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First, Some Nostalgia – TMA-DPP 50th

These are called transparencies

Submitted by 
my advisor



Adjoint Method: What it does
- Efficiently finds the dependence of system performance on parameters by solving 

a system problem different from the one proposed.  - Adjoint Problem  

- Requires identification of a Metric or Figure of Merit (FoM) 

F(a) a   list of parameters
or
d F(a)/d a

- Solution of adjoint problem gives F or dF/d a

Useful for:
Optimization
Sensitivity Studies



A charge q is placed at an arbitrary point, xo, relative 
to two grounded, conducting electrodes.

What is the charge q1 on the surface of electrode 1?

Now Repeat for different x0

q
x0q1

q2

B1
B2

q1 Figure of Merit
x0 Parameters

Basic Adjoint Example (More Nostalgia)
Jackson, Classical Electrodynamics Problems 1.12 and 1.13



Direct Solution

Prob #1
Your 
Problem ∇2φ = −qδ (x − x0 )

BCs:
φ B1 = φ B2 = 0
φ(x→∞) = 0 !!!

q1 = d2x n
B1
∫ ⋅∇φ

Repeated 
for each x0

Solve answer

q
x0q1

q2

B1
B2

* Must first find potential 
throughout space.

* Then evaluate E-field on 
surface of B1.

* If x0 changes everything 
must be redone.



Adjoint Solution – Green’s Reciprocation Theorem

Apply Green’s 
Theorem

d 3x
V
∫ ψ∇2φ −φ∇2ψ( ) = d 2x

S
∫ n ⋅ ψ∇φ −φ∇ψ( )

Prob #2
Adjoint Problem
(Not your problem) ∇2ψ = 0

BCs:
ψ B1 = 1,

ψ B2 =ψ (x→∞) = 0

−qψ (x0 ) = q1When the dust settles:

00

Done once !

Solve

Answer

∇2φ = −qδ (x − x0 )



George Green 1793-1841

Physics Today Dec. 2003

• Born in Nottingham  (Home of Robin Hood)
• Father was a baker
• At age 8 enrolled in Robert Goodacre’s Academy
• Left after 18 months (extent of formal education pre age 40)
• Worked in bakery for 5 years
• Sent by father to town mill to learn to be a miller



• Fell in love with Jane, the miller’s 
daughter.

• Green’s father forbade marriage.
• Green had 7 children with Jane.
• Took up mathematics.
• Self published work in 1828
• With help, entered Cambridge 

1833, graduated 1837.
• Theory of elasticity, refraction, 

evanescence
• “Discovered” by Lord Kelvin in 

1840.
• Died of influenza, 1841

Green’s Mill: still functions



Features of Problems Suited to an Adjoint Approach

1. Many computations need to be repeated.   
(many different locations of charge, q)

2. Only a limited amount of information about 
the solution is required. 
(only want to know charge on electrode #1)

q
x0q1

q2

B1 B2

Trick is to find the right 
combination of conditions on 
problem 2 to solve problem 1. ψ = 1 ψ = 0



Adjoint Methods in Science and Engineering



Optimize shape
via steepest 
descent to 
minimize drag.

Result is also 
aesthetically 
appealing.

Super Computer

Courtesy, Elizabeth Paul



1985  Volvo 240 DL

Oops, coding error ?  Possible local minimum?



Relation to Reciprocity
Example:

- Antenna sending and receiving radiation patterns are equal due to 
time reversal symmetry of Maxwell’s Equations.

- Direct calculation of receiving pattern requires many simulations
- Instead, calculate sending pattern and invoke reciprocity

V V
Receiving Sending        



Other Examples of Reciprocity

Collisional Transport: Onsager Symmetry of off-diagonal elements of 
transport matrices.

