)} \delta \mathbf{B}^{(1)} \cdot \mathbf{B}\right)=0
$$

Surface displacement

Specify BC's \& Constraints

Make this appear to be change in FoM

$$
\int_{V P} d^{3} x\left(\frac{\left.\sqrt{\xi^{(2)} \cdot \nabla \cdot \delta \underline{\mathbf{P}}_{L}^{(1)}}\right)}{\text { Pressure - Displacement }}\right. \text { Adjoint }
$$

$$
+\frac{1}{4 \pi} \int_{S} d^{2} x \mathbf{n} \cdot(
$$

Surface displacement

Gradient-based optimization of 3D MHD equilibria

18 E. J. Paul, M. Landreman and T. Antonsen, Jr.

(b)

Figure 11. The magnetic field strength on (a) the initial boundary (4.14) and (b) the boundary optimized for quasi-symmetry on the axis (4.13).

Optimization of Focusing Magnets in

 Accelerator Lattices
The University of Maryland Electron Ring

UMER is a fully functional electron storage ring

UMER Systems and Layout

4

- 167 Magnets, power supplies \& controls.
$x^{\prime}=\mathrm{dx} / \mathrm{ds}$. Transverse Phase

X

FODO Lattice

Qualitative explanation: beam passes through focusing quad when it is big (strong fields). Passes through defocusing quad when it is small (weak Beam distributionfidepsend \$equfifanis pacameters How to optis

Optimization of Flat to Round Transformers Using Adjoint Techniques*
L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and T. M. Antonsen Jr , Phys Rev Accel and Beams V25, 044002 (2022).

Flat to Round and Round to Flat transformers are proposed for cooling of hadron beams. Ya. Derbenev, Adapting optics for high-energy electron cooling, Tech. Rep. UM-HE-98-04-A (1998).

Cylindrical hadron beam cools via collisions when co-propagated with electron beam.

Steps

1. Derive system of moment equations (include self fields)
2. Linearize (to compute parameter gradient)
3. Find adjoint system
4. Decide on Figures of Merit
5. Optimize by Gradient Descent

$\frac{d}{d z} \mathbf{Q}=\mathbf{P}$
$\frac{d}{d z} \mathbf{P}=\mathbf{E}+\mathbf{O} \cdot \mathbf{Q}$
$\frac{d}{d z} \mathbf{E}=\mathbf{O} \cdot \mathbf{P}+\mathbf{N} L$
$\frac{d}{d z} L=-\mathbf{N}^{\dagger} \cdot \mathbf{Q}$

Moment Equations

Depend on magnet parameters

Symbols -PIC
Lines - Moment Eqs.

$$
\mathbf{Q}=\left(\begin{array}{c}
\left\langle x^{2}+y^{2}\right\rangle / 2 \\
\left\langle x^{2}-y^{2}\right\rangle / 2 \\
\langle x y\rangle
\end{array}\right) \quad L=\left\langle x y^{\prime}-y x^{\prime}\right\rangle
$$

$$
\mathbf{P}=\left(\begin{array}{c}
\left\langle x x^{\prime}+y y^{\prime}\right\rangle \\
\left\langle x x^{\prime}-y y^{\prime}\right\rangle \\
\left\langle y x^{\prime}+x y^{\prime}\right\rangle
\end{array}\right) \quad \mathbf{E}=\left(\begin{array}{c}
\left\langle x^{\prime 2}+y^{\prime 2}\right\rangle \\
\left\langle x^{\prime 2}-y^{\prime 2}\right\rangle \\
2\left\langle y^{\prime} x^{\prime}\right\rangle
\end{array}\right)
$$

More Optimization

Continuous magnetic field profiles
Variable magnet orientations

Circular Accelerators-Periodicity

Solve Eqs. of motion and self fields
Particles return to initial plane.
Need to maintain periodicity of distribution, not individual orbits

Big problems:
Do periodic distributions exist? Most likely no.
How to relaunch particles to optimize?

Conclusion

Adjoint methods are a powerful way to evaluate parameter dependences in many systems involving charged particle dynamics.

Thank you.

Moment Equations

Transverse phase space:

$$
x, x^{\prime}=\frac{d x}{d z}, y, y^{\prime}=\frac{d y}{d z}
$$

The second order moments are averages of the 4 by 4 elements of the Sigma matrix.

