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Chapter 1

Numbers, Waveforms and
Signals

1
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1.1 Real Numbers in Theory and Practice

The real line R consists of a continuum of points, each point representing a
different number. A real number can be

• rational, i.e., a ratio m/n of two integers, where (n 6= 0); or

• irrational ; examples of irrational numbers include π,
√

2, etc.

0                         x                 R

Figure 1.1: The real line.

1.1.1 Fixed-Point Representation of Real Numbers

This is the most natural representation of a real number x. The sign of x
(also denoted by sgn(x)) is followed by the integer part of x, the (fixed)
fractional point, and the fractional part of x.

+/- Integer Part Fractional Part.

Figure 1.2: Fixed-point representation of a real number. Frac-
tional part may consist of infinitely many digits.

The representation uses a base (or radix ) B, which is a positive integer.
All digits (in both the integer and fractional parts of x) are integers ranging
from 0 to B − 1, inclusive. For example,

• in the decimal representation of x, the base B = 10 is used, and the
possible digits are 0, 1, . . . , 9;

• in the binary representation of x, the base B = 2 is used, and the
possible digits are 0 and 1, only.

The integer part of x is always a finite string of digits. The fractional part
is, in general, an infinite string; in other words, non-terminating expansions
are the rule rather than the exception. For example (B = 10):

π = 3.1415926 . . .
√

2 = 1.4142136 . . .
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The rational part of x has a terminating expansion if and only if x is an exact
multiple of a negative power of B (i.e., it equals B−l, where l is integer).
Interestingly, terminating expansions can be expressed in two equivalent
non-terminating forms. For example (B = 10):

13.75 = 13.7500000 . . . = 13.7499999 . . .

Clearly, decimal (B = 10) representations are most common. Binary
forms (B = 2) are equally (if not more) useful in machine computations.
Conversion to binary form involves expressing the integer and fractional
parts of x in terms of nonnegative and negative powers of 2, respectively.
For example,

13 = 1× 23 + 1× 22 + 0× 21 + 1× 20 = (1101)2
0.75 = 1× 2−1 + 1× 2−2 = (0.11)2

and thus

13.75 = (1101.11)2 = (1101.1100000 . . .)2 = (1101.1011111 . . .)2

where both non-terminating expansions are shown. Note that for a positive
integer l, 2−l can be expressed as 5l × 10−l. Thus, if the binary represen-
tation of x has a terminating fractional part, so does the decimal one. The
converse is not, however, true; e.g., the decimal fraction 0.6 does not have a
terminating binary expansion.

1.1.2 Floating-Point Representation

A floating-point representation of x with respect to base B is usually speci-
fied as

sgn(x)× (0.d1d2d3 . . .)×BE

where:

• the fraction 0.d1d2d3 . . . is known as the mantissa of x; and

• E is the exponent of the base B.

The integer factor BE is also known as the characteristic of the floating-
point representation. Note that the floating-point representation of x is not
unique. For example, x = 80 can be written as

0.8× 102 = 0.08× 103 = 0.008× 104 = . . .
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The floating point representation can be made unique by normalization,
i.e., requiring that d1 be nonzero. Thus the normalized floating-point rep-
resentation of x = 80 is x = 0.8× 102. Similarly,

π = (0.31415926 . . .)× 101

13.75 = 0.1375× 102 = (0.110111)2 × 24

0.01375 = 0.1375× 10−1

Note that in the binary (B = 2) case, normalization forces the first fractional
digit d1 to be equal to 1.

1.1.3 Visualization of the Fixed and Floating Point Repre-
sentations

Assume a fixed base B. If, in the fixed-point representation of x, we keep
the sign and integer part of x fixed and vary the fractional part, the value of
x will range between two consecutive integers. In other words, the integer
part of x corresponds to a unit-length interval on the real line, and such
intervals form a partition of the real line as shown in Figure 1.3.

−4      −3    −2     −1        0       1       2       3       4

Figure 1.3: Partition of the real line into intervals of unit length.

In the normalized floating-point representation of x, keeping both the
sign and exponent E of x fixed and varying the mantissa also results in x
ranging over an interval of values. Since d1 ≥ 1, the range of 0.d1d2d3 . . . is
the interval [1/B, 1], shown in bold in Figure 1.4.

0                        1/2                       1                 0    1/10                                         1

B=2 B=10

Figure 1.4: Shown in bold are the ranges of values of the normal-
ized mantissa of binary (left) and decimal (right) numbers.

Thus positive numbers with the same exponent E form the interval
[BE−1, BE ]. This means that varying E results in a partition of the positive
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0     .25  .5            1                           2                                                        4

E=−1 E=0 E=1 E=2

Figure 1.5: Partition of the real line according to the exponent E
in the binary floating-point representation.

real line into intervals of different length—the ratio of interval lengths being
a power of B. The binary case is illustrated in Figure 1.5.

Clearly, the same holds for the negative real line. Note that x = 0 is the
only number that does not have a normalized representation (all the di’s are
zero).

