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Example
Jackson, Classical Electrodynamics

Problems 1.12 and 1.13
A charge q is placed at an arbitrary point, xo, relative to two 
grounded, conducting electrodes.

What is the charge q1 on the surface of electrode 1?

Repeat for different x0

q
x0q1

q2

B1
B2



Solution – Green’s Reciprocation Theorem

Prob #1
Your 
Problem

∇2φ = −qδ (x − x0 ) BC: φ B1 = φ B2 = φ(x→∞) = 0

Green’s 
Theorem

d 3x
V
∫ ψ∇2φ −φ∇2ψ( ) = d 2x

S
∫ n ⋅ ψ∇φ −φ∇ψ( )

Prob #2
Adjoint (Not 
your) Problem

∇2ψ = 0 BC: ψ B1 = 1, ψ B2 =ψ (x→∞) = 0

!!!
q1 = d2x n

B1
∫ ⋅∇φ

−qψ (x0 ) = q1When the dust settles:

00



George Green 1793-1841

Physics Today Dec. 2003

• Born in Nottingham  (Home of Robin Hood)
• Father was a baker
• At age 8 enrolled in Robert Goodacre’s Academy
• Left after 18 months (extent of formal education pre age 40)
• Worked in bakery for 5 years
• Sent by father to town mill to learn to be a miller



• Fell in love with Jane, the miller’s 
daughter.

• Green’s father forbade marriage.
• Had 7 children with Jane.
• Self published work in 1828
• With help, entered Cambridge 

1833, graduated 1837.
• Theory of Elasticity, refraction, 

evanescence
• “Discovered” by Lord Kelvin in 

1840.
• Died of influenza, 1841

Green’s Mill: still functions



Features of Problems Suited to an 
Adjoint Approach

1. Many computations need to be repeated.   
(many different locations of charge, q)

2. Only a limited amount of information about the 
solution is required. 
(only want to know charge on electrode #1)



Relation to Reciprocity
Example:
- Antenna sending and receiving radiation patterns are equal due to 

time reversal symmetry of ME.
- Direct calculation of receiving pattern requires many simulations
- Instead, calculate sending pattern and invoke reciprocity

V V
Receiving Sending        



Other Examples of Reciprocity

Electrostatics Symmetry of the Capacitance Matrix

Electromagnetics Symmetry of the Inductance Matrix
Symmetry of Scattering Matrix

Collisional Transport: Onsager Symmetry of off-diagonal elements of 
transport matrices.

Temperature gradient è Electric current
Electric field è Heat flux

Neoclassical Tokamak Transport
Pressure gradient                  è Bootstrap Current
Toroidal E-field                     è Ware particle flux      



Adjoint Methods in Engineering



Optimize shape
to minimize 
drag.

Result is also 
aesthetically 
appealing.

Super Computer

Courtesy, Elizabeth Paul



1985  Volvo 240 DL

Oops, coding error.



Adjoint Approach in Plasma and Beam 
Physics 

• Neoclassical Transport, F. Hinton, and R. Hazeltine, Rev. Mod Phys, 
48 (2) , 1976

• Calculation of beam driven currents in magnetized plasmas, 
S. Hirshman, PoF, 23, 1238 (1980).

• Calculation of RF current drive in magnetic confinement 
plasma configurations, TMA and K. Chu PoF 25, (1982)

• Calculation of RF induced transport in magnetic confinement 
plasmas, TMA and K. Yoshioka, PoF 29, (1986),  Nucl. Fusion, 26 
(1986).

• Shot noise on gyrotron beams, TMA, W. Manheimer and A. Fliflet, 
PoP (2001).



RF Current Drive in Fusion Plasmas

Magnetic Confinement: ITER

US-EU-Russia-Japan-India Collaboration 
Will be built in Cardarache France
Completion 2016??

http://www.iter.org/

Poloidal
magnetic 
field

Toroidal
current

a person

Injecting RF waves can drive a 
toroidal current. N. Fisch PRL 
(1978)



RF Current Drive Efficiency
Original Langevin Treatment:  Nat Fisch, PRL (1978)

RF pushes particles in velocity space.

Collisions relax distribution back to 
equilibrium.

What is the current generated per unit 
power dissipated?   J/PD

J = d 3v
!
Γ ⋅ ∂

∂v∫ Ψ PD = d 3v
!
Γ ⋅ ∂

∂v∫ ε

!
Γ = RF induced 

velocity space 
particle flux

ψ inversely proportional to collision rate



RF Current Drive Efficiency

RF pushes particles in velocity space.

Collisions relax distribution back to 
equilibrium.

N. Fisch: Current generated in 
parallel direction even if push is in 
perpendicular direction

electron 
velocity 
space

!Ψ = const.
J = d 3v

!
Γ ⋅ ∂

∂v∫ Ψ

!
Γ



For a Homogeneous Plasma, we want to solve steady state kinetic 
equation

   
∂ f
∂t

= 0 = C( f )− ∂
∂v

⋅Γ

Linearized collision operator RF induced velocity space flux

Then find parallel current    
J! = −e d 3v∫ v! f

Adjoint problem: Spitzer-Harm
Distribution function driven by a 
DC electric field.    