Moments: $\mathbf{Q}, \mathbf{P}, \mathbf{E}, L$

$$
\underset{\underline{\Sigma}}{\underline{\Sigma}}\left[\begin{array}{cccc}
x x & x x^{\prime} & x y & x y^{\prime} \\
x^{\prime} x & x^{\prime} x^{\prime} & x^{\prime} y & x^{\prime} y^{\prime} \\
y x & y x^{\prime} & y y & y y^{\prime} \\
y^{\prime} x & y^{\prime} x^{\prime} & y^{\prime} y & y^{\prime} y^{\prime}
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{Q}=\left(\begin{array}{c}
Q_{+} \\
Q_{-} \\
Q_{x}
\end{array}\right)=\left(\begin{array}{c}
\left\langle x^{2}+y^{2}\right\rangle / 2 \\
\left\langle x^{2}-y^{2}\right\rangle / 2 \\
\langle x y\rangle
\end{array}\right) \mathbf{P}=\frac{d}{d z} \mathbf{Q}=\left(\begin{array}{c}
P_{+} \\
P_{-} \\
P_{x}
\end{array}\right)=\left(\begin{array}{c}
\left\langle x x^{\prime}+y y^{\prime}\right\rangle \\
\left\langle x x^{\prime}-y y^{\prime}\right\rangle \\
\left\langle y x^{\prime}+x y^{\prime}\right\rangle
\end{array}\right)_{\mathbf{E}=\left(\begin{array}{c}
E_{+} \\
E_{-} \\
E_{x}
\end{array}\right)=\left(\begin{array}{c}
\left\langle x^{\prime 2}+y^{\prime 2}\right\rangle \\
\left\langle x^{\prime 2}-y^{\prime 2}\right\rangle \\
2\left\langle y^{\prime} x^{\prime}\right\rangle
\end{array}\right)} \\
& \text { Angular momentum } \quad L=\left\langle x y^{\prime}-y x^{\prime}\right\rangle
\end{aligned}
$$

Angular momentum

$$
L=\left\langle x y^{\prime}-y x^{\prime}\right\rangle
$$

Linearized System

Linear perturbation due to true change
Base case in parameters

Adjoint system

$$
\begin{array}{llrl}
\frac{d}{d z} \mathbf{Q}=\mathbf{P} & \frac{d}{d z} \delta \mathbf{Q}^{(X)}=\delta \mathbf{P}^{(X)} & \frac{d}{d z} \delta \mathbf{Q}^{(Y)}=\delta \mathbf{P}^{(Y)} \\
\frac{d}{d z} \mathbf{P}=\mathbf{E}+\mathbf{O} \cdot \mathbf{Q} & \frac{d}{d z} \delta \mathbf{P}^{(X)}=\delta \mathbf{E}^{(X)}+\mathbf{O} \cdot \delta \mathbf{Q}^{(X)}+\delta \mathbf{O}^{(X)} \cdot \mathbf{Q} & \frac{d}{d z} \delta \mathbf{P}^{(Y)}=\delta \mathbf{E}^{(\gamma)}+\mathbf{O} \cdot \delta \mathbf{Q}^{(Y)} \\
\frac{d}{d z} \mathbf{E}=\mathbf{O} \cdot \mathbf{P}+\mathbf{N} L & \frac{d}{d z} \delta \mathbf{E}^{(X)}=\mathbf{O} \cdot \delta \mathbf{P}^{(X)}+\mathbf{N} \delta L^{(X)} & \frac{d}{d z} \delta \mathbf{E}^{(\gamma)}=\mathbf{O} \cdot \delta \mathbf{P}^{(\gamma)}+\mathbf{N} \delta L^{(Y)}+\delta \dot{\mathbf{E}}^{(Y)} \\
\frac{d}{d z} L=-\mathbf{N}^{\dagger} \cdot \mathbf{Q} & \frac{d}{d z} \delta L^{(X)}=-\mathbf{N}^{\dagger} \cdot \delta \mathbf{Q}^{(X)}-\delta \mathbf{N}^{\dagger(X)} \cdot \mathbf{Q} & \frac{d}{d z} \delta L^{(\gamma)}=-\mathbf{N}^{\dagger} \cdot \delta \mathbf{Q}^{(Y)}
\end{array}
$$

Sensitivity functions

$$
\begin{gathered}
\delta F o M=\int_{z_{i}}^{z_{f}} d z\left\{\delta \mathbf{P}^{(\gamma)} \cdot \delta \mathbf{0}_{Q, B}{ }^{(X)} \cdot \mathbf{Q}+\delta L^{(\gamma)} \mathbf{Q} \cdot \delta \mathbf{N}_{Q, B}{ }^{(X)}-\delta \mathbf{Q}^{(\gamma)} \cdot \delta \mathbf{0}_{Q, B}{ }^{(X)} \cdot \mathbf{P}-\delta \mathbf{Q}^{(\gamma)} \cdot \delta \mathbf{N}_{Q, B}{ }^{(X)} L\right\} \\
\text { Change in magnet parameters }
\end{gathered}
$$

