Adjoint Methods in Plasma Physics and Charged Particle Dynamics

Or

When the solution to your problem is not your problem.

Thomas M. Antonsen Jr.
Department of Electrical and Computer Engineering
Department of Physics
Institute for Research in Electronics and Applied Physics
University of Maryland, College Park

First, Some Nostalgia - TMA-DPP 50 ${ }^{\text {th }}$

Abstract Submitted
for the Plasma Physics Meeting of the American Physical Society

31 Octoter - 3 November 1973
Physical Review Analytic Subject Index Number 35

Bulletin Subject Heading which Paper should be pla 17. Non-neutral Plasmas

Mactron Shear Driven Instabilities of an Unneutralized Mectron Beam. T. ANTONSEN and E. OTT, Cornell U.--Motiannulsr irtense relativistic electron beams, the stability of a planar eieciron beam with a linear velocity sinear both parallel and perpendicular to a fixed, uniform magnetic field is examined with the aid of Nyquist's

Submitted by my advisor

Submitted by

Signature of. Aps Member

EDWARD OTI

Cornell University

$$
\text { Ithaca, New York } 14850
$$

These are called transparencies

Adjoint Method: What it does

- Efficiently finds the dependence of system performance on parameters by solving a system problem different from the one proposed. - Adjoint Problem
- Requires identification of a Metric or Figure of Merit (FoM)

$$
\begin{aligned}
& \boldsymbol{F}(\mathbf{a}) \\
& \text { or } \\
& \mathbf{d} \boldsymbol{F}(\mathbf{a}) / \mathbf{d} \mathbf{a}
\end{aligned}
$$

a list of parameters

- Solution of adjoint problem gives \boldsymbol{F} or $\mathrm{d} \boldsymbol{F} / \mathbf{d} \boldsymbol{a}$

Useful for:
Optimization
Sensitivity Studies

Basic Adjoint Example (More Nostalgia) Jackson, Classical Electrodynamics Problems 1.12 and 1.13

The book is notorious for the difficulty of its problems, and its tendency to treat non-obvious conclusions as self-evident. ${ }^{[4][6]}$ A 2006 survey by the American Physical Society (APS) revealed that 76 out of the 80 U.S. physics departments surveyed require all first-year graduate students to complete a course using the third edition of this book. ${ }^{[6][7]}$

A charge q is placed at an arbitrary point, \mathbf{x}_{o}, relative to two grounded, conducting electrodes.

What is the charge q_{1} on the surface of electrode 1 ?
q_{1} Figure of Merit
Now Repeat for different $\mathbf{x}_{\mathbf{0}}$ x_{0} Parameters

Direct Solution

$\underline{\text { Prob \#1 }}$	Solve	BCs:	answer			
Your	$\nabla^{2} \phi=-q \delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$	$\left.\phi\right\|_{B 1}=\left.\phi\right\|_{B 2}=0$ Problem		$q_{1}=\int_{B 1} d^{2} x \mathbf{n} \cdot \nabla \phi$		Repeated
:---						
for each \mathbf{x}_{0}						

* Must first find potential throughout space.
* Then evaluate E-field on surface of B_{1}.
* If \mathbf{x}_{0} changes everything must be redone.

Adjoint Solution - Green's Reciprocation Theorem

$\underline{\text { Prob \#2 }}$	Solve	BCs:	
Adjoint Problem (Not your problem)	$\nabla^{2} \psi=0$	$\left.\psi\right\|_{B 1}=1$,	
		$\left.\psi\right\|_{B 2}=\psi(x \rightarrow \infty)=0$	Done once !

George Green 1793-1841

The Green of Green Functions

In 1828, an English miller from Nottingham published a mathematical essay that generated little response. George Green's analysis, however, has since found applications in areas ranging from classical electrostatics to modern quantum field theory.

Lawrie Challis and Fred Sheard Physics Today Dec. 2003
his family built a house next to the mill, Green spent most of his days and many of his nights working and indeed living in the mill. When he was 31, Jane Smith bore him a daughter. They had seven children in all but never married. It was said that Green's father felt that Jane was not a suitable wife for the son of a prosperous tradesman and landowner and threatened to disinherit him.