−ev! fM = C(g)

    
J! = d 3v∫ Γ ⋅ ∂

∂v
g
fM

⎛
⎝⎜

⎞
⎠⎟

Parallel current

Adjoint Approach: S. Hirshman, PoF, 23, 1238 (1980), 
TMA and KR Chu, PoF 25, (1982)

Problem #1

Problem #2



Toroidal Geometry Makes a Difference, 
TMA and KR Chu, PoF 25, (1982)

OutsideInside
!Ψ = const.

!!
J = d3v Γ⋅ ∂

∂v∫ g
fM

    
v!b ⋅∇g − ev! fM = C(g)

streaming

Magnetically 
trapped 
particles



Recent Adjoint Approaches
• Beam optics sensitivity function, TMA, D. Chernin, J. Petillo, 

Phys. Plasmas 26, 013109 (2019); doi: 10.1063/1.5079629

• Stellarator Optimization and Sensitivity, E. Paul, M. Landreman, 
TMA, J. Plasma Phys. (2019), vol. 85, 905850207, J. Plasma Phys. 
(2021), vol. 87, 905870214 

• Optimization of Flat to Round Transformers in Particle 
Accelerators, L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter 
and TMA, Phys Rev Accel and Beams V25, 044002 (2022).

• Adjoint Equations for Beam-Wave Interaction and 
Optimization of TWT Design,  A. Vlasov, TMA, D. Chernin and I. 
Chernyavskiy, IEEE Trans. Plasma Sci. V. March (2022).

Give a child a hammer and everything becomes a nail.



Global Beam Sensitivity 
Function for Electron Guns

Goal 
Derive and Calculate a function that gives the variation of 
specific beam parameters to 

- variations in electrode potential/position
- variations in magnet current/position

Can be used to
- establish manufacturing tolerances
- optimize gun designs

Should be embedded in gun code (e.g. Michelle)



Emitter
Focus 
ElectrodeGround

1 cm

– HV

Matching
Section

Solid Model of Electrodes

Thermionic Cathode Electron Gun

Cut away view of trajectories

Emitter

Focus
Electrode

Anode

What shape to make electrodes?

Beam is compressed



Code (Michelle) solves the following equations:

K
A

dx j
dt

=
∂H
∂p

dp j
dt

= −
∂H
∂x

Equations of motion for N particles j=1,N

Accumulates a charge density

ρ(x) = I j dt δ
0

Tj

∫
j
∑ (x − x j (t))

Solves Poisson Equation                                         

!−∇
2Φ = ρ /ε0

Iterates until 
converged

Michelle: Petillo, J; Eppley, K; 
Panagos, D; et al., IEEE TPS 30, 1238-
1264 (2002).

Start with 
vacuum 
fields



Sensitivity Function

K

A

C

Basic question: How do small changes in 
position or potential of anode affect the 
properties of the beam leaving the gun? 

Beam leaves here

Conventional approach:  trial and error.  Do many 
simulations with different anode potentials or positions 
select the best based on some metric measured at the 
exit.



It will be shown …

K

A

C

K

A

C

Problem #1

Leads to change in 
RMS beam radius

δΦA(x) = Δ(x) ⋅∇Φ Wall displacement changes 
potential on unperturbed 
surface. 

Problem #2

Reverse and perturb 
electron coordinates 

δEn (x) Calculate and record change 
in normal E.

δEn Is the sensitivity function

Electrons run backwards

x

ΔRRMS

ΔRRMS ∝ da
S
∫ δΦA(x)δEn (x)

Sensitivity function



Hamilton’s Equations H(p,q,t)
Conserve Symplectic Area

(δq1(t),δ p1(t)) !!

dq
dt

= ∂H
∂p

dp
dt

= − ∂H
∂q

dδq1
dt

= ∂2H
∂p∂q

⋅δq1 +
∂2H
∂p∂p

⋅δp1

dδp1
dt

= − ∂2H
∂q∂q

⋅δq1 −
∂2H
∂q∂p

⋅δp1

(q(t), p(t))

(δq2 (t),δ p2 (t))

perturbed orbit #1
dδq2
dt

= ...

dδp2
dt

= −...

perturbed orbit #2

!!!
d
dt

δp1 ⋅δq2 −δp2 ⋅δq1( ) =0 Area conserved for 
any choice of 1 and 2



!![δ x j(t),δpj(t)]

!![δ x̂ j(t),δ p̂j(t)]

Reference Solution + Two Linearized Solutions

!!! x j ,p j( )→ x j ,p j( )+ δx j ,δp j( )

!!Φ(x)→Φ(x)+δΦ(x)
!!ρ(x)→ρ(x)+δρ(x)

Two Linearized Solutions

subject to different BC’s                                 

!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

0

Tj
= −qε0 dan ⋅ δΦ∇δΦ̂−δΦ̂∇δΦ⎡⎣ ⎤⎦s

∫

Can show

true

adjoint

Reference Solution Perturbation

Generalized Green Theorem



!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

0

Tj
= −qε0 dan ⋅ δΦ∇δΦ̂−δΦ̂∇δΦ⎡⎣ ⎤⎦s

∫

Generalized Green’s Theorem

Problem #1 (true problem) Unperturbed trajectories at cathode, 
Perturbed potential on boundary.