Figure of Merit and Gradient

Constant radius, Round

$$
\begin{aligned}
& F=\frac{1}{2}\left[|\mathbf{P}|^{2}+k_{0}^{2}\left(Q_{-}^{2}+Q_{x}^{2}\right)+k_{0}^{-2}\left(E_{-}^{2}+E_{x}^{2}\right)\right] \\
& +\frac{1}{2}\left[k_{0}^{-2}\left(E_{+}-\frac{1}{2} k_{\Omega}^{2} Q_{+}+\Lambda\right)^{2}+\left(2 E_{+} Q_{+}-L^{2}\right)^{2}\right]
\end{aligned}
$$

Radial force balance, Rigid rotation

$$
\mathbf{Q}=\left(\begin{array}{c}
L=\left\langle x y^{\prime}-y x^{\prime}\right\rangle \\
\frac{1}{2}\left\langle x^{2}+y^{2}\right\rangle \\
\frac{1}{2}\left\langle x^{2}-y^{2}\right\rangle \\
\langle x y\rangle
\end{array}\right) \mathbf{P}=\left(\begin{array}{c}
\left\langle x x^{\prime}+y y^{\prime}\right\rangle \\
\left\langle x x^{\prime}-y y^{\prime}\right\rangle \\
\left\langle y x^{\prime}+x y^{\prime}\right\rangle
\end{array}\right) \quad \mathbf{E}=\left(\begin{array}{c}
\left\langle x^{\prime 2}+y^{\prime 2}\right\rangle \\
\left\langle x^{\prime 2}-y^{\prime 2}\right\rangle \\
2\left\langle y^{\prime} x^{\prime}\right\rangle
\end{array}\right) .
$$

Optimization - Space Charge Compensation

Next Step - Circular Accelerators

Beam Particles

Solve Moment Eqs.

$$
\begin{gathered}
\mathrm{Z}=\mathrm{Z}_{\mathrm{i}} \\
\boldsymbol{X}=\left(k_{0} \boldsymbol{Q}\left(z_{i}\right), \boldsymbol{P}\left(z_{i}\right), L\left(z_{i}\right), k_{0}^{-1} \boldsymbol{E}\left(z_{i}\right)\right)
\end{gathered}
$$

$$
\boldsymbol{X}_{f}(X, a)=\left(k_{0} \boldsymbol{Q}\left(z_{f}\right), \boldsymbol{P}\left(z_{f}\right), L\left(z_{f}\right), k_{0}^{-1} \boldsymbol{E}\left(z_{f}\right)\right)
$$

Periodicity: Enforce $\quad W(\boldsymbol{X}, \boldsymbol{a})=\frac{1}{2}\left|\boldsymbol{X}_{f}(\boldsymbol{X}, \boldsymbol{a})-\boldsymbol{X}\right|^{2}=0$
Optimize: Minimize Figure of Merit $F(\mathbf{X}, \mathbf{a}) \quad \boldsymbol{a}=$ parameter list

Constrained Optimization by Multiple Relaxation

Adjoint with a chaser!

Next Step - Circular Accelerators

Beam Particles

$$
\begin{gathered}
\mathrm{Z}=\mathrm{Z}_{\mathrm{i}} \\
\boldsymbol{X}=\left(k_{0} \boldsymbol{Q}\left(z_{i}\right), \boldsymbol{P}\left(z_{i}\right), L\left(z_{i}\right),,_{0}^{-1} \boldsymbol{E}\left(z_{i}\right)\right)
\end{gathered}
$$

$$
\begin{array}{r}
\mathrm{Z}=\mathrm{Z}_{\mathrm{f}} \\
\boldsymbol{X}_{f}(X, a)=\left(k_{0} \boldsymbol{Q}\left(z_{f}\right), \boldsymbol{P}\left(z_{f}\right), L\left(z_{f}\right), k_{0}^{-1} \boldsymbol{E}\left(z_{f}\right)\right)
\end{array}
$$