Temperature gradient è Electric current
Electric field è Heat flux

Neoclassical Tokamak Transport
Pressure gradient                  è Bootstrap Current
Toroidal E-field                     è Ware particle flux 

F. Hinton, and R. Hazeltine, Rev. Mod Phys, 48 (2) , 1976     



RF Current Drive in Fusion Plasmas

Magnetic Confinement: ITER

US-EU-Russia-Japan-India Collaboration 
Will be built in Cardarache France
Completion 2016??

http://www.iter.org/

Poloidal
magnetic 
field

Toroidal
current

a person

Injecting RF waves can drive a 
toroidal current. N. Fisch PRL 
(1978)



RF Current Drive Efficiency
Original Langevin Treatment:  Nat Fisch, PRL (1978)

RF pushes particles in velocity space.

Collisions relax distribution back to 
equilibrium.

What is the current generated per unit 
power dissipated?   J/PD

J = d 3v
!
Γ ⋅ ∂

∂v∫ Ψ PD = d 3v
!
Γ ⋅ ∂

∂v∫ ε

!
Γ = RF induced 

velocity space 
particle flux

ψ sensitivity function, inversely proportional to collision rate

- energy



RF Current Drive Efficiency

RF pushes particles in velocity space.

Collisions relax distribution back to 
equilibrium.

N. Fisch: Current generated in 
parallel direction even if push is in 
perpendicular direction

electron 
velocity 
space

!Ψ = const.
J = d 3v

!
Γ ⋅ ∂

∂v∫ Ψ

!
Γ

antisymmetric in v||



For a Homogeneous Plasma, we want to solve steady state kinetic 
equation

   
∂ f
∂t

= 0 = C( f )− ∂
∂v

⋅Γ

Linearized collision operator RF induced velocity space flux - parameters

Then find parallel current FoM    
J! = −e d 3v∫ v! f

Adjoint problem: Spitzer-Harm
Distribution function driven by a 
DC electric field.

eE!
∂ f
∂v!
∼ −ev! fM = C(g)

    
J! = d 3v∫ Γ ⋅ ∂

∂v
g
fM

⎛
⎝⎜

⎞
⎠⎟

Parallel current

Adjoint Approach:

Problem #1

Problem #2

S. Hirshman, PoF, 23, 1238 (1980), 
TMA and KR Chu, PoF 25, (1982),
M. Taguchi, J. Phys. Soc. Jpn (1982)

g(v⊥ ,v!)



Magnetically 
trapped 
particles

Toroidal Geometry Makes a Difference, 

OutsideInside

!Ψ = const.
J = dl

B
d 3v Γ ⋅ ∂

∂v∫ g
fM

    
v!b ⋅∇g − ev! fM = C(g)

Streaming

Toroidal effects
Ohkawa, T., 1976, General Atomic 
Company Report No. A1384
Parks, P. B., and F. B. Marcus, 1981, 
Nucl. Fusion 21, 1207

TMA, B. Hui, IEEE Trans 
Plasma Sci., 1986

TMA and KR Chu, PoF 25, (1982),
M. Taguchi, J. Phys. Soc. Jpn (1982)



Extensions to Energetic Particles– Fisch and Karney
Probability of runaway

Fisch, N. J., 1985a, Phys. Fluids 28, 245.
Fisch, N. J., and C. F. F. Karney, 1985b, Phys. Fluids 28, 3107. 
Karney, C. F. F., and N. J. Fisch, 1986, Phys. Fluids 29, 180. 
Fisch, Reviews of Modern Physics, Vol. 59, No. 1, January 
1987

u - normalized to Dreicer velocity

w/ RF

no RF

1. Probability of runaway (no RF)

2. Runaway rate with RF

3. Energy flow to stored poloidal field

Energetic Particles lead to dynamic 
distribution functions



Recent Adjoint Approaches
• Shot noise on gyrotron beams, TMA, W. Manheimer and A. Fliflet, 

PoP (2001).