δ pj 0 = 0, δ x j 0 = 0, δΦ(x) ≠ 0

Problem #2 (adjoint problem) Perturbed trajectories at exit, 
Unperturbed potential on boundary.

δ p̂ j T = λx⊥ j , δ x j T = 0, δΦ̂(x) = 0

!!!
λIRRMSδRRMS = λ I j

j
∑ x j ⋅δx j( )

Tj
= −qε0 daδΦ n ⋅∇δΦ̂( )

s
∫

Sensitivity Function



Vertical Displacement of the Beam

27

𝛿𝑥

!!!
δ x = −

qε0
λI

dan ⋅δΦ∇δ Φ̂
s
∫

Vector plot of the ‘sensitivity’ or Green’s function

−𝛻𝛿%Φ
‘Direct’ MICHELLE Simulation with

Perturbed Anode Voltages

Predicted displacement  / Calculated displacement = 0.9969



Numerical Accuracy 

Problem #2 (adjoint
problem) Perturbed 
trajectories at exit, 
Unperturbed potential on 
boundary.

δ p̂ j T = λx⊥ j ,

!!!
λIRRMSδRRMS = λ I j

j
∑ x j ⋅δx j( )

Tj
= −qε0 daδΦ n ⋅∇δΦ̂( )

s
∫

Problem #1 (true 
problem) Change anode 
voltage, find change in 
RMS radius.
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� Forward Case: Grounded Inserts top and bottom 
� Direct Perturbation Case: Electrode inserts on top and bottom set to DV

DV tested from 1 – 10,000 V

AO 2.4-4: John Petillo, Serguei Ovtchinnikov, Aaron Jensen (Leidos), 
Philipp Borchard (Dymenso)

Kyle Kuhn, Heather Shannon, Brain Beaudoin TMA. (U. Maryland)
Application:  2D parallel plate sheet beam

N
eu

m
an

n N
eum

annForward Case

Direct Perturbed Case

Reverse-Beam Adjoint Method Case

DV=2000 V

Perturbed Dpx = l*pz0

V=0 DV=0 V=0

Electrode Inserts

Or Perturbed Dx
= l*H 

DISTRIBUTION STATEMENT A. Approved for 
public release: distribution unlimited.
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� Results of direct vs. adjoint methods 
agree to within 0.20%.

� Verification: Hamiltonian Approach
Excellent first successful Adjoint 
method to beam transport in a 
magnetic field. 

� Results:
− As the perturbed-case voltage 

values became small enough it 
easily entered the linear regime.  

− There is very a broad range of 
both L and DV where the results 
are all in a linear regime. 

Mean Displacement: 2D parallel plate sheet beam
- Manufacturing sensitivity to beam centering offset 

Adjoint method predicted the 
deflection sensitivity to within 

0.2%

DISTRIBUTION STATEMENT A. Approved for 
public release: distribution unlimited.



AO 2.4-2 – Optimization of TWT Design by Using Adjoint 
Approach 

A. Vlasov, T. M. Antonsen Jr., D. Chernin, I. Chernyavskiy

31

¢ 𝒑 = 𝑳𝒈𝟏, 𝑳𝒈𝟐

¢ Maximize: 𝑭𝟏 𝒑 = 𝟏
𝒇𝟐%𝒇𝟏

∫𝒇𝟏
𝒇𝟐 𝑮 𝒇 𝒅𝒇

¢ Minimize: 𝑭𝟐 𝒑 = 𝟏
𝒇𝟐%𝒇𝟏

∫𝒇𝟏
𝒇𝟐 𝑮 𝒇 − *𝑮 𝟐𝒅𝒇

¢ Maximize: 𝑭𝟑 𝒑 =

0

5

10

15

20

25

84 86 88 90 92 94 96 98

Base case

Max <g>

Min s
g

Max G
1

G
ai
n/
dB

f/GHzΓ! ≡
𝑔
𝜎"
!