1.1.4 Finite-Precision Representations of Real Numbers

Machine computations require finite storage and finite processing time. If
K bits are allocated to storing a real variable, then that variable can take
at most 2K values. These values will be collectively termed as the precise
numbers. In the course of a numerical computation, every real number is
approximated by a precise number. This approximation is known as roundoff
(more on that later).

Fixed-point computation involves, essentially, integer arithmetic. The
2K precise numbers are uniformly spaced on an interval of length A. In a
typical application, a precise number would be an exact multiple of A · 2−K

ranging in value from −(A/2) + A · 2−K to A/2.
Although fixed-point computation is relatively simple and can be at-

tractive for low-power applications, it can lead to large relative errors when
small values are involved. Floating-point computation, on the other hand,
is generally more accurate and preferable for most applications.

Precise numbers in floating-point computation are determined by assign-
ing Ke bits to the exponent and Km bits to the mantissa, where

1 + Ke + Km = K

(One bit is required for encoding the sign of the number.) The 2Ke possible
exponents are consecutive integers; this places the positive precise numbers
in Ke adjacent intervals of the form [2E−1, 2E). Within each such interval,
there are 2Km uniformly spaced precise numbers, each corresponding to a
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different value of the mantissa. Details of an actual implementation (e.g.,
in MATLAB) are described below.

1.1.5 The IEEE Standard for Floating-Point Arithmetic

MATLAB uses what is known as double-precision variables in its floating-
point computations. The precise numbers and their encoding follow the
IEEE 754 Standard. K = 64 bits are used for each precise number, with
Ke = 11 bits allocated to the exponent and Km = 52 bits allocated to the
mantissa. The bits are arranged as shown in Figure 1.6:

Sign (1 bit)

Exponent Codeword
(11 bits)

Mantissa Codeword
(52 bits)

d53d2

Figure 1.6: Binary encoding of a double-precision floating-point
number.

The value of the sign bit is 0 for positive numbers, 1 for negative ones.
Read as a binary integer with the most significant digit on the left (as

usual), the exponent codeword ranges in value from C = 0 to C = 211−1 =
2047. The precise number a is then obtained as follows:

• If 1 ≤ C ≤ 2046, then a has a normalized floating-point representation
with exponent E = C−1022 and mantissa given by 0.1d2 . . . d53, where
d2, . . . , d53 are read directly off the mantissa codeword in the order
shown in Figure 1.6.

a = sgn(a)× (0.1d2 . . . d53)× 2C−1022

• If C = 0, then a has a denormalized floating-point representation:

a = sgn(a)× (0.0d2 . . . d53)× 2−1021 = sgn(a)× (0.d2 . . . d53)× 2−1022

Note that d2 = . . . = d53 = 0 gives a = 0.

• If C = 2047, the value of a is either infinite (Inf) or indeterminate
(NaN). An infinite value (positive or negative) is encoded using an all-
zeros mantissa. Any other mantissa word denotes an indeterminate
value (such values arise from expressions such as 0/0, ∞−∞, etc.).
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The effective range of exponents in the normalized floating-point repre-
sentation is E = −1021 to E = 1024. As discussed earlier, each exponent E
corresponds to a range of 252 precise numbers uniformly spaced in [2E−1, 2E)
(on the positive real line). Denormalization also allows 252 uniformly spaced
precise numbers in the interval [0, 2−1022).

MATLAB can display the binary string corresponding to any floating
point number (after approximating it by the nearest precise number); the
hexadecimal form is used (0000 through 1111 are encoded as 0 through F).
The command

format hex

causes all subsequent numerical values to be shown in that form. Conversely,
the command

hex2num(’string ’)

where string consists of 16 hex digits (= 64 bits), will output the precise
number corresponding to the input string. Thus:

• hex2num(’0000000000000001’) gives the smallest positive number,
namely 2−1074, which is approximately equal to 4.94× 10−324;

• hex2num(’7FEFFFFFFFFFFFFF’) gives the largest positive number, namely
21024 − 2971, which is approximately equal to 1.80× 10308.
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1.2 Round-off Errors

1.2.1 Error Definitions

The error in approximating a number x by x̂ is given by the difference

x̂− x

The relative error is given by the ratio

x̂− x

x

and is often quoted as a percentage. We will use the term “absolute” (error,
relative error) to designate the absolute value of the quantities defined above.

Word of Caution: The term absolute error is sometimes used for the (signed)
error x̂−x itself, to differentiate it from the relative error. We will not adopt
this definition here.

1.2.2 Round-Off

Round-off is defined as the approximation of a real number by a finite-
precision number. This approximation is necessary in most machine com-
putations involving real numbers, due to the storage constraints (finite word
lengths for all variables involved).

The most common round-off methods are chopping and rounding.
Chopping
Chopping is the approximation of a real number x by the closest precise
number whose absolute value is less than, or equal to, that of x (i.e., the
approximation is in the direction of the origin). Chopping is illustrated in
Figure 1.7.

y

y

x

x

0

Figure 1.7: Chopping (̂) of positive and negative numbers.