- Born in Nottingham (Home of Robin Hood)
- Father was a baker
- At age 8 enrolled in Robert Goodacre's Academy
- Left after 18 months (extent of formal education pre age 40)
- Worked in bakery for 5 years
- Sent by father to town mill to learn to be a miller
- Fell in love with Jane, the miller's daughter.
- Green's father forbade marriage.
- Green had 7 children with Jane.
- Took up mathematics.
- Self published work in 1828
- With help, entered Cambridge 1833, graduated 1837.
- Theory of elasticity, refraction, evanescence
- "Discovered" by Lord Kelvin in 1840.
- Died of influenza, 1841

Green's Mill: still functions

Features of Problems Suited to an Adjoint Approach

1. Many computations need to be repeated. (many different locations of charge, q)
2. Only a limited amount of information about the solution is required. (only want to know charge on electrode \#1)

Trick is to find the right combination of conditions on problem 2 to solve problem 1.

Adjoint Methods in Science and Engineering

Journal of The Electrochemical Society, 164 (11) E3232-E3242 (2017)
Jes Focus Issue on Matiematical Modeling of Electrochemical Systems at Mutiple Scales in Honor of John Newman
Adjoint Method for the Optimization of the Catalyst Distribution in Proton Exchange Membrane Fuel Cells
James Lamb, ${ }^{\text {a,b }}$ Grayson Mixon, ${ }^{\text {a,b }}$ and Petru Andreia ${ }^{\text {a,b, }, *, z}$
${ }^{\text {a }}$ Department of Electrical and Computer Engineering, Florida A\&M University-Florida State University College of Engineering, Tallahassee, Florida 32310, USA
${ }^{{ }^{\text {b }} \text { Aero-Propulsion, Mechatronics and Energy Center, Florida State University, Tallahassee, Florida 32310, USA }}$

Adjoint method for the optimization of insulated gate bipolar transistors

Cite as: AIP Advances 9, 095301 (2019); doi: 10.1063/1.5113764 Submitted: 7 June 2019 • Accepted: 23 August 2019 •

Adjoint shape optimization applied to electromagnetic design

Christopher M. Lalau-Keraly, ${ }^{1,{ }^{*}}$ Samarth Bhargava, ${ }^{1}$ Owen D. Miller, ${ }^{2}$ and Eli Yablonovitch ${ }^{1}$
${ }^{l}$ Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA
${ }^{2}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA *chrisker@eecs.berkeley.edu

Adjoint methods for car aerodynamics
Carsten Othmer ${ }^{-1}$
Journal of Mathematics in Industry 2014 4:6| DOI: 10.1186/2190-5983-4-6 \mid © Othmer; licensee Springer. 2014
Received: 30 March 2013 Accepted: 5 March 2014 Published: 3 June 2014
1

Surface Sensitivities

Optimize shape via steepest descent to minimize drag.

Result is also aesthetically appealing.

Super Computer

Oops, coding error ? Possible local minimum?

Relation to Reciprocity

Example:

- Antenna sending and receiving radiation patterns are equal due to time reversal symmetry of Maxwell's Equations.
- Direct calculation of receiving pattern requires many simulations
- Instead, calculate sending pattern and invoke reciprocity

Receiving

Sending

Other Examples of Reciprocity

Collisional Transport: Onsager Symmetry of off-diagonal elements of transport matrices.

Temperature gradient Electric field

Electric current Heat flux

Neoclassical Tokamak Transport

Pressure gradient	\boldsymbol{Z}	Bootstrap Current
Toroidal E-field	\boldsymbol{Z}	Ware particle flux

F. Hinton, and R. Hazeltine, Rev. Mod Phys, 48 (2) , 1976

RF Current Drive in Fusion Plasmas

Magnetic Confinement: ITER
US-EU-Russia-Japan-India Collaboration Will be built in Cardarache France
Completion 2016??
http://www.iter.org/

Injecting RF waves can drive a toroidal current. N. Fisch PRL (1978)

RF Current Drive Efficiency

Original Langevin Treatment: Nat Fisch, PRL (1978)
RF pushes particles in velocity space.
Collisions relax distribution back to equilibrium.
$\vec{\Gamma}=$ RF induced velocity space particle flux