Distance between gaps (two 
sections).
3 different goal functions
2 optimization parameters

Optimization of Small Signal Gain 



3D MHD Equilibria

Wendelstein 7-X
Max Planck Institute for Plasma Physics (IPP)

Greifswald, Germany   Completed 2015

Coils

Vacuum Vessel

Plasma



Optimization of Stellarator Equilibria 
è Figures of Merit (FoM) - Examples

Plasma Beta, Rotational Transform, 
Quasi-symmetry

è FoMs depend on boundary or coil shapes

è Shape Gradient Sensitivity Functions
gradient based optimization
establish tolerances

C. Othmer, J. Math. Industry 4, 6 
(2014). DRAG

Landreman and Paul, 2018 Nucl. Fusion 58 
076023, 
E. Paul, M. Landreman, TMA, J. Plasma 
Phys. (2019), vol. 85, 905850207, 
J. Plasma Phys. (2021), vol. 87, 905870214

Rotational transform



Adjoint Symmetry Simplifies Calculations 
Adjoint Approach to gradient 
calculation

> 500 X Speed – Up over direct 
calculation

Uses VMEC & DIAGNO
Hirshman and Whitman, 1983 Phys. Fluids 25 3553
H.J. Gardner 1990 Nucl. Fusion 30 1417

Different Figures of Merit Possible
Plasma pressure – beta
Rotational transform
Toroidal current
Neoclassical radial transport -1/ν regime
Energetic particle drifts
Quasi-symmetry
Others

Surface shape sensitivity

Coil location sensitivity



3D MHD Toroidal Equilibrium

   
−∇p + J ×B

c
= 0

   
∇×B = 4π

c
J

   

B = ∇α ×∇θ −∇Φ p (α )×∇ζ

= ∇α ×∇ θ −ι(α )ζ( )

Assume good flux surfaces in plasma

Poloidal flux

Toroidal Flux

   
∇×B = 4π

c
JC

In vacuum

coil current

  
ι(α ) = dΦ p (α ) / dα

Rotational  transform

Coils

In plasma



Linear Perturbations to Equilibrium
Generalized Forces:

Changes in current/shape/location 
of coils

Added pressure tensor

Change in poloidal flux profile

Generalized responses:

Changes in vacuum fields

Changes in magnetic field

Changes in toroidal current  profile

  AV ⇒ AV +δAV

  B ⇒ B +∇× ξ ×B −δΦP∇ζ( )

  IT ⇒ IT +δ IT (α )

  JC ⇒ JC +δJC

  ∇p ⇒∇p +∇⋅δP

  
Φ p (α )⇒Φ p (α )+δΦ p (α )

  
ι(α ) = dΦ p (α ) / dα



Generalized Forces and Responses

   

δAV

ξ
dδ IT / dα

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= O
δJC

∇⋅δ P

δΦP

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Forces:

Coil currents

Pressure tensor

Rotational transform

Responses
Vacuum fields

Plasma displacement

Toroidal current profile

More generically,
for two different 
perturbations   

δ xi
(1) = Oij

j
∑ δ Fj

(1) δ xi
(2) = Oij

j
∑ δ Fj

(2)

Onsager Symmetry Gives
  

δ xi
(1)δ Fi

(2) −δ xi
(2)δ Fi

(1){ }
j
∑ = 0



Onsager Symmetry for 3D MHD Equilibria
Self-adjoint MHD Force Operator 

   

d 3x ξ (1) ⋅∇ ⋅δPL
(2) −ξ (2) ⋅∇ ⋅δPL

(1)( )
VP
∫

− 2π
c

dα δ IT
(2) d

dα
δΦ p

(1) −δ IT
(1) d

dα
δΦ p

(2)⎛
⎝⎜

⎞
⎠⎟VP

∫

+ 1
4π

d 2x n ⋅ ξ (1)δB(2) ⋅B −ξ (2)δB(1) ⋅B( )
S
∫ = 0

Pressure - Displacement

Rotational transform –Toroidal current

Surface displacement

True
Adjoint



Specify BC’s & Constraints

   

d 3x ξ (1) ⋅∇ ⋅δPL
(2) −ξ (2) ⋅∇ ⋅δPL

(1)( )
VP
∫

− 2π
c

dα δ IT
(2) d

dα
δΦ p

(1) −δ IT
(1) d

dα
δΦ p

(2)⎛
⎝⎜

⎞
⎠⎟VP

∫

+ 1
4π

d 2x n ⋅ ξ (1)δB(2) ⋅B −ξ (2)δB(1) ⋅B( )
S
∫ = 0

Pressure - Displacement

Rotational transform –Toroidal current

Surface displacement

True
Adjoint

Make this appear to be change in FoM

Sensitivity function



Specify BC’s & Constraints

   

d 3x ξ (1) ⋅∇ ⋅δPL
(2) −ξ (2) ⋅∇ ⋅δPL

(1)( )
VP
∫

− 2π
c

dα δ IT
(2) d

dα
δΦ p

(1) −δ IT
(1) d

dα
δΦ p

(2)⎛
⎝⎜

⎞
⎠⎟VP

∫

+ 1
4π

d 2x n ⋅ ξ (1)δB(2) ⋅B −ξ (2)δB(1) ⋅B( )
S
∫ = 0

Pressure - Displacement

Surface displacement

True
Adjoint

Make this appear to be change in FoM

Sensitivity function





Optimization of Focusing Magnets in 
Accelerator Lattices 

The University of Maryland Electron Ring

UMER is a fully functional electron storage ring



UMER Systems and Layout
§ 167 Magnets, power 
supplies &

controls.