• Beam optics sensitivity function, TMA, D. Chernin, J. Petillo, 
Phys. Plasmas 26, 013109 (2019); 

• Stellarator Optimization and Sensitivity, E. Paul, M. Landreman, 
TMA, J. Plasma Phys. (2019), vol. 85, 905850207, J. Plasma Phys. 
(2021), vol. 87, 905870214 

• Optimization of Flat to Round Transformers in Particle 
Accelerators, L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter 
and TMA, Phys Rev Accel and Beams V25, 044002 (2022).

• Adjoint Equations for Beam-Wave Interaction and 
Optimization of TWT Design,  A. Vlasov, TMA, D. Chernin and I. 
Chernyavskiy, IEEE Trans. Plasma Sci. V. March (2022).

Give a child a hammer and everything becomes a nail.



Signal to Noise Ratio in Klystrons & Gyro-Klystrons

Cavity 1 Cavity 2

power
in power

out

cathode

electron 
beam

Signal to noise ratio determined by 
ratio of injected signal power in 
Cavity 1 to fluctuating beam power 
due to discrete electronic charge.

Shot noise: If arrival times in cavity 1 are independent and identically 
distributed, fluctuations are a white noise process.

!!
I2(t) = dω

2π∫ e I

But, this is wrong: electrons become correlated on transit from 
cathode to Cavity 1.  Significantly reduces noise level.

fluctuating 
current

TMA, W. Manheimer and A. Fliflet, PoP (2001).



Shielding Cloud

v

Direct calculation: Problem 1
For an ensemble (N>>1) of initial conditions at the 
cathode of test electrons, calculate the shielding 
cloud and total current fluctuation that excites the 
relevant mode in the cavity.  Must be done for each 
test charge

Adjoint approach: Problem 2
For a given cavity mode profile, integrate the kinetic equation (once) backward in time 
to find the sensitivity function at the cathode, average over initial ensemble of test 
electrons.

Shielding cloud is potentially unstable for Gyro-Klystrons   (must taper guiding 
magnetic field)

test charge

Method of dressed test particles
shielding cloud



Global Beam Sensitivity Function for Electron Guns

Goal 
Evaluate a function that gives the variation of 
specific beam FoMs to variations in electrode 
potential/position

Can be used to
- establish manufacturing tolerances
- optimize gun designs

Should be embedded in gun code (e.g. Michelle)

Thermionic Cathode Electron Gun

Emitter
Focus 
ElectrodeGround

1 cm

– HV

Beam leaves 
here

Beam is compressed

Solid Model 
of Electrodes

What shape to make electrodes?

emitter

TMA, D. Chernin, J. Petillo, Phys. Plasmas 26, 013109 (2019).



Code solves the Steady state equations of 
motion for N particles j=1, N in self consistent 
fields

Accumulate a charge density on grid

ρ(x) = I j dt δ
0

Tj

∫
j
∑ (x − x j (t))

Solve Poisson Equation            

!−∇
2Φ = ρ /ε0

Iterates until 
convergedPetillo, J; Eppley, K; Panagos, D; et al., IEEE TPS 30, 1238-

1264 (2002).

Start with vacuum fields
Solve for trajectories

Emitter

Anode

CL

Particle in Cell (PIC) 
Code Michelle

d
dt
x j = v j ,

d
dt
p j = q E(x j )+ v j ×B(x j ))( )

exit

Particle Trajectories



Beam Sensitivity Function

Basic question: How do small changes in position or 
potential of anode affect the properties of the beam 
leaving the gun? 

Beam leaves here
Emitter

Anode

CL

Conventional Approach:  Solve directly  (Problem 1)  

Do many simulations with different anode potentials, positions 

Select the best based on Figure of Merit (FoM) measured at the exit.

F = x⊥ j

2

j
∑

F = F(p j ,x j )z=L

Beam characterized 
by FoM, function of 
particle coordinates

Example RMS size



We need an adjoint problem

K

A

C

K

A

C

Problem #1
Direct b) Leads to change in 

Figure of Merit F, 
function of electron 
coordinates.