As an example, consider a decimal fixed-point machine with four-digit
precision. This means that the precise numbers are all multiples of 10−4

that fall in a range (−A/2, A/2], where A is a large number. Assuming that
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x falls in the above range, chopping x is the same as keeping the first four
fractional digits in the fixed-point decimal representation of x.

Thus, denoting chopping by “→”, we have:

π = 3.1415926 . . . → 3.1415
1−

√
2 = −0.4142136 . . . → −0.4142

The same procedure would apply to a decimal floating-point machine
with (the same, for the sake of comparison) four-digit precision. In this
case, four-digit precision refers to the decimal expansion of the mantissa.
Thus, the same numbers would be chopped as follows:

π = (0.31415926 . . .)× 101 → 0.3141× 101

1−
√

2 = (−0.4142136 . . .)× 100 → −0.4142× 100

The significant digits of a number begin with the leftmost nonzero digit
in its fixed-point representation; that digit (known as the most significant
digit) can be on either side of the fractional point. Thus, for example, the
significant digits of π are:

31415926...

The significant digits are the same as the fractional digits in the normalized
floating-point representation.
Note that in the case of π, the floating-point machine produced one less
significant digit for π than the fixed-point machine. This is consistent with
the fact that fixed-point computation results in errors x̂−x that are roughly
of the same order of magnitude regardless of the order of magnitude of x;
thus the relative error improves as the order of magnitude of x increases.
Floating-point computation, on the other hand, maintains the same order of
magnitude for the relative error throughout the range of values of x for which
a normalized representation is possible; while the expected actual (i.e., not
relative) error increases with |x|.
Rounding
Rounding is the approximation of x by the closest precise number. If x is
midway between two precise numbers, then the number farther from the
origin is chosen (i.e., the number with the larger absolute value). Rounding
is illustrated in Figure 1.8.

In the fixed-point, four decimal-digit precision example discussed earlier,
rounding (again denoted by “→”) gives

π = 3.1415926 . . . → 3.1416
1−

√
2 = −0.4142136 . . . → −0.4142;
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y

y

x

x

Figure 1.8: Rounding (̂).

while in the floating-point case,

π = (0.31415926 . . .)× 101 → 0.3142× 101

1−
√

2 = (−0.4142136 . . .)× 100 → −0.4142× 100

Note that in the case of π, rounding gave a different answer from chop-
ping. Rounding is preferable, since it always results in a lower absolute
error value |x̂−x| than does chopping. The error resulting from chopping is
also biased: it is always negative for positive numbers and positive for neg-
ative numbers. This can lead to very large cumulative errors in situations
where one sign (+ or −) dominates, e.g., adding a large number of positive
variables scaled by positive coefficients.

1.2.3 Round-Off Errors in Finite-Precision Computation

Fact. Round-off errors are ubiquitous.

Example 1.2.1. Suppose we enter

x = 0.6

in MATLAB. In decimal form, this is an exact fraction (6/10), which is
far easier to specify numerically than, say, π. Yet 6/10 does not have a
terminating binary expansion, i.e., it is not an exact multiple of 2−l for
some integer l. As a result, MATLAB will round 0.6 to 53 significant binary
digits (equivalent to roughly 16 decimal digits). The value x = 6/10 falls in
the range [1/2, 1), where the spacing between precise numbers equals 2−53.
It follows that the round-off error in representing x will be less than 2−54 in
absolute value, but it won’t be zero.

Fact. The order of computation affects the accumulation of round-off errors.
As a rule of thumb, summands should be ordered by increasing absolute value
in floating-point computation.
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Example 1.2.2. Assume a decimal floating-point machine with four digit
precision. At every stage of the computation (including input and output),
every number x is rounded to the form

sgn(x)× (0.d1d2d3d4)× 10E

where di are decimal digits such that d1 > 0 (for normalization), and E is
assumed unrestricted.

Suppose that we are asked to compute

x0 + x1 + . . . + x10

where x0 = 1 and x1 = . . . = x10 = 0.0001. Note that the ratio of x0 to
each of the other numbers is 10−4, which corresponds to four decimal digits.
Also, each of the eleven numbers corresponds to a precise number, i.e., no
round-off error is incurred in representing x0, . . . , x10.

Clearly, the exact answer is 1.001, which is the precise four-digit floating-
point number 0.1001×101. If we perform the summation in the natural order
(i.e., that of the indices), then we have:

x0 + x1 = 1.0001 → 0.1000× 101

0.1000× 101 + x2 = 1.0001 → 0.1000× 101

...
...

...
0.1000× 101 + x10 = 1.0001 → 0.1000× 101

Thus at each stage, four-digit precision produces the same result as adding
zero to x0. The final result is clearly unsatisfactory (even though the relative
error is only about 10−3).

The exact answer can be obtained by summing x1 through x10 first, and
then adding x0:

x1 + x2 = 0.0002 = 0.2000× 10−3

0.2000× 10−3 + x3 = 0.0003 = 0.3000× 10−3

...
...