x

x

x’=dx/ds

x’=dx/ds

Transverse 
Phase 
space

Want to avoid 
trajectories 
outside here



Focusing Basics

F = qv × B

Quadrupole Magnetic Field

Focusing in x-direction
Defocusing in y-direction

qv – out of page

32 Quadrupole
magnets Field strength 

increases linearly 
with distance from 
the axis



FODO Lattice
Alternate focusing and 
defocusing orientations

Qualitative explanation: beam passes 
through focusing quad when it is big 
(strong fields).  Passes through 
defocusing quad when it is small (weak 
fields).  Net effect is focusing.

32 Quadrupole
magnets

Beam distribution depends on many parameters   How to optimize?



Flat Beam Round Beam

Flat to Round and Round to Flat transformers are proposed for 
cooling of hadron beams. Ya. Derbenev, Adapting optics for high-energy electron 
cooling, Tech. Rep. UM-HE-98-04-A (1998).

Cylindrical hadron beam cools via collisions when co-propagated 
with electron beam.

Optimization of Flat to Round Transformers Using Adjoint 
Techniques*
L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and T. M. 
Antonsen Jr , Phys Rev Accel and Beams V25, 044002 (2022).



Steps
1.  Derive system of moment equations (include self fields)

2. Linearize (to compute parameter gradient)

3. Find adjoint system

4. Decide on Figures of Merit

5. Optimize by Gradient Descent

Flat Beam Round Beam



Moment Equationsd
dz
Q = P

d
dz
P = E+O ⋅Q

d
dz
E =O ⋅P +NL

d
dz
L = −N† ⋅Q

Q =

x2 + y2 / 2

x2 − y2 / 2

xy

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

P =

x ′x + y ′y

x ′x − y ′y

y ′x + x ′y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

E =

′x 2 + ′y 2

′x 2 − ′y 2

2 ′y ′x

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

L = x ′y − y ′x

O =OBz +OQuads +Ospace
charge

 N = NQuads + Nspace
charge

Symbols –PIC 
Lines – Moment Eqs. Depend on magnet 

parameters



More Optimization

Continuous magnetic field profiles
Variable magnet orientations



Circular Accelerators-Periodicity

Particles return to initial 
plane.  
Need to maintain periodicity 
of distribution, not 
individual orbits

Big problems: 
Do periodic distributions 
exist?  Most likely no.
How to relaunch particles to 
optimize?

Start here with 4D particle coordinates

Particles + Periodicity = Problems 

Solve Eqs. of motion and self fields



Conclusion

Adjoint methods are a powerful way to 
evaluate parameter dependences in many 
systems involving charged particle dynamics.

Thank you. 



Moment Equations

Σ =

xx x ′x xy x ′y
′x x ′x ′x ′x y ′x ′y
yx y ′x yy y ′y
′y x ′y ′x ′y y ′y ′y

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Transverse phase space:

The second order 
moments are averages of 
the 4 by 4 elements of 
the Sigma matrix.

Moments:  Q, P, E, L

Q =

Q+

Q−

Qx

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

x2 + y2 / 2

x2 − y2 / 2

xy

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

P = d
dz
Q =

P+
P−
Px

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

x ′x + y ′y

x ′x − y ′y

y ′x + x ′y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
E =

E+

E−

Ex

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

′x 2 + ′y 2

′x 2 − ′y 2

2 ′y ′x

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

L = x ′y − y ′xAngular momentum

x, ′x = dx
dz
, y, ′y = dy

dz



Linearized System

d
dz
Q = P

d
dz
P = E+O ⋅Q

d
dz
E =O ⋅P +NL

d
dz
L = −N† ⋅Q

Base case

d
dz

δQ( X ) = δP( X )

d
dz

δP( X ) = δE( X ) +O ⋅δQ( X ) +δO( X ) ⋅Q

d
dz

δE( X ) =O ⋅δP( X ) +Nδ L( X )

               +δO( X ) ⋅P +δN( X )L
d
dz

δ L( X ) = −N† ⋅δQ( X ) −δN†( X ) ⋅Q

Linear perturbation 
due to true change 
in parameters 

d
dz

δQ(Y ) = δP(Y )

d
dz

δP(Y ) = δE(Y ) +O ⋅δQ(Y )

d
dz

δE(Y ) =O ⋅δP(Y ) +Nδ L(Y ) +δ !E(Y )

d
dz

δ L(Y ) = −N† ⋅δQ(Y )