δΦA(x) = −Δ(x) ⋅∇Φ a) Wall displacement changes 
potential on unperturbed surface. 

Problem #2
Adjoint a) Perturb electron coordinates in a 

prescribed way based on FoM, then 
reverse momenta and send back

δEn (x)
b) Calculate and record 
change in normal E.

δEn Is the sensitivity function

Electrons run backwards

x

δF ∝ da
S
∫ δΦA(x)δEn (x)

Sensitivity function

F = F(p j ,x j )z=L

δ F = δp j
∂F
∂p j

+δx j
∂F
∂x j

⎛

⎝
⎜

⎞

⎠
⎟

j
∑

z=L



Why does it work?  Hamilton’s Equations Conserve 
Symplectic Area

(δq1(t),δ p1(t)) !!

dq
dt

= ∂H
∂p

dp
dt

= − ∂H
∂q

dδq1
dt

= ∂2H
∂p∂q

⋅δq1 +
∂2H
∂p∂p

⋅δp1

dδp1
dt

= − ∂2H
∂q∂q

⋅δq1 −
∂2H
∂q∂p

⋅δp1

(q(t), p(t))

(δq2 (t),δ p2 (t))

perturbed orbit #1

dδq2
dt

= ...

dδp2
dt

= −...

perturbed orbit #2

!!!
d
dt

δp1 ⋅δq2 −δp2 ⋅δq1( ) =0 Area conserved for 
any choice of 1 and 2

2023 John Dawson Award for 
Excellence in Plasma Physics 
Research

Philip Morrison, Hong Qin,  
and Eric Sonnendrücker

“For establishing and shaping 
the field of structure-
preserving geometric 
algorithms for plasma 
physics.”

H(p,q,t)

Reference trajectory in 6N 
dimensional phase space



!![δ x j(t),δpj(t)]

!![δ x̂ j(t),δ p̂j(t)]

Reference Solution + Two Linearized Solutions

!!! x j ,p j( )→ x j ,p j( )+ δx j ,δp j( )

!!Φ(x)→Φ(x)+δΦ(x)
!!ρ(x)→ρ(x)+δρ(x)

Two Linearized Solutions

Subject to different BC’s                                 

I j
j
∑ δ p̂ j ⋅δx j −δp j ⋅δ x̂ j( )

0

L
= −qε0 da δΦ n ⋅∇δΦ̂ −δΦ̂ n ⋅∇δΦ⎡⎣ ⎤⎦s

∫

Can show difference in symplectic area entering and leaving is given by surface 
integral of perturbed fields

true – changes 
in anode
adjoint – we 
pick

Reference Solution Perturbation

Conservation of Symplectic Area meets Green’s Theorem !



I j
j
∑ δx j ⋅δ p̂ j −δp j ⋅δ x̂ j( )

0

L
= −qε0 da δΦ n ⋅∇δΦ̂ −δΦ̂ n ⋅∇δΦ⎡⎣ ⎤⎦s

∫
Generalized 
Green’s Theorem

δΦ
B
= − Δ(x) ⋅∇Φ

B

Problem #2 Perturbed 
trajectories at exit 
proportional to grad-F 

I jδ p̂ j T =
∂F
∂x j

, I jδ x̂ j T = − ∂F
∂p j

,

δ F = −qε0 daδΦ n ⋅∇δΦ̂( )
s
∫

Sensitivity Function

What is the change in a generic 
figure of merit?