Solve Moment Eqs.
Periodicity: Minimize

$$
\operatorname{lize}_{W(\boldsymbol{X}, \boldsymbol{a})}=\frac{1}{2}\left|\boldsymbol{X}_{f}(\boldsymbol{X}, \boldsymbol{a})-\boldsymbol{X}\right|^{2} \quad \frac{d \mathbf{a}}{d \tau}=-\underline{\underline{\mathbf{a}}}^{2} \cdot \frac{d}{d \mathbf{a}} F=-\underline{\underline{\mathbf{a}}}^{2} \cdot\left(\left.\frac{\partial}{\partial \mathbf{a}} F\right|_{W^{\prime}=0}+\left.\frac{\partial}{\partial \mathbf{a}} F\right|_{X}\right)
$$

Minimize
Figure of Merit $F(\mathbf{X}, \mathbf{a})$
This is the tricky term

The Tricky Term

$$
\begin{aligned}
& \frac{d \mathbf{a}}{d \tau}=-\underline{\underline{\mathbf{a}}}^{2} \cdot \frac{d}{d \mathbf{a}} F=-\underline{\underline{\mathbf{a}}}^{2} \cdot\left(\left.\frac{\partial}{\partial \mathbf{a}} F\right|_{W^{\prime}=0}+\left.\frac{\partial}{\partial \mathbf{a}} F\right|_{X}\right) \\
& \left.\frac{\partial}{\partial \mathbf{a}} F\right|_{W^{\prime}=0}=\left.\left.\frac{\partial}{\partial \mathbf{X}} F\right|_{\mathbf{a}} \cdot \frac{\partial \mathbf{X}}{\partial \mathbf{a}}\right|_{W^{\prime}=0}
\end{aligned} \text { This is the tricky term }
$$

Expand $W^{\prime}(\mathbf{X}, \mathbf{a})$ to first order

$$
\frac{\partial}{\partial \mathbf{X}} W(\mathbf{X}, \mathbf{a})=\delta \mathbf{x} \frac{\partial^{2}}{\partial \mathbf{X} \partial \mathbf{X}} W(\mathbf{X}, \mathbf{a})+\delta \mathbf{a} \frac{\partial^{2}}{\partial \mathbf{a} \partial \mathbf{X}} W(\mathbf{X}, \mathbf{a})=0
$$

$$
\left.\frac{\delta \mathbf{X}}{\delta \mathbf{a}}\right|_{W=0}=-\frac{\partial^{2}}{\partial \mathbf{a} \partial \mathbf{X}} W(\mathbf{X}, \mathbf{a})\left(\frac{\partial^{2}}{\partial \mathbf{X} \partial \mathbf{X}} W(\mathbf{X}, \mathbf{a})\right)^{-1}
$$

Requires evaluating and inverting large matrices

Constrained Optimization by Multiplęr Relaxation

 Adjoint with a chaser!$$
\begin{gathered}
\frac{d}{d \tau} \boldsymbol{X}=-\left.\frac{\partial}{\partial \boldsymbol{X}} W(\boldsymbol{X}, \boldsymbol{a})\right|_{a} \quad \text { The equilibrium } \\
\frac{d}{d \tau} \boldsymbol{Y}=-\frac{\partial}{\partial \boldsymbol{Y}}[W(\boldsymbol{Y}, \boldsymbol{a})+\lambda F(\boldsymbol{Y}, \boldsymbol{a})] \quad \text { The chaser }
\end{gathered}
$$

Parameter evolution

$$
\mu \frac{d}{d \tau} \boldsymbol{a}=-\underline{\underline{\boldsymbol{a}}}^{2} \cdot \frac{\partial}{\partial \boldsymbol{a}}\left[\frac{W(\boldsymbol{Y}, \boldsymbol{a})-W(\boldsymbol{X}, \boldsymbol{a})}{\lambda}\right]-\underline{\underline{\boldsymbol{a}}}^{2} \cdot \frac{\partial}{\partial \boldsymbol{a}} F(X, a)
$$

$$
\left.\frac{\partial}{\partial \boldsymbol{a}} F(X, a)\right|_{\partial W / \partial X=0}
$$

Only first derivatives required (6)

How is it Supposed to Work

$\mu>1$ So that "a" evolves "slowly".