Adjoint system

δ FoM = dz
zi

z f

∫ δP(Y ) ⋅δOQ ,B
( X ) ⋅Q +δ L(Y )Q ⋅δNQ ,B

( X ) −δQ(Y ) ⋅δOQ ,B
( X ) ⋅P −δQ(Y ) ⋅δNQ ,B

( X )L{ }
Change in magnet parameters

Sensitivity functions



Figure of Merit and Gradient

F = 1
2
P
2
+ k0

2 Q−
2 +Qx
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2 + Ex
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+ 1
2
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2
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+ 2E+Q+ − L
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⎤

⎦
⎥
⎥

Constant radius, Round

Radial force balance, Rigid rotation
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1
2
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⎜
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⎜

⎞

⎠

⎟
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⎛

⎝
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⎜
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⎟
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⎛

⎝

⎜
⎜
⎜
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⎞

⎠

⎟
⎟
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L = x ′y − y ′x



Optimization – Space Charge Compensation



Next Step – Circular Accelerators

Z=Zi Z=Zf

Beam Particles

X = k0Q(zi ),P(zi ),L(zi ),k0
−1E(zi )( ) X f (X ,a) = k0Q(z f ),P(z f ),L(z f ),k0

−1E(z f )( )

Solve Moment Eqs.

Periodicity:  Enforce W (X ,a) = 1
2
X f (X ,a)− X

2
= 0

Figure of Merit  F(X,a)Optimize:  Minimize a = parameter list

Constrained Optimization 
by Multiple Relaxation

Adjoint with a Chaser !



Next Step – Circular Accelerators

Z=Zi Z=Zf

Beam Particles

X = k0Q(zi ),P(zi ),L(zi ),k0
−1E(zi )( ) X f (X ,a) = k0Q(z f ),P(z f ),L(z f ),k0

−1E(z f )( )
Solve Moment Eqs.

Periodicity:  Minimize
W (X ,a) = 1

2
X f (X ,a)− X

2

Figure of Merit  F(X,a)Minimize

da
dτ

= −a 2 ⋅ d
da
F = −a 2 ⋅ ∂

∂a
F

′W =0

+ ∂
∂a
F

X

⎛

⎝⎜
⎞

⎠⎟

This is the tricky term



The Tricky Term
da
dτ

= −a 2 ⋅ d
da
F = −a 2 ⋅ ∂

∂a
F

′W =0

+ ∂
∂a
F

X

⎛

⎝⎜
⎞

⎠⎟

This is the tricky term∂
∂a
F

′W =0

= ∂
∂X
F
a

⋅ ∂X
∂a ′W =0

Expand  ′W (X,a)  to first order

∂
∂X
W (X,a) = δX ∂2

∂X∂X
W (X,a)+δa ∂2

∂a∂X
W (X,a) = 0

δX
δa ′W =0

= − ∂2

∂a∂X
W (X,a)

∂2

∂X∂X
W (X,a)

⎛
⎝⎜

⎞
⎠⎟

−1

Requires evaluating 
and inverting large 
matrices



Constrained Optimization 
by Multiple Relaxation

Adjoint with a Chaser !
or

d
dτ
X = − ∂

∂X
W (X ,a)

a

d
dτ
Y = − ∂

∂Y
W (Y ,a)+ λF(Y ,a)⎡⎣ ⎤⎦

The equilibrium

The chaser

µ d
dτ
a = −a2 ⋅ ∂

∂a
W (Y ,a)−W (X ,a)

λ
⎡

⎣
⎢

⎤

⎦
⎥ − a

2 ⋅ ∂
∂a
F(X ,a)

Parameter evolution

∂
∂a
F(X ,a)

∂W /∂X=0 Only first derivatives required (6)



How is it Supposed to Work

X → X e(a),    0 = − ∂
∂X
W (X ,a)

Xe ,a

Y → X e +δY    0 = −δY ⋅ ∂
2W (Y ,a)
∂X ∂X

Xe ,a

−λ ∂
∂X

F(X ,a)
Xe ,a

X tends to 
local 
equilibrium The chaser 

tends to a 
slightly 
different 
equilibrium

µ >1 So that “a” evolves “slowly”.

Allow a to change:a→ a +δa

  0 = −δ X e ⋅
∂2W (Y ,a)
∂X ∂X

Xe ,a

−δa ⋅ ∂
2W (Y ,a)
∂a∂X

Xe ,a

The X
equilibrium 
changes

λδ F = λδ X e
∂
∂X

F(X ,a)
′W =0

= δaδY : ∂2

∂a∂X
W (X ,a)

xe ,a

! δa ⋅ ∂
∂a

W (Y ,a)−W (X ,a)⎡⎣ ⎤⎦xe



Constrained Optimization 
by Multiple Relaxation

Adjoint with a Chaser !
or

d
dτ
X = − ∂

∂X
W (X ,a)

a

d
dτ
Y = − ∂

∂Y
W (Y ,a)+ λF(Y ,a)⎡⎣ ⎤⎦

The equilibrium

The chaser

µ d
dτ
a = −a2 ⋅ ∂

∂a
W (Y ,a)−W (X ,a)

λ
⎡

⎣
⎢

⎤

⎦
⎥ − a

2 ⋅ ∂
∂a
F(X ,a)

Parameter evolution

∂
∂a
F(X ,a)

∂W /∂X=0 Only first derivatives required (4)



Moment Eqs. – Circular Accelerators

Z=Zi Z=Zf

Beam Particles

X = k0Q(zi ),P(zi ),L(zi ),k0
−1E(zi )( ) X f (X ,a) = k0Q(z f ),P(z f ),L(z f ),k0

−1E(z f )( )
Solve Moment Eqs.