δ F = δx j
∂F
∂x j

+δp j
∂F
∂p j

⎛

⎝
⎜

⎞

⎠
⎟

j
∑

z=L

F = F(p j ,x j )z=L

δΦ̂(x) = 0



Vertical Displacement of the Beam

31

!!!
δ x = −

qε0
λI

dan ⋅δΦ∇δ Φ̂
s
∫

Vector plot of the ‘sensitivity’ or Green’s function ‘Direct’ MICHELLE Simulation with
Perturbed Anode Voltages

Predicted displacement  / Calculated displacement = 0.9969

Currently being updated to include B-field:
John Petillo, Serguei Ovtchinnikov, Aaron Jensen (Leidos), Philipp Borchard (Dymenso)
Kyle Kuhn, Heather Shannon, Brain Beaudoin TMA. (U. Maryland) ONR STTR

δ x = 1
Nj

∑ δ x j
sensitivity arrows

n ⋅∇δΦ̂



Optimization of TWT Design Using Adjoint Approach 
A. Vlasov, TMA, D. Chernin, I. Chernyavskiy, IEEE Trans Plasma 

Science 2023.
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3D MHD Equilibria

Wendelstein 7-X
Max Planck Institute for Plasma Physics (IPP)

Greifswald, Germany   Completed 2015

Coils

Plasma



3D MHD Toroidal Equilibrium

   
−∇p + J ×B

c
= 0

   
∇×B = 4π

c
J

Basic Question: How do changes in coil 
currents or shapes affect equilibrium?

Alternatively, how do changes in the 
shape of the outermost flux surface 
affect equilibrium?

Coils

In plasma



Adjoint Equations for Stellarator Equilibria 
Shape Gradient Sensitivity Functions

DRAG

Landreman and Paul, (2018) Nucl. Fusion 58 076023, 
TMA , E. Paul, M. Landreman, J. Plasma Phys. (2019),
E. Paul, M. Landreman, TMA, J. Plasma Phys. (2021), 
R. Nies, E. Paul, S. Hudson, and A. Bhattacharjee, J. 
Plasma Phys. (2022), vol. 88, 905880106 

Colors show sensitivity of rotational transform to 
displacement of outer flux surface 

2021 APS Marshall N. 
Rosenbluth Outstanding Doctoral 
Thesis Award
"Adjoint methods for stellarator 
shape optimization and sensitivity 
analysis"   UMD 2020
Currently Assistant Prof. Columbia

Elizabeth Paul
Outer flux 
surface



Linear Perturbations to Equilibrium
Similar to MHD stability  -

Changes in magnetic field

Added pressure tensor

Changes in current/shape of coils
or Shape of outer flux surface

  B ⇒ B +∇× ξ ×B −δΦP∇ζ( )
∇p⇒∇ p + ξ ⋅∇p( )+∇⋅δP

ΔW (ξ )

  JC ⇒ JC +δJC

ξ - field line displacement

ξ ⋅n
Boundary



Generalized Forces and Responses

δAV
ξ

dδ IT / dψ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= O
δJC
∇⋅δ P

δΦP

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Forces:

Coil currents

Pressure tensor

Rotational transform

Responses

Vacuum fields

Plasma displacement

Toroidal current profile

More generically,
for two different 
perturbations   

δ xi
(1) = Oij

j
∑ δ Fj

(1) δ xi
(2) = Oij

j
∑ δ Fj

(2)

Self-Adjoint Symmetry Gives
  

δ xi
(1)δ Fi

(2) −δ xi
(2)δ Fi

(1){ }
j
∑ = 0



Example Adjoint Relation

d 3x ξ ⋅∇ ⋅δPL( )
VP
∫ = − 1

4π
d 2x n ⋅ξ δB ⋅B( )

S
∫ = 0

True outer flux surface displacement

Make this appear to be 
change in FoM

Adjoint sensitivity functionAdjoint added 
pressure tensor

True interior displacement



Surface and Coil Sensitivity
Adjoint Approach to gradient 
calculation 

> 500 X Speed – Up over direct 
calculation

Uses VMEC & DIAGNO
Hirshman and Whitman, 1983 Phys. Fluids 25 3553
H.J. Gardner 1990 Nucl. Fusion 30 1417