...
0.9000× 10−3 + x10 = 0.0010 = 0.1000× 10−2

0.1000× 10−2 + x0 = 0.1001× 101

Note that no rounding was necessary at any point in the above computation.
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Fact. Computing the difference of two quantities that are close in value may
result in low precision. If higher precision is sought, a different algorithm
may be required.

Example 1.2.3. Consider the computation of 1 − cosx for x = 0.02 on a
floating-point machine with three-digit precision. The exact answer is

1− cos(0.02) = 1− (0.999800007 . . .) = (0.1999933...)× 10−3

If cos(0.2) is first computed correctly and then rounded to three significant
digits, the resulting answer is

0.1000× 101 − 0.1000× 101 = 0

which is clearly unsatisfactory. A different algorithm is needed here.
The Taylor series expansion for cosx gives

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

1− cosx =
x2

2!
− x4

4!
+

x6

6!
− . . .

Evaluating the first three terms in the second expansion with three-digit
precision, we obtain:

x2/2 = 0.200× 10−3

x4/24 = 0.667× 10−8

x6/720 = 0.889× 10−13

It is possible to estimate, using the remainder form of Taylor’s theorem,
the error involved in approximating 1− cosx by the first three terms in the
expansion. That estimate turns out to be much less than the smallest of the
three terms. Since the ratio between consecutive terms is much larger than
103, summing with 3-digit precision will result in an answer equal to the first
term, namely 0.200× 10−3; while the error will be dominated by the second
term. The relative error is thus roughly (0.667 × 10−8)/(0.200 × 10−3) =
3.33×10−5, which is very satisfactory considering the low precision involved
in the computation.
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1.3 Review of Complex Numbers

Complex numbers are especially important in signal analysis because they
lead to an efficient representation of sinusoidal signals—arguably the most
important class of signals.

1.3.1 Complex Numbers as Two-Dimensional Vectors

A complex number z is a two-dimensional vector, or equivalently, a point
(x, y) on the Cartesian plane:

0

z=(x,y)

x

y
r

θ

Figure 1.9: Cartesian and polar representation of a complex num-
ber z.

The Cartesian coordinate pair (x, y) is also equivalent to the polar coor-
dinate pair (r, θ), where r is the (nonnegative) length of the vector corre-
sponding to (x, y), and θ is the angle of the vector relative to positive real
line. We have

x = r cos θ

y = r sin θ

r =
√

x2 + y2

As implied by the arrow in Figure 1.9, the angle θ takes values in [0, 2π).
It is also acceptable to use angles outside that interval, by adding or sub-
tracting integer multiples of 2π (this does not affect the values of the sine and
cosine functions). In particular, angles in the range (π, 2π) (corresponding
to points below the x-axis) are often quoted as negative angles in (−π, 0).
A formula for θ in terms of the Cartesian coordinates x and y is

θ = arctan
(y

x

)
+ (0 or π)
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where π is added if and only if x is negative. Since the conventional range
of the function arctan(·) is the interval [−π/2, π/2], the resulting value of θ
is in the range [−π/2, 3π/2).

We also have the following terminology and notation in conjunction with
the complex number z = (x, y) = (r, θ):

• x = <e{z}, the real part of z;

• y = =m{z}, the imaginary part of z;

• r = |z|, the modulus or magnitude of z;

• θ = ∠z, the phase or angle of z.

The complex conjugate of z is the complex number z∗ defined by

<e{z∗} = <e{z} and =m{z∗} = −=m{z}
Equivalently,

|z∗| = |z| and ∠z∗ = −∠z

Example 1.3.1. Consider the complex number

z =

(
−1

2
,

√
3

2

)

shown in the figure.

−1/2            0

3/2

Re

Im
z

z*

Example 1.3.1

We have <e{z} = −1/2, =m{z} =
√

3/2. The modulus of z equals

|z| =

√√√√
(

1
2

)2

+

(√
3

2

)2

= 1
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while the angle of z equals

∠z = arctan(−
√

3) + π = −π

3
+ π =

2π

3

Also,

z∗ =

(
−1

2
, −

√
3

2

)

with
|z∗| = 1 and ∠z∗ = −2π

3
¤

1.3.2 The Imaginary Unit

A complex number is also represented as

z = x + jy

where j denotes the imaginary unit. The ‘+’ in the expression z = x + jy
represents the summation of the two vectors (x, 0) and (0, y), which clearly
yields (x, y) = z.

It follows easily that if c is a real-valued constant, then

cz = cx + j(cy)

Also, if z1 = x1 + jy1 and z2 = x2 + jy2, then

z1 + z2 = (x1 + x2) + j(y1 + y2)

Finally, the complex conjugate of x + jy is given by

z∗ = x− jy

Note that
<e{z} =

z + z∗

2
and =m{z} =

z − z∗

2j

1.3.3 Complex Multiplication and its Interpretation

Unlike ordinary two-dimensional vectors, complex numbers can be multi-
plied together to yield another complex number (vector) on the Cartesian
plane. This becomes possible by making the assignment

j2 = −1
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and applying the usual distributive and commutative laws of algebraic mul-
tiplication:

(a + jb)(c + jd) = ac + jad + jbc + j2bd

= (ac− bd) + j(ad + bc)