What is the current generated per unit power dissipated? $\mathrm{J} / \mathrm{P}_{\mathrm{D}}$

$$
J=\int d^{3} v \vec{\Gamma} \cdot \frac{\partial}{\partial v} \Psi \quad P_{D}=\int d^{3} v \vec{\Gamma} \cdot \frac{\partial}{\partial v} \varepsilon-\text { energy }
$$

ψ sensitivity function, inversely proportional to collision rate

RF Current Drive Efficiency

RF pushes particles in velocity space. $\widehat{\rightharpoonup}$
Collisions relax distribution back to equilibrium.

$$
J=\int d^{3} v \vec{\Gamma} \cdot \frac{\partial}{\partial v} \Psi
$$

N. Fisch: Current generated in parallel direction even if push is in perpendicular direction

antisymmetric in $\mathrm{v}_{\mathrm{\|}}$

Adjoint Approach:

S. Hirshman, PoF, 23, 1238 (1980),

TMA and KR Chu, PoF 25, (1982),
M. Taguchi, J. Phys. Soc. Jpn (1982)

For a Homogeneous Plasma, we want to solve steady state kinetic equation

$$
\frac{\partial f}{\partial t}=0=C(f)-\frac{\partial}{\partial \mathbf{v}} \cdot \Gamma
$$

Problem \#1

Linearized collision operator
RF induced velocity space flux - parameters

Then find parallel current $\mathbf{F o M}$

$$
J_{\|}=-e \int d^{3} v v_{\|} f
$$

Adjoint problem: Spitzer-Harm $g\left(v_{\perp}, v_{\|}\right)$ Distribution function driven by a DC electric field.

$$
e E_{\|} \frac{\partial f}{\partial v_{\|}} \sim-e v_{\|} f_{M}=C(g)
$$

Problem \#2

Parallel current $\quad J_{\|}=\int d^{3} v \Gamma \cdot \frac{\partial}{\partial \mathbf{v}}\left(\frac{g}{f_{M}}\right)$

Toroidal Geometry Makes a Difference,

Streaming

$$
\begin{gathered}
v_{\|} \mathbf{b} \cdot \nabla g-e v_{\|} f_{M}=C(g) \\
J=\int \frac{d l}{B} d^{3} v \Gamma \cdot \frac{\partial}{\partial v} g / f_{M}
\end{gathered}
$$

TMA and KR Chu, PoF 25, (1982),
M. Taguchi, J. Phys. Soc. Jpn (1982)

$$
\Psi=\text { const } .
$$

(a)

(b) Plasma Sci., 1986

Energetic Particles lead to dynamic distribution functions

1. Probability of runaway (no RF)
2. Runaway rate with RF

u - normalized to Dreicer velocity

Recent Adjoint Approaches

- Shot noise on gyrotron beams, TMA, W. Manheimer and A. Fliflet, PoP (2001).
- Beam optics sensitivity function, TMA, D. Chernin, J. Petillo, Phys. Plasmas 26, 013109 (2019);
- Stellarator Optimization and Sensitivity, E. Paul, M. Landreman, TMA, J. Plasma Phys. (2019), vol. 85, 905850207, J. Plasma Phys. (2021), vol. 87, 905870214
- Optimization of Flat to Round Transformers in Particle Accelerators, L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and TMA, Phys Rev Accel and Beams V25, 044002 (2022).
- Adjoint Equations for Beam-Wave Interaction and Optimization of TWT Design, A. Vlasov, TMA, D. Chernin and I. Chernyavskiy, IEEE Trans. Plasma Sci. V. March (2022).
Give a child a hammer and everything becomes a nail.

Signal to Noise Ratio in Klystrons \& Gyro-Klystrons

TMA, W. Manheimer and A. Fliflet, PoP (2001).
fluctuating current

Signal to noise ratio determined by ratio of injected signal power in Cavity 1 to fluctuating beam power due to discrete electronic charge.

Shot noise: If arrival times in cavity 1 are independent and identically distributed, fluctuations are a white noise process.

$$
\left\langle I^{2}(t)\right\rangle=\int \frac{d \omega}{2 \pi} e\langle I\rangle
$$

But, this is wrong: electrons become correlated on transit from cathode to Cavity 1. Significantly reduces noise level.