Different Figures of Merit Possible
Plasma pressure – beta
Rotational transform
Toroidal current
Neoclassical radial transport -1/ν regime
Energetic particle drifts
Quasi-symmetry

Surface shape sensitivity

Coil location sensitivity



Optimized for “Quasi-symmetry” on 
axis
( good particle confinement)

initial final

final

initial



Challenges

d 3x ξ ⋅∇ ⋅δPL( )
VP
∫ = − 1

4π
d 2x n ⋅ξ δB ⋅B( )

S
∫ = 0

Surface displacement
Make this appear to 
be change in FoM

Sensitivity function

Limited number of FoMs can be put in this form.
Formulation must be compatible with 3D - Equilibrium codes

Minimize Energy
VMEC - S. P. Hirshman and J. C. Whitson, (1983).
SPEC - S. R. Hudson, R. L. Dewar, G. Dennis, M. J. Hole, M. McGann, G. von Nessi, and S. Lazerson, (2012).

Solve Force Balance
DESC – D. W. Dudt, E. Kolemen,  (2020), D.W. Dudt , R. Conlin1, D. Panici and E. Kolemen,  (2023) 

Includes automatic differentiation to compute FoM gradient   Program takes code, breaks into primitive 
operations and computes derivatives



Optimization of Focusing Magnets in Accelerator Lattices 
The University of Maryland Electron Ring

UMER is a fully functional electron storage ring



UMER Systems and Layout
§ 167 Magnets, power 
supplies &

controls.

x

x

x’=dx/ds

x’=dx/ds

Transverse 
Phase 
space

Want to avoid 
trajectories 
outside here



Focusing Basics

F = qv × B

Quadrupole Magnetic Field

Focusing in x-direction
Defocusing in y-direction

qv – out of page

32 Quadrupole
magnets Field strength 

increases linearly 
with distance from 
the axis



FODO Lattice
Alternate focusing and 
defocusing orientations

Qualitative explanation: beam passes through focusing quad when it is big 
(strong fields).  Passes through defocusing quad when it is small (weak 
fields).  Net effect is focusing.

32 Quadrupole
magnets

Beam distribution depends on many parameters   How to optimize?
Can we become Lords of the Ring?



Flat to Round and Round to Flat transformers are proposed for 
cooling of hadron beams. Ya. Derbenev, Adapting optics for high-energy electron 
cooling, Tech. Rep. UM-HE-98-04-A (1998).

Cylindrical hadron beam cools via collisions when co-propagated 
with electron beam. Optimized when beams overlap and transverse 
energy is minimum.

Optimization of Flat to Round Transformers Using Adjoint 
Techniques
L. Dovlatyan, B. Beaudoin, S. Bernal, I. Haber, D. Sutter and T. M. A. Phys. Rev. 
Acc. Beams (2022).

Flat Beam Round Beam 

Locations and strengths of magnets optimized 
to produce round beam in solenoid



Circular Accelerators-Periodicity

Particles return to initial 
plane.  
Need to maintain periodicity 
of distribution, not 
individual orbits

Big problems: 
Do periodic distributions 
exist?  Most likely no.
How to relaunch particles to 
optimize?

Start here with 4D particle coordinates

Solve Eqs. of motion and self fields

Constrained Optimization
“Adjoint with a Chaser”



Test Problem – 10 Quadrupole lattice

Beam not in equilibrium
Large beam waist excursion

Initial

Transverse moments

Beam moments become periodic
Excursions minimized (FoM)

Final

Quadrupole strengths



Conclusion
Adjoint methods are a powerful way to 
evaluate parameter dependences in many 
systems involving charged particle 
dynamics.

Issue: coding complexity 
Adjoint vs Automatic differentiation?

Thank you. 

Acknowledge:  ONR, DoE, AFOSR, Simons 
Foundation

Fuel Efficiency 1985 Volvo 
240 DL 