$$
\begin{aligned}
& \boldsymbol{X} \rightarrow \boldsymbol{X}_{e}(\boldsymbol{a}), \quad 0=-\left.\frac{\partial}{\partial \boldsymbol{X}} W(\boldsymbol{X}, \boldsymbol{a})\right|_{\boldsymbol{X}_{e}, \boldsymbol{a}} \quad \begin{array}{l}
\boldsymbol{X} \text { tends to } \\
\text { local }
\end{array} \\
& \boldsymbol{Y} \rightarrow \boldsymbol{X}_{e}+\delta \boldsymbol{Y} \quad 0=-\left.\delta \boldsymbol{Y} \cdot \frac{\partial^{2} W(\boldsymbol{Y}, \boldsymbol{a})}{\partial \boldsymbol{X} \partial \boldsymbol{X}}\right|_{\boldsymbol{X}_{e}, a}-\left.\lambda \frac{\partial}{\partial \boldsymbol{X}} F(\boldsymbol{X}, \boldsymbol{a})\right|_{X_{e}, a} \begin{array}{c}
\text { equilibrium } \\
\text { The chaser to a } \\
\text { tends tighty }
\end{array} \\
& \text { slightly } \\
& \text { Allow } \boldsymbol{a} \text { to change. } \boldsymbol{a}+\boldsymbol{\sigma} \boldsymbol{a} \\
& \text { different } \\
& 0=-\left.\delta \boldsymbol{X}_{e} \cdot \frac{\partial^{2} W(\boldsymbol{Y}, \boldsymbol{a})}{\partial \boldsymbol{X} \partial \boldsymbol{X}}\right|_{\boldsymbol{x}_{c}, a}-\left.\delta \boldsymbol{a} \cdot \frac{\partial^{2} W(\boldsymbol{Y}, \boldsymbol{a})}{\partial \boldsymbol{a} \partial \boldsymbol{X}}\right|_{\boldsymbol{X}_{c}, a} \quad \begin{array}{c}
\text { The } \boldsymbol{X} \\
\text { equilibrium }
\end{array} \\
& \lambda \delta F=\left.\lambda \delta \boldsymbol{X}_{e} \frac{\partial}{\partial \boldsymbol{X}} F(\boldsymbol{X}, \boldsymbol{a})\right|_{W^{\prime}=0}=\delta \boldsymbol{a} \delta \boldsymbol{Y}:\left.\frac{\partial^{2}}{\partial \boldsymbol{a} \partial \boldsymbol{X}} W(\boldsymbol{X}, \boldsymbol{a})\right|_{x_{e}, a} \simeq \delta \boldsymbol{a} \cdot \frac{\partial}{\partial \boldsymbol{a}}\left[\begin{array}{c}
\text { changes } \\
\\
\boldsymbol{Y}, \boldsymbol{a})-W(\boldsymbol{X}, \boldsymbol{a})
\end{array}\right]_{x_{e}}
\end{aligned}
$$

Constrained Optimization by Multiplęr Relaxation

 Adjoint with a chaser!$$
\begin{gathered}
\frac{d}{d \tau} \boldsymbol{X}=-\left.\frac{\partial}{\partial \boldsymbol{X}} W(\boldsymbol{X}, \boldsymbol{a})\right|_{a} \quad \text { The equilibrium } \\
\frac{d}{d \tau} \boldsymbol{Y}=-\frac{\partial}{\partial \boldsymbol{Y}}[W(\boldsymbol{Y}, \boldsymbol{a})+\lambda F(\boldsymbol{Y}, \boldsymbol{a})] \quad \text { The chaser }
\end{gathered}
$$

Parameter evolution

$$
\mu \frac{d}{d \tau} \boldsymbol{a}=-\underline{\boldsymbol{a}}^{2} \cdot \frac{\partial}{\partial \boldsymbol{a}}\left[\frac{W(\boldsymbol{Y}, \boldsymbol{a})-W(\boldsymbol{X}, \boldsymbol{a})}{\lambda}\right]-\underline{\underline{\boldsymbol{a}}}^{2} \cdot \frac{\partial}{\partial \boldsymbol{a}} F(X, a)
$$

$$
\left.\frac{\partial}{\partial \boldsymbol{a}} F(X, a)\right|_{\partial W / \partial X=0}
$$

Only first derivatives required (4)

Moment Eqs. - Circular Accelerators

Beam Particles

$$
\begin{gathered}
\mathrm{Z}=\mathrm{Z}_{\mathrm{i}} \\
\boldsymbol{X}=\left(k_{0} \boldsymbol{Q}\left(z_{i}\right), \boldsymbol{P}\left(z_{i}\right), L\left(z_{i}\right), \boldsymbol{k}_{0}^{-1} \boldsymbol{E}\left(z_{i}\right)\right)
\end{gathered}
$$

$$
\begin{array}{r}
\mathrm{Z}=\mathrm{Z}_{\mathrm{f}} \\
\boldsymbol{X}_{f}(X, a)=\left(k_{0} \boldsymbol{Q}\left(z_{f}\right), \boldsymbol{P}\left(z_{f}\right), L\left(z_{f}\right), k_{0}^{-1} E\left(z_{f}\right)\right)
\end{array}
$$

Solve Moment Eqs.
Periodicity: Minimiz $\boldsymbol{X}, \boldsymbol{a})=\frac{1}{2}\left|\boldsymbol{X}_{f}(\boldsymbol{X}, \boldsymbol{a})-\boldsymbol{X}\right|^{2}$ Solve Adjoint Eqs.