Periodicity:  MinimizeW (X ,a) = 1
2
X f (X ,a)− X

2 Solve Adjoint Eqs.
∂
∂X
W (X ,a)

a

Figure of Merit  F(X,a)
∂
∂a
W (X ,a)

X

∂
∂a
F(X ,a)

X

∂
∂X

F(X ,a)
a

Can be evaluated with 6 
solutions of adjoint Eqs.



Conclusion
Adjoint method allows for optimization of Round to Flat and Flat to 
Round transformers.

Periodic lattices may (?) be handled by “Adjoint with a Chaser”.  
We are currently testing using moment equations

Formalism extended to treat particle description - done

“Adjoint with a Chaser” may be extended to Stellarator 
optimization, with a side of ALPO©.



Conclusion:  Next Steps

!!!
I j

j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

Tj

= −qε0 daδΦA
s
∫ n⋅∇δΦ̂S − µ0 d3x∫ δ jm ⋅qδ Â s

Change in magnetization current

sensitivity functionAdd Magnetic field

Add time dependence

Implement in an optimization routine



Basic Formulation – Linear Algebra

We wish to solve : !A⋅x = B

And then evaluate for each B: !!D=C ⋅x†

Instead solve for y once: !!A
† ⋅ y =C

!!D= B† ⋅ yThen:

for many B’s.

D(B) is the answer.



   
d 3v f vd ⋅∇ψ∫ = d 3v Γ ⋅ ∂

∂v∫ g
fM

Radial Flux driven by RF



RF Induced Transport 

Perturbed neoclassical DF TMA and K. Yoshioka, PoF 29, (1986)

Response to a radial 
gradient

Fluctuation induced radial 
flux

    
v!b ⋅∇g + vd ⋅∇fM = C(g)

    
v!b ⋅∇f + ∂

∂v
⋅Γ = C( f )

   
d 3v f vd ⋅∇ψ∫ = d 3v Γ ⋅ ∂

∂v∫ g
fM



Jacobian Matrix – M(t)

(q(t), p(t))

(δq(0),δ p(0))

(δq(t),δ p(t))

δq(t)
δp(t)

⎛

⎝
⎜

⎞

⎠
⎟ = M (t) ⋅

δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟

!!!
d
dt

δp1 ⋅δq2 −δp2 ⋅δq1( ) =0

2N Eiegenvectors and Eigenvalues of M

2Nx2N

Λ(t)
δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟ = M (t) ⋅

δq(0)
δp(0)

⎛

⎝
⎜

⎞

⎠
⎟

Solutions come in N pairs- !Λ1Λ2 =1
Eigenvectors from different pairs orthogonal

!! δp1 ⋅δq2 −δp2 ⋅δq1( ) =0



Beamstick: Gun Baseline Geometry
Particle Trajectories at Actual Voltages

Vk = -25.1 kV
Vma = -20.2 kV

Ik = 39.8 mA
It = 16.7 mA
Transmission = 42% 

10X

Approved for public release; Distribution unlimited



Theoretical Study of Statistical Variations
Example of the Adjoint Method in Action

70

ò FÑF×-=
s
da

I
qx ˆ
4

dd
pl

d n
𝛿𝑥 = Beam centroid displacement at gun exit
dF = Small change or error in anode or other electrode potential
−𝒏 ) 𝛻+Φ= Sensitivity (Green’s) function

Problem: Compute the displacement of the beam in a sheet beam 
gun due to a small change in anode potential or a small displacement 
of the anode: MICHELLE Simulations of Sheet Beam Gun

‘Perturbed’ case:
Beam centroid at gun exit is displaced

‘Perfect’ case:
Beam centroid at gun exit is on axis

The adjoint method gives us a way to compute the displacement of the beam without re-running 
MICHELLE:

𝛿𝑥



Code (Michelle) solves the following equations:

K
A

dx j
dt

=
∂H
∂p

dp j
dt

= −
∂H
∂x

Hamilton’s Equations  for N particles j=1,N

Accumulates a charge density

ρ(x) = I j dt δ
0

Tj

∫
j
∑ (x − x j (t))

Solves Poisson Equation

!−∇
2Φ = ρ /ε0

Iterates until converged



RMS radius sensitivity
Cathode E-normal has the largest “sensitivity”