Shielding Cloud

Direct calculation: Problem 1 Method of dressed test particles For an ensemble ($\mathrm{N} \gg 1$) of initial conditions at the cathode of test electrons, calculate the shielding cloud and total current fluctuation that excites the relevant mode in the cavity. Must be done for each test charge

Adjoint approach: Problem 2

For a given cavity mode profile, integrate the kinetic equation (once) backward in time to find the sensitivity function at the cathode, average over initial ensemble of test electrons.

Shielding cloud is potentially unstable for Gyro-Klystrons (must taper guiding magnetic field)

Global Beam Sensitivity Function for Electron Guns

TMA, D. Chernin, J. Petillo, Phys. Plasmas 26, 013109 (2019).

Thermionic Cathode Electron Gun

Goal

Evaluate a function that gives the variation of specific beam FoMs to variations in electrode potential/position

Can be used to

- establish manufacturing tolerances
- optimize gun designs

Should be embedded in gun code (e.g. Michelle)

What shape to make electrodes?

Particle in Cell (PIC)

Code Michelle

Petillo, J; Eppley, K; Panagos, D; et al., IEEE TPS 30, 12381264 (2002).

Code solves the Steady state equations of motion for N particles $\mathrm{j}=1, \mathrm{~N}$ in self consistent fields

Start with vacuum fields
Solve for trajectories

$$
\left.\frac{d}{d t} \mathbf{x}_{j}=\mathbf{v}_{j}, \quad \frac{d}{d t} \mathbf{p}_{j}=q\left(\mathbf{E}\left(\mathbf{x}_{j}\right)+\mathbf{v}_{j} \times \mathbf{B}\left(\mathbf{x}_{j}\right)\right)\right)
$$

Accumulate a charge density on grid

$$
\rho(\boldsymbol{x})=\sum_{j} I_{j} \int_{0}^{T_{j}} d t \delta\left(\boldsymbol{x}-\boldsymbol{x}_{j}(t)\right)
$$

Solve Poisson Equation

$$
-\nabla^{2} \Phi=\rho / \varepsilon_{0} \quad \begin{aligned}
& \text { Iterates unti } \\
& \text { converged }
\end{aligned}
$$

Beam Sensitivity Function

Conventional Approach: Solve directly (Problem 1)
Do many simulations with different anode potentials, positions

Beam characterized by FoM, function of particle coordinates

$$
F=F\left(\mathbf{p}_{j}, \mathbf{x}_{j}\right)_{z=L}
$$

Example RMS size

$$
F=\sum_{j}\left|\mathbf{x}_{\perp j}\right|^{2}
$$

Select the best based on Figure of Merit (FoM) measured at the exit.

We need an adjoint problem

Problem \#1 Direct

Problem \#2
Adjoint

b) Leads to change in

$$
F=F\left(\mathbf{p}_{j}, \mathbf{x}_{j}\right)_{z=L}
$$

Figure of Merit F,
function of electron coordinates.
$\delta F=\sum_{j}\left(\delta \mathbf{p}_{j} \frac{\partial F}{\partial \mathbf{p}_{j}}+\delta \mathbf{x}_{j} \frac{\partial F}{\partial \mathbf{x}_{j}}\right)_{z=L}$
a) Perturb electron coordinates in a prescribed way based on FoM, then reverse momenta and send back
δE_{n} Is the sensitivity function

$$
\delta F \propto \int_{S} d a \delta \Phi_{A}(\mathbf{x}) \delta E_{n}(\mathbf{x}) \text { Sensitivity function }
$$

Why does it work? Hamilton's Equations Conserve Symplectic Area

2023 John Dawson Award for Excellence in Plasma Physics Research

Philip Morrison, Hong Qin, and Eric Sonnendrücker
"For establishing and shaping the field of structurepreserving geometric algorithms for plasma physics."