This result becomes more interesting if we express the two complex numbers
in terms of polar coordinates. Let

z1 = r1(cos θ1 + j sin θ1) and z2 = r2(cos θ2 + j sin θ2)

Then

z1z2 = r1r2(cos θ1 + j sin θ1)(cos θ2 + j sin θ2)
= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + j(cos θ1 sin θ2 + sin θ1 cos θ2)]
= r1r2[cos(θ1 + θ2) + j sin(θ1 + θ2)]

where the last equality follows from standard trigonometric identities. Since
a sine-cosine pair uniquely specifies an angle in [0, 2π), we conclude that

|z1z2| = |z1||z2| and ∠z1z2 = ∠z1 + ∠z2

Thus, multiplication of two complex numbers viewed as vectors entails:

• scaling the length of either vector by the length of the other; and

• rotation of either vector through an angle equal to the angle of the
other.

If both complex numbers lie on the unit circle (given by the equation |z| = 1),
then multiplication is a pure rotation, as shown in Figure 1.10.

1.3.4 The Complex Exponential

The Taylor series expansions for sin θ and cos θ are given by

cos θ = 1− θ2

2!
+

θ4

4!
− · · ·

sin θ = θ − θ3

3!
+

θ5

5!
− · · ·

A power series for cos θ+j sin θ can be obtained by combining the two Taylor
series:

cos θ + j sin θ = 1 + jθ − θ2

2!
− j

θ3

3!
+

θ4

4!
+ j

θ5

5!
− · · ·
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φ

θ

θ+φ

1−1

j

−j

0

w

z
wz

Figure 1.10: Multiplication of two complex numbers w and z on
the unit circle.

Starting with j1, consecutive (increasing) powers of j circle through the four
values j, −1, −j and +1. Thus the power series above can be expressed as

1 + jθ +
(jθ)2

2!
+

(jθ)3

3!
+

(jθ)4

4!
+

(jθ)5

5!
+ · · ·

which is recognizable as the Taylor series for ex with the real-valued ar-
gument x replaced by the complex-valued argument jθ. This leads to the
expression

ejθ = cos θ + j sin θ

known as Euler’s formula. Changing the sign of θ yields the complex con-
jugate:

e−jθ = cos(−θ) + j sin(−θ) = cos θ − j sin θ

By adding and subtracting the last two equations, we obtain

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j

respectively.
We have therefore derived an alternative expression for the polar form

of a complex number z = (r, θ):

z = rejθ = |z|ej∠z
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Note that if z1 = |z1|ej∠z1 and z2 = |z2|ej∠z2 , then direct multiplication
gives

z1z2 = |z1||z2|ej∠z1ej∠z2

= |z1||z2|ej(∠z1+∠z2)

as expected.

1.3.5 Inverses and Division

The (multiplicative) inverse z−1 of z is defined by the relationship

zz−1 = 1

The inverse exists as long as z 6= 0, and is easily obtained from the polar
form of z:

z−1 = |z|−1
(
ej∠z

)−1

= |z|−1e−j∠z

Thus the inverse of z is a scaled version of its complex conjugate:

z−1 = |z|−2z∗

and in the special case where z lies on the unit circle, z−1 = z∗.
For the Cartesian form for the inverse of z = x + jy, we have

z−1 = |z|−2z∗ =
x− jy

x2 + y2

As in the case of real numbers, the division of z1 by z2 can be defined in
terms of a product and an inverse:

z1

z2
= z1 · 1

z2

Example 1.3.2. If z1 =
√

3− j and z2 = 1 + j, then

z1

z2
=

√
3− j

1 + j

=
(
√

3− j)(1− j)
12 + 12

=
√

3− 1
2

− j

√
3 + 1
2
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For the second expression on the right-hand side, we used the Cartesian
form for the inverse of z2 = 1 + j. Alternatively, one can multiply both
numerator and denominator by z∗2 = 1− j.
In polar form, z1 = 2ej(−π/6) and z2 =

√
2ej(π/4), thus

z1

z2
=

2√
2
ej(−π/6−π/4) =

√
2ej(−5π/12) ¤
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1.4 Sinusoids in Continuous Time

1.4.1 The Basic Cosine and Sine Functions

Let θ be a real-valued angle, measured in radians (recall that π rad is the
same as 1800). The basic sinusoidal functions are cos θ and sin θ, shown in
Figure 1.11.

cosθ sinθ

0                  2π                4π        θ 0                  2π                4π        θ

1

−1 −1

1

Figure 1.11: The cosine (left) and sine (right) functions.