Figure of Merit $F\left(\mathbf{X},\left.\left.\frac{\partial}{\left.\frac{\partial}{\partial a}\right)} W(\boldsymbol{X}, \boldsymbol{a})\right|_{X} \frac{\partial}{\partial \boldsymbol{X}} W(\boldsymbol{X}, \boldsymbol{a})\right|_{a}\right.$

$$
\left.\left.\frac{\partial}{\partial a} F(X, a)\right|_{X} \quad \frac{\partial}{\partial X} F(X, a)\right|_{a}
$$

Can be evaluated with 6 solutions of adjoint Eqs.

Conclusion

Adjoint method allows for optimization of Round to Flat and Flat to Round transformers.

Periodic lattices may (?) be handled by "Adjoint with a Chaser". We are currently testing using moment equations

Formalism extended to treat particle description - done
"Adjoint with a Chaser" may be extended to Stellarator optimization, with a side of ALPO°.

Conclusion: Next Steps

Add Magnetic field

sensitivity function

$$
\left.\sum_{j} I_{j}\left(\delta \hat{\mathbf{p}}_{j} \cdot \delta \mathbf{x}_{j}-\delta \mathbf{p}_{j} \cdot \delta \hat{\mathbf{x}}_{j}\right)\right|_{T_{j}}=-q \varepsilon_{0} \int_{S} d a \delta \Phi_{A} n \cdot \nabla \delta \hat{\Phi}_{s}-\mu_{0} \int d^{3} x \delta \mathbf{j}_{m} \cdot q \delta \hat{\mathbf{A}}_{s}
$$

Change in magnetization current
Add time dependence
Implement in an optimization routine

Basic Formulation - Linear Algebra

We wish to solve :

$$
\underline{\underline{A}} \cdot \underline{x}=\underline{B} \quad \text { for many } B \prime
$$

And then evaluate for each B: $\quad D=\underline{C} \cdot \underline{x}^{\dagger}$
$\mathrm{D}(\mathrm{B})$ is the answer.

Then:

$$
D=\underline{B}^{\dagger} \cdot \underline{y}
$$

Radial Flux driven by RF

$$
\left\langle\int d^{3} v f v_{d} \cdot \nabla \psi\right\rangle=\left\langle\int d^{3} v \Gamma \cdot \frac{\partial}{\partial v} g / f_{M}\right\rangle
$$

RF Induced Transport

Perturbed neoclassical DF
TMA and K. Yoshioka, PoF 29, (1986)

$$
v_{\|} \mathbf{b} \cdot \nabla f+\frac{\partial}{\partial \mathbf{v}} \cdot \Gamma=C(f)
$$

Response to a radial gradient

$$
v_{\|} \mathbf{b} \cdot \nabla g+v_{d} \cdot \nabla f_{M}=C(g)
$$

Fluctuation induced radial flux

$$
\left\langle\int d^{3} v f v_{d} \cdot \nabla \psi\right\rangle=\left\langle\int d^{3} v \Gamma \cdot \frac{\partial}{\partial v} g / f_{w}\right\rangle
$$

Jacobian Matrix - M(t)

$$
\frac{d}{d t}\left(\delta \mathbf{p}_{1} \cdot \delta \mathbf{q}_{2}-\delta \mathbf{p}_{2} \cdot \delta \mathbf{q}_{1}\right)=0
$$

$$
\binom{\delta \mathbf{q}(t)}{\delta \mathbf{p}(t)}^{2 \mathrm{~N} \times 2 \mathrm{~N}}=\underline{\underline{M}(t)} \cdot\binom{\delta \mathbf{q}(0)}{\delta \mathbf{p}(0)}
$$

2N Eiegenvectors and Eigenvalues of M

$$
\Lambda(t)\binom{\delta \mathbf{q}(0)}{\delta \mathbf{p}(0)}=\underline{\underline{M}}(t) \cdot\binom{\delta \mathbf{q}(0)}{\delta \mathbf{p}(0)}
$$