Reference Solution + Two Linearized Solutions

$$
\begin{aligned}
\left(\mathbf{x}_{j}, \mathbf{p}_{j}\right) & \rightarrow\left(\mathbf{x}_{j}, \mathbf{p}_{j}\right)+\left(\delta \mathbf{x}_{j}, \delta \mathbf{p}_{j}\right) \\
\rho(\mathbf{x}) & \rightarrow \rho(\mathbf{x})+\delta \rho(\mathbf{x}) \\
\Phi(\mathbf{x}) & \rightarrow \Phi(\mathbf{x})+\delta \Phi(\mathbf{x})
\end{aligned}
$$

Reference Solution Perturbation
Two Linearized Solutions

$$
\begin{array}{cl}
{\left[\delta x_{j}(t), \delta p_{j}(t)\right]} & \begin{array}{l}
\text { true }- \text { changes } \\
\text { in anode }
\end{array} \\
{\left[\delta \hat{x}_{j}(t), \delta \hat{p}_{j}(t)\right]} & \begin{array}{l}
\text { adjoint }- \text { we } \\
\text { pick }
\end{array}
\end{array}
$$

Subject to different BC's

Can show difference in symplectic area entering and leaving is given by surface integral of perturbed fields

$$
\left.\sum_{j} I_{j}\left(\delta \hat{\mathbf{p}}_{j} \cdot \delta \mathbf{x}_{j}-\delta \mathbf{p}_{j} \cdot \delta \hat{\mathbf{x}}_{j}\right)\right|_{0} ^{L}=-q \varepsilon_{0} \int_{S} d a[\delta \Phi \mathbf{n} \cdot \nabla \delta \hat{\Phi}-\delta \hat{\Phi} \mathbf{n} \cdot \nabla \delta \Phi]
$$

Conservation of Symplectic Area meets Green's Theorem !

What is the change in a generic

 figure of merit? $\quad F=F\left(\mathbf{p}_{j}, \mathbf{x}_{j}\right)_{z=L}$$$
\delta F=\sum_{j}\left(\delta \mathbf{x}_{j} \frac{\partial F}{\partial \mathbf{x}_{j}}+\delta \mathbf{p}_{j} \frac{\partial F}{\partial \mathbf{p}_{j}}\right)_{z=L}
$$

$$
\left.\delta \Phi\right|_{B}=-\left.\Delta(\mathbf{x}) \cdot \nabla \Phi\right|_{B}
$$

 proportional to grad-F

Sensitivity Function

$$
\delta F=-q \varepsilon_{0} \int_{S} d a \delta \Phi(\mathbf{n} \cdot \nabla \delta \hat{\Phi})
$$

Vertical Displacement of the Beam

Predicted displacement $/$ Calculated displacement $=0.9969$

Currently being updated to include B-field:
John Petillo, Serguei Ovtchinnikov, Aaron Jensen (Leidos), Philipp Borchard (Dymenso)
Kyle Kuhn, Heather Shannon, Brain Beaudoin TMA. (U. Maryland) ONR STTR

Input

Optimization of TWT Design Using Adjoint Approach
A. Vlasov, TMA, D. Chernin, I. Chernyavskiy, IEEE Trans Plasma Science 2023.

Optimization of Small Signal Gain

3D MHD Equilibria

Wendelstein 7-X
Max Planck Institute for Plasma Physics (IPP) Greifswald, Germany Completed 2015

3D MHD Toroidal Equilibrium

Basic Question: How do changes in coil currents or shapes affect equilibrium?

Alternatively, how do changes in the shape of the outermost flux surface affect equilibrium?

Adjoint Equations for Stellarator Equilibria

Shape Gradient Sensitivity Functions

2021 APS Marshall N.
Rosenbluth Outstanding Doctoral Thesis Award
"Adjoint methods for stellarator shape optimization and sensitivity analysis" UMD 2020
Currently Assistant Prof. Columbia

DRAG

Elizabeth Paul

Landreman and Paul, (2018) Nucl. Fusion 58076023 , TMA , E. Paul, M. Landreman, J. Plasma Phys. (2019), E. Paul, M. Landreman, TMA, J. Plasma Phys. (2021), R. Nies, E. Paul, S. Hudson, and A. Bhattacharjee, J. Plasma Phys. (2022), vol. 88, 905880106

Colors show sensitivity of rotational transform to displacement of outer flux surface

Linear Perturbations to Equilibrium Similar to MHD stability $-\Delta W(\xi)$

ξ - field line displacement

$$
\begin{array}{ll}
\mathbf{B} \Rightarrow \mathbf{B}+\nabla \times\left(\xi \times \mathbf{B}-\delta \Phi_{P} \nabla \zeta\right) & \text { Changes in magnetic field } \\
\nabla p \Rightarrow \nabla(p+\xi \cdot \nabla p)+\nabla \cdot \delta \underline{\underline{\mathbf{P}}} & \text { Added pressure tensor } \\
\mathbf{J}_{C} \Rightarrow \mathbf{J}_{C}+\delta \mathbf{J}_{C} & \text { Changes in current/shape of coils } \\
& \text { or Shape of outer flux surface } \\
\left.\xi \cdot \mathbf{n}\right|_{\text {Boundary }}
\end{array}
$$