Our first observation is that both cos θ and sin θ are periodic with period
equal to 2π. This means that for any positive or negative integer k,

cos(θ + 2kπ) = cos θ

sin(θ + 2kπ) = sin θ

Our second observation is that the cosine function is symmetric, or more
precisely, even-symmetric about the origin, while the sine function is anti-
symmetric (or odd-symmetric):

cos(−θ) = cos θ

sin(−θ) = − sin θ

Our third observation is that either function can be obtained from the
other by means of a shift in the variable θ. The sine function is obtained
from the cosine by a delay in θ equal to π/2 radians; equivalently, the cosine
is obtained from the sine by an advance in θ. This follows also from the
trigonometric identity

sin θ = cos(π/2− θ)
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and the fact that cos θ = cos(−θ). We thus have

sin θ = cos(θ − π/2)
cos θ = sin(θ + π/2)

1.4.2 The General Real-Valued Sinusoid

The shift properties discussed above allow us to express sinusoidal signals in
terms of either the sine or the cosine function. We obtain the general form
for the real-valued sinusoid by modifying the function cos θ in three ways:
1. Vertical Scaling. Multiplication of cos θ by a constant A yields an am-
plitude (peak value) equal to |A|. It is customary to use positive values for
A. A negative A would result in a sign inversion, which is better described
using a shift in θ:

− cos θ = cos(θ + π)

2. Horizontal Scaling. The horizontal scale can be changed by making θ a
linear function of another variable; time t is often chosen for that purpose.
We thus have, for Ω ≥ 0,

θ = θ(t) = Ωt

and the resulting sinusoid is

x(t) = A cosΩt

The scale parameter Ω is known as the angular frequency, or radian frequency
of the signal x(t). If t is measured in seconds, then Ω is measured in radians
per second (rad/sec).

A full cycle (period) of cos θ lasts 2π radians, or equivalently, 2π/Ω
seconds. It follows that the period T of x(t) is

T =
2π

Ω
(seconds)

The (cyclic) frequency of x(t) is the number of cycles per unit time, i.e.,

f =
1
T

=
Ω
2π

The unit of f is cycles/second, or Hertz (Hz). We thus have

1 Hz = 2π rad/sec

In Figure 1.12, Ω2 > Ω1, and thus T2 < T1.
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cosΩ t1

0 T1 T2t t0

cosΩ t
2

Figure 1.12: Sinusoids of two different frequencies.

3. Horizontal Shifting. The introduction of a phase shift angle φ in the
argument of the cosine results in

x(t) = A cos(Ωt + φ)

which is the most general form for the real-valued sinusoid. A positive value
of φ represents a phase (angle) advance of φ/2π cycles, or a time advance of
φ/Ω seconds; a negative value of φ represents a delay. Clearly, x(t) can be
also expressed in terms of the sine function, using an additional phase shift
(see the discussion earlier):

sin(Ωt + φ) = cos
(
Ωt + φ− π

2

)

cos(Ωt + φ) = sin
(
Ωt + φ +

π

2

)

Example 1.4.1. Let us sketch the signal

x(t) = 3 cos
(

10πt +
3π

4

)

showing all features of interest such as the signal amplitude; the initial value
of the signal (t = 0); and the positions of zeros, maxima and minima.
First, we draw one cycle of the cosine function (peak to valley to peak)
without marking the time origin. The duration of that cycle is the period
T of x(t), which is obtained from Ω (the coefficient of t):

Ω = 10π rad/sec ⇒ f = 5 Hz ⇒ T = 0.2 sec
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The cycle drawn starts on a peak, which would be the value of the signal
at t = 0 if the phase shift were equal to 0. In this case, the phase shift
equals 3π/4, which is equivalent to 3/8 cycles. Thus the correct placement
of the time origin (t = 0) is to the right of the leftmost peak, at a distance
corresponding to 3/8 cycles, or 0.075 seconds. The value of the signal at
t = 0 is

3 cos(3π/4) = −3
√

2/2 = −2.121

The positions of the zeros, maxima and minima of x(t) are now marked
relative to the origin. Note that these occur at quarter-cycle intervals, i.e.,
every 0.05 seconds. Since the phase shift at t = 0 is 3/8 cycles, the first
such point on the positive t-axis will occur 1/8 cycles later (i.e., at t = 0.025
seconds), and will be a minimum.

t-.075   -.025    0      .025            .075     .125 

T = 0.2 sec

-3

+3

-2.121

Example 1.4.1

More cycles of the signal can then be added (e.g., the dotted line in the
figure).

1.4.3 Complex-Valued Sinusoids and Phasors

In our discussion of complex numbers, we established Euler’s formula

ejθ = cos θ + j sin θ
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and obtained the identities

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j

It is clear from the first of the two identities that cos θ can be obtained
from the two complex numbers ejθ and e−jθ (both on the unit circle) by
projecting either number onto the real axis, or, equivalently, by averaging the
two numbers. Analogous conclusions can be drawn about the sine function,
using the imaginary axis and a slightly different linear combination.

The real-valued sinusoid

x(t) = A cos(Ωt + φ)

can also be obtained from the complex-valued sinusoid

z(t) = Aej(Ωt+φ)

using
x(t) = <e

{
Aej(Ωt+φ)

}

or, equivalently,

x(t) =
Aej(Ωt+φ) + Ae−j(Ωt+φ)

2
=

z(t) + z∗(t)
2

To interpret the above relationships, think of z(t) and z∗(t) as two points
on the circle |z| = A, with initial angular positions (at t = 0) given by φ
and −φ. The two points rotate in opposite directions on the circle; their
angular velocities are equal in magnitude. The real-valued sinusoid x(t) is
obtained by either projecting z(t) onto the real axis, or taking the midpoint
of the segment joining z(t) and z∗(t), as shown in Figure 1.13.