Solutions come in N pairs- $\quad \Lambda_{1} \Lambda_{2}=1$
Eigenvectors from different pairs orthogonal

$$
\left(\delta \mathbf{p}_{1} \cdot \delta \mathbf{q}_{2}-\delta \mathbf{p}_{2} \cdot \delta \mathbf{q}_{1}\right)=0
$$

Beamstick: Gun Baseline Geometry Particle Trajectories at Actual Voltages

Approved for public release; Distribution unlimited

Example of the Adjoint Method in Action

Problem: Compute the displacement of the beam in a sheet beam gun due to a small change in anode potential or a small displacement of the anode:

MICHELLE Simulations of Sheet Beam Gun

The adjoint method gives us a way to compute the displacement of the beam without re-running MICHELLE:

$$
\begin{aligned}
& \delta x=\text { Beam centroid displacement at gun exit } \\
& \delta \Phi=\text { Small change or error in anode or other electrode potential }
\end{aligned} \delta x=-\frac{q}{4 \pi \lambda I} \int_{S} d a \mathbf{n} \cdot \delta \Phi \nabla \delta \hat{\Phi}
$$

$-\boldsymbol{n} \cdot \nabla \widehat{\Phi}=$ Sensitivity (Green's) function

Code (Michelle) solves the following equations:
Hamilton's Equations for N particles $\mathrm{j}=1, \mathrm{~N}$
$\frac{d \boldsymbol{x}_{j}}{d t}=\frac{\partial H}{\partial \boldsymbol{p}} \quad \frac{d \boldsymbol{p}_{j}}{d t}=-\frac{\partial H}{\partial \boldsymbol{x}}$
Accumulates a charge density
$\rho(\boldsymbol{x})=\sum_{j} I_{j} \int_{0}^{T_{j}} d t \delta\left(\boldsymbol{x}-\boldsymbol{x}_{j}(t)\right)$
Solves Poisson Equation
Iterates until converged

$$
-\nabla^{2} \Phi=\rho / \varepsilon_{0}
$$

RMS radius sensitivity

Cathode E-normal has the largest "sensitivity"

Anode E-normal sensitivity

$$
\lambda I R_{R M S} \delta R_{R M S}=\left.\lambda \sum_{j} I_{j}\left(\mathbf{x}_{j} \cdot \delta \mathbf{x}_{j}\right)\right|_{T_{j}}=-q \varepsilon_{0} \int_{S} d a \delta \Phi(\mathbf{n} \cdot \nabla \delta \hat{\Phi})
$$

Adjoint Equations

Base case

$$
\begin{aligned}
& \frac{d}{d z} \mathbf{Q}=\mathbf{P} \\
& \frac{d}{d z} \mathbf{P}=\mathbf{E}+\mathbf{O} \cdot \mathbf{Q} \\
& \frac{d}{d z} \mathbf{E}=\mathbf{O} \cdot \mathbf{P}+\mathbf{N} L \\
& \frac{d}{d z} L=-\mathbf{N}^{\dagger} \cdot \mathbf{Q}
\end{aligned}
$$

Linear perturbation due to change in

$$
\begin{aligned}
& \text { parameters } \\
& \frac{d}{d z} \delta \mathbf{Q}^{(x)}=\delta \mathbf{P}^{(X)} \\
& \frac{d}{d z} \delta \mathbf{P}^{(X)}=\delta \mathbf{E}^{(X)}+\mathbf{O} \cdot \delta \mathbf{Q}^{(X)}+\delta \mathbf{O}^{(X)} \cdot \mathbf{Q} \\
& \frac{d}{d z} \delta \mathbf{E}^{(X)}=\mathbf{O} \cdot \delta \mathbf{P}^{(X)}+\mathbf{N} \delta L^{(X)} \\
& +\delta \mathbf{O}^{(X)} \cdot \mathbf{P}+\delta \mathbf{N}^{(X)} L \\
& \frac{d}{d z} \delta \mathbf{Q}^{(h)}=\delta \mathbf{P}^{(r)} \\
& \frac{d}{d z} \delta \mathbf{P}^{(\eta)}=\delta \mathbf{E}^{(\eta)}+\mathbf{0} \cdot \delta \mathbf{Q}^{(\eta)} \\
& \frac{d}{d z} \delta \mathbf{E}^{(\gamma)}=\mathbf{O} \cdot \boldsymbol{\delta} \mathbf{E}^{(\gamma)}+\mathbf{N} \delta L^{(\gamma)}+\delta \mathbf{E}^{(r)} \\
& \frac{d}{d z} \delta L^{(\gamma)}=-\mathbf{N}^{\dagger} \cdot \delta \mathbf{Q}^{(\gamma)}
\end{aligned}
$$