Anode E-normal 
sensitivity

Anode normal AK-
Gap values

!!!
λIRRMSδRRMS = λ I j

j
∑ x j ⋅δx j( )

Tj
= −qε0 daδΦ n ⋅∇δΦ̂( )

s
∫



Adjoint Equations

d
dz
Q = P

d
dz
P = E+O ⋅Q

d
dz
E =O ⋅P +NL

d
dz
L = −N† ⋅Q

Base case

d
dz

δQ( X ) = δP( X )

d
dz

δP( X ) = δE( X ) +O ⋅δQ( X ) +δO( X ) ⋅Q

d
dz

δE( X ) =O ⋅δP( X ) +Nδ L( X )

               +δO( X ) ⋅P +δN( X )L
d
dz

δ L( X ) = −N† ⋅δQ( X ) −δN†( X ) ⋅Q

Linear perturbation 
due to change in 
parameters 

!!! 

d
dz

δQ(Y ) =δP(Y )

d
dz

δP(Y ) =δE(Y ) +O⋅δQ(Y )

d
dz

δE(Y ) =O⋅δP(Y ) +NδL(Y ) +δ !E(Y )

d
dz

δL(Y ) = −N† ⋅δQ(Y )

Adjoint system

δP(Y ) ⋅δP( X ) −δQ( X ) ⋅δE(Y ) −δQ(Y ) ⋅δE( X ) −δ L(Y )δ L( X )( )
z=zi

z=z f

                                                   = dz
zi

z f

∫ δP(Y ) ⋅δOQ ,B
( X ) ⋅Q +δ L(Y )Q ⋅δNQ ,B

( X ) −δQ(Y ) ⋅δOQ ,B
( X ) ⋅P −δQ(Y ) ⋅δNQ ,B

( X )L{ }Can show

Arbitrary Changes in focusing 
magnets

Adjoint sensitivity



Change in Figure of Merit

δP(Y ) ⋅δP( X ) −δQ( X ) ⋅δE(Y ) −δQ(Y ) ⋅δE( X ) −δ L(Y )δ L( X )( )
z=zi

z=z f

                                                   = dz
zi

z f

∫ δP(Y ) ⋅δOQ ,B
( X ) ⋅Q +δ L(Y )Q ⋅δNQ ,B

( X ) −δQ(Y ) ⋅δOQ ,B
( X ) ⋅P −δQ(Y ) ⋅δNQ ,B

( X )L{ }

Can show

Arbitrary Changes in focusing 
Adjoint sensitivity

Figure of Merit F(P,Q,E,L)     δ F = δP( X ) ⋅ ∂F
∂P

+δQ( X ) ⋅ ∂F
∂Q

+δE( X ) ⋅ ∂F
∂E

+δ L( X ) ∂F
∂L

δP(Y ) ⋅δP( X ) −δQ( X ) ⋅δE(Y ) −δQ(Y ) ⋅δE( X ) −δ L(Y )δ L( X )( )
z=zi

z=z f

                                            = dz
zi

z f

∫ δP(Y ) ⋅δOQ ,B
( X ) ⋅Q +δ L(Y )Q ⋅δNQ ,B

( X ) −δQ(Y ) ⋅δOQ ,B
( X ) ⋅P −δQ(Y ) ⋅δNQ ,B

( X )L{ }



Focusing Basics

F = qv × B

Quadrupole Magnetic Field

Focusing in x-direction
Defocusing in y-direction

qv – out of page

32 Quadrupole
magnets Field strength 

increases linearly 
with distance from 
the axis



FODO Lattice
Alternate focusing and 
defocusing orientations

Qualitative explanation: beam passes through focusing 
quad when it is big (strong fields).  Passes through 
defocusing quad when it is small (weak fields).  Net effect 
is focusing.

32 Quadrupole
magnets

Beam distribution depends on many parameters   How to optimize?



Circular Accelerators-Periodicity
Need to maintain 
periodicity of distribution, 
not individual orbits

!!!

I j
Ij

∑ δp j
(X ) ⋅δx j

(Y ) −δp j
(Y ) ⋅δx j

(X )( )
0

L
=

− q
4πI d2xδφ(X )n ⋅∇δφ(Y ) +

B
∫ q d3x∫ δ jm

(X ) ⋅δA(Y ) + X( )↔ Y( )⎡⎣ ⎤⎦

Pick adjoint coordinate 
perturbations to realize 
desired FoM

z=0, z=L

Sensitivity to 
changes in magnet 
parameters

Too hard!



Effective Area – Antenna Gain

V V
Receiving Sending        

Power per 
unit solid 
angle

Power 
received

Effective 
area 

Incident 
intensity

gain

!
dP
dΩ

I

!!

G(Ω)= dP
dΩ

/PT

PT =
dP
dΩ

dΩ∫
!!

PR = Ae(Ω)I

Ae(Ω)=
λ2G(Ω)
4π