The foregoing discussion used the concept of negative angular frequency
to describe an angle which is decreasing linearly in time. Negative frequen-
cies are of no particular value in expressing real sinusoids, since

A cos(−Ωt + φ) = A cos(Ωt− φ) ,

i.e., changing the sign of Ω is no different from changing the sign of the phase
angle φ. Using negative frequencies for complex sinusoids, on the other hand,
allows us to linearly combine such complex signals to obtain a real-valued
sinusoid. This concept will be further discussed in signal analysis.



25

z(t)

z (t)*

Ωt+φ

−Ωt−φ

jA

−jA

A−A

x(t)

Figure 1.13: Rotating phasor.

A complex sinusoid such as z(t) is also known as a rotating phasor. Its
initial position at t = 0 is referred to as a stationary phasor. As expected,

Aej(Ωt+φ) = Aejφ · ejΩt

i.e., the rotating phasor is obtained from the stationary phasor by rotation
through an angle Ωt.

Stationary phasors are particularly useful in depicting the relative phases
of sinusoidal signals of the same frequency, such as voltages and currents
in an AC (alternating current) circuit. One particular application involves
sums of such signals:

Fact. If x1(t), . . . , xM (t) are real sinusoids given by

xm(t) = Am cos(Ωt + φm)

then
x1(t) + · · ·+ xM (t) = A cos(Ωt + φ)

where

Aejφ =
M∑

m=1

Amejφm

The fact that a sum of sinusoids of the same frequency is also sinusoidal
is not at all obvious. To prove it, note first that

xm(t) = <e
{

Ame(jΩt+φm)
}
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so that
M∑

m=1

xm(t) =
M∑

m=1

<e
{

Ame(jΩt+φm)
}

Since <e{z1 + z2} = <e{z1}+ <e{z2}, it follows that
M∑

m=1

xm(t) = <e

{
M∑

m=1

Ame(jΩt+φm)

}

= <e

{
M∑

m=1

AmejφmejΩt

}

= <e

{(
M∑

m=1

Amejφm

)
· ejΩt

}

= <e
{

Aej(Ωt+φ)
}

= A cos(Ωt + φ)

where

A =

∣∣∣∣∣
M∑

m=1

Amejφm

∣∣∣∣∣ and φ = ∠
(

M∑

m=1

Amejφm

)

i.e.,

Aejφ =
M∑

m=1

Amejφm ¤

One way of interpreting this result is that the stationary phasor Aejφ

corresponding to the sum signal x(t) is just the (vector) sum of the stationary
phasors of each of the components of xm(t). The same, of course, holds for
the rotating phasors.

Example 1.4.2. To express

x(t) = 3 cos
(

10πt +
3π

4

)
+ 5 sin

(
10πt +

π

6

)

as a single sinusoid, we first write the second term as

5 cos
(
10πt +

π

6
− π

2

)
= 5 cos

(
10πt− π

3

)

The stationary phasor for the sum signal x(t) is given by

3 · ej(3π/4) + 5 · e−j(π/3) = 0.3787− j2.209
= 2.241 · e−j1.401

Thus
x(t) = 2.241 · cos(10πt− 1.401) ¤
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1.5 Sinusoids in Discrete Time

1.5.1 Discrete-Time Signals

A discrete-time, or discrete-parameter, signal is a sequence of real or complex
numbers indexed by a discrete variable (or parameter) n, which takes values
in a set of integers I. Examples of I include infinite sets such as Z (all
integers), N (positive integers), etc.; as well as finite sets such as {1, . . . , M}.
In the latter case, the signal is also called a vector.
In what follows, we will assume that the discrete (time) parameter n takes
values over all integers, i.e., n ∈ Z. The notation for a discrete-time signal
involves square brackets around n, to differentiate it from a continuous-time
signal:

s[n], n ∈ Z distinct from s(t), t ∈ R

.

.
.

. .. .

...
.

0 n

x[n]

x[0]

Figure 1.14: A discrete-time signal.

One important note here is that n has no physical dimensions, i.e, it is a
pure integer number; this is true even when s[n] represents samples of a
continuous-parameter signal whose value varies in time, space, etc.

1.5.2 Definition of the Discrete-Time Sinusoid

A sinusoid in discrete time is defined as in continuous time, by replacing the
continuous variable t by the discrete variable n:

x[n] = A cos(ωn + φ)
y[n] = A sin(ωn + φ)
z[n] = Aej(ωn+φ) = x[n] + jy[n]
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Again, we assume A > 0. We will use the lower-case letter ω for angular
frequency in discrete time because it is different from the parameter Ω used
for continuous-time sinusoids. The difference is in the units: t is measured
in seconds, hence Ω is measured in radians per second ; while n has no units,
hence ω is just an angle, measured in radians or radians per sample.