Adjoint system

Arbitrary Changes in focusing magnets

$$
\frac{d}{d z} \delta L^{(X)}=-\mathbf{N}^{\dagger} \cdot \delta \mathbf{Q}^{(X)}-\delta \mathbf{N}^{\dagger(X)} \cdot \mathbf{Q}
$$

Can show

Change in Figure of Merit

$$
\begin{aligned}
& \left.\left(\delta \mathbf{P}^{(Y)} \cdot \delta \mathbf{P}^{(X)}-\delta \mathbf{Q}^{(X)} \cdot \delta \mathbf{E}^{(Y)}-\delta \mathbf{Q}^{(Y)} \cdot \delta \mathbf{E}^{(X)}-\delta L^{(Y)} \delta L^{(X)}\right)\right)_{z=z_{i}}^{z=z_{f}} \\
& \\
& =\int_{z_{i}}^{z_{f}} d z\left\{\delta \mathbf{P}^{(Y)} \cdot \delta \mathbf{O}_{Q, B}{ }^{(X)} \cdot \mathbf{Q}+\delta L^{(Y)} \mathbf{Q} \cdot \delta \mathbf{N}_{Q, B}{ }^{(X)}-\delta \mathbf{Q}^{(Y)} \cdot \delta \mathbf{O}_{Q, B}{ }^{(X)} \cdot \mathbf{P}-\delta \mathbf{Q}^{(Y)} \cdot \delta \mathbf{N}_{Q, B}{ }^{(X)} L\right\} \\
& \left.\left(\delta \mathbf{P}^{(Y)} \cdot \delta \mathbf{P}^{(X)}-\delta \mathbf{Q}^{(X)} \cdot \delta \mathbf{E}^{(Y)}-\delta \mathbf{Q}^{(Y)} \cdot \delta \mathbf{E}^{(X)}-\delta L^{(Y)} \delta L^{(X)}\right)\right|_{z=z_{i}} ^{z=z_{f}} \\
& \\
& =\int_{z_{i}}^{z_{f}} d z\left\{\delta \mathbf{P}^{(Y)} \cdot \delta \mathbf{0}_{Q, B}{ }^{(X)} \cdot \mathbf{Q}+\delta L^{(Y)} \mathbf{Q} \cdot \delta \mathbf{N}_{Q, B}{ }^{(X)}-\delta \mathbf{Q}^{(Y)} \cdot \delta \mathbf{0}_{Q, B}{ }^{(X)} \cdot \mathbf{P}-\delta \mathbf{Q}^{(Y)} \cdot \delta \mathbf{N}_{Q, B}{ }^{(X)} L\right\} \\
& \text { Can Show }
\end{aligned}
$$

Beam distribution depends on many parameters How to optimize?

Circular Accelerators-Periodicity

Need to maintain periodicity of distribution, not individual orbits

Pick adjoint coordinate perturbations to realize desired FoM

$$
\left.\sum_{j} \frac{I_{j}}{I}\left(\delta \mathbf{p}_{j}^{(X)} \cdot \delta \mathbf{x}_{j}^{(\gamma)}-\delta \mathbf{p}_{j}^{(\gamma)} \cdot \delta \mathbf{x}_{j}^{(X)}\right)\right)_{0}^{L}=\quad \begin{aligned}
& \text { changes in magnet } \\
& \text { parameters }
\end{aligned}
$$

Too hard!

$$
-\frac{q}{4 \pi I} \int d_{B}^{2} x \delta \phi^{(x)} \mathbf{n} \cdot \nabla \delta \phi^{(\gamma)}+q \int d^{3} x \delta \mathbf{j}_{m}^{(X)} \cdot \delta \mathbf{A}^{(\gamma)}+[(X) \leftrightarrow(Y)]
$$

Effective Area - Antenna Gain

$\underset{\text { received }}{\text { Power }} \rightarrow P_{R}=A_{e}(\Omega) I \leftarrow \begin{aligned} & \text { Incident } \\ & \text { intensity }\end{aligned}$
Effective area

$$
\stackrel{\mathrm{e}}{\rightarrow} A_{e}(\Omega)=\frac{\lambda^{2} G(\Omega)}{\Delta \pi}<\text { gain }
$$

$d P \leftarrow$ Power per $G(\Omega)=\frac{d P}{d \Omega} / P_{T} \quad \begin{aligned} & \text { unit solid } \\ & \text { angle }\end{aligned}$ $P_{T}=\int \frac{d P}{d \Omega} d \Omega$