Generalized Forces and Responses

More generically, for two different perturbations

$$
\delta x_{i}^{(1)}=\sum_{j} O_{i j} \delta F_{j}^{(1)} \quad \delta x_{i}^{(2)}=\sum_{j} O_{i j} \delta F_{j}^{(2)}
$$

Self-Adjoint Symmetry Gives

$$
\sum_{j}\left\{\delta x_{i}^{(1)} \delta F_{i}^{(2)}-\delta x_{i}^{(2)} \delta F_{i}^{(1)}\right\}=0
$$

Example Adjoint Relation

Make this appear to be change in FoM

Surface and Coil Sensitivity

Adjoint Approach to gradient calculation
> 500 X Speed - Up over direct calculation

Uses VMEC \& DIAGNO

Hirshman and Whitman, 1983 Phys. Fluids 253553
H.J. Gardner 1990 Nucl. Fusion 301417

Different Figures of Merit Possible
Plasma pressure - beta
Rotational transform
Toroidal current
Neoclassical radial transport $-1 / v$ regime
Energetic particle drifts
Quasi-symmetry

Surface shape sensitivity

Coil location sensitivity
J. Plasma Phys. (2021), vol. 87, 905870214 © The Author(s), 2021.

Published by Cambridge University Press
doi:10.1017/S0022377821000283

Gradient-based optimization of 3D MHD equilibria

18 E. J. Paul, M. Landreman and T. Antonsen, Jr.
(a) initial

(b) final

Make this appear to

Challenges

 be change in FoM

Limited number of FoMs can be put in this form.
Formulation must be compatible with 3D - Equilibrium codes

Minimize Energy

VMEC - S. P. Hirshman and J. C. Whitson, (1983).
SPEC - S. R. Hudson, R. L. Dewar, G. Dennis, M. J. Hole, M. McGann, G. von Nessi, and S. Lazerson, (2012).
Solve Force Balance
DESC - D. W. Dudt, E. Kolemen, (2020), D.W. Dudt , R. Conlin1, D. Panici and E. Kolemen, (2023)
Includes automatic differentiation to compute FoM gradient Program takes code, breaks into primitive operations and computes derivatives

Optimization of Focusing Magnets in Accelerator Lattices
The University of Maryland Electron Ring

UMER is a fully functional electron storage ring

UMER Systems and Layout

- 167 Magnets, power supplies \&
controls.

FODO Lattice

Alternate focusing and defocusing orientations

Qualitative explanation: beam passes through focusing quad when it is big (strong fields). Passes through defocusing quad when it is small (weak fields). Net effect is focusing.

Beam distribution depends on many parameters How to optimize? Can we become Lords of the Ring?

Optimization of Flat to Round Transformers Using Adjoint Techniques
L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and T. M. A. Phys. Rev. Acc. Beams (2022).

Flat to Round and Round to Flat transformers are proposed for cooling of hadron beams. Ya. Derbenev, Adapting optics for high-energy electron cooling, Tech. Rep. UM-HE-98-04-A (1998).

Cylindrical hadron beam cools via collisions when co-propagated with electron beam. Optimized when beams overlap and transverse energy is minimum.

Circular Accelerators-Periodicity

Particles return to initial plane.
Need to maintain periodicity of distribution, not individual orbits

Big problems:
Do periodic distributions exist? Most likely no.
How to relaunch particles to optimize?

Test Problem - 10 Quadrupole lattice

Quadrupole strengths

Beam not in equilibrium Large beam waist excursion

Final

Beam moments become periodic Excursions minimized (FoM)

Conclusion

Adjoint methods are a powerful way to evaluate parameter dependences in many systems involving charged particle dynamics.

Issue: coding complexity Adjoint vs Automatic differentiation?

Thank you.

Acknowledge: ONR, DoE, AFOSR, Simons
Foundation

Fuel Efficiency 1985 Volvo 240 DL