Example 1.5.1. If ω = 0, then

x[n] = A cosφ, y[n] = A sinφ, and z[n] = Aejφ

i.e., all three signals are constant in value.

Example 1.5.2. If ω = π, then

z[n] = Aej(πn+φ) = A(ejπ)n · ejφ = A(−1)n · ejφ

since ejπ = −1. Thus also

x[n] = A(−1)n cosφ and y[n] = A(−1)n sinφ

The signal x[n] is shown in the figure. Note the oscillation between the
two extreme values +A cosφ and −A cosφ, which is the fastest possible
for a discrete-time sinusoid. As we shall see soon, ω = π rad/sample is,
effectively, the highest possible frequency for a discrete-time sinusoid.

.
0 n

x[n]  (ω=0)

.......

. . .

. . .

0 n

x[n]  (ω=π)

Acosφ

−Acosφ

Acosφ

Example 1.5.2

Example 1.5.3. The discrete-time sinusoid

x[n] =
√

3 cos
(πn

3
− π

6

)

is shown in the figure (on the left). The graph was generated using the stem
command in MATLAB:
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n = -2:8;
x = sqrt(3) * cos((pi/3)*n -(pi/6));
stem(n,x)

Note that the signal is periodic—it repeats itself every 6 samples. The angle
in the argument of the cosine is marked on the unit circle (shown on the
right), for n = 0, ..., 5.
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Example 1.5.3

1.5.3 Equivalent Frequencies for Discrete-Time Sinusoids

As we mentioned earlier, the angular frequency parameter ω, which appears
in the argument

ωn + φ

of a discrete-time sinusoid, is an angle. It actually acts as an angle in-
crement : With each sample, the angle in the argument of the sinusoid is
incremented by ω.
Since the sinusoids sin θ, cos θ and ejθ are all periodic in θ (with period
2π), it is conceivable that two different values of ω may result in identical
sinusoidal waveforms. To see that this is indeed the case, consider

z[n] = Aej(ωn+φ)

We know that ejψ = ejθ if and only if the angles θ and ψ correspond to the
same point on the unit circle, i.e.,

ψ = θ + 2kπ
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where k is an integer. If we replace ω by ω + 2kπ in the equation for z[n],
we obtain a new signal v[n] given by

v[n] = Aej((ω+2kπ)n+φ)

= Aej(ωn+φ+2knπ)

= Aej(ωn+φ)

= z[n]

where the angle argument was reduced by an integer (= kn) multiple of 2π
without affecting the value of the sinusoid. Thus the signals z[n] and v[n]
are identical.

Definition 1.5.1. The angular frequencies ω and ω′ are equivalent for
complex-valued sinusoids in discrete time if

ω′ = ω + 2kπ, (k ∈ Z) ¤

Equivalent frequencies result in identical complex sinusoids, provided
the initial phase shifts φ are equal. Thus the effective range of frequen-
cies for complex sinusoids can be taken as (0, 2π] or (−π, π] rad/sample,
corresponding to one full rotation on the unit circle.

Example 1.5.4. The three complex sinusoids

z(1)[n] = exp
{

j
(
−πn

6
+ φ

)}

z(2)[n] = exp
{

j

(
11πn

6
+ φ

)}

z(3)[n] = exp
{

j

(
23πn

6
+ φ

)}

all represent the same signal (in discrete time).

The notion of equivalent frequency also applies to the real-valued sinusoid

x[n] = A cos(ωn + φ)

since x[n] = <e{z[n]}. Thus two frequencies which differ by an integral
multiple of 2π will result in identical real-valued sinusoids provided the initial
phase shifts φ are the same.
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Moreover, for the real valued sinusoid above, it is fairly easy to show that
using ω′ = −ω + 2kπ instead of ω will result in an identical signal provided
the sign of φ is also reversed. Let

u[n] = A cos((−ω + 2kπ)n− φ)

Then, recalling the identity

cos(−θ) = cos(θ)

we have

u[n] = A cos((−ω + 2kπ)n− φ)
= A cos(ωn + φ− 2kπn)
= A cos(ωn + φ)
= x[n]

We also note that no sign reversal is needed for φ if ω = 0 or ω = π.

Definition 1.5.2. The angular frequencies ω and ω′ are equivalent for real-
valued sinusoids in discrete time if

ω′ = ±ω + 2kπ, (k ∈ Z) ¤

This further reduces the effective range of frequency for real sinusoids to
the interval [0, π]. This is illustrated in Figure 1.15.

ωn+φ

−ωn−φ

1

Same value obtained
for cos(.) 0π

Figure 1.15: Two equivalent frequencies for real sinusoids (left);
effective range of frequencies for real sinusoids (right).
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Example 1.5.5. The three real sinusoids

x(1)[n] = cos
(
−πn

6
+ φ

)

x(2)[n] = cos
(

11πn

6
+ φ

)

x(3)[n] = cos
(

23πn

6
+ φ

)

all represent the same signal, which is also given by (note the sign reversal
in the phase):

cos
(πn

6
− φ

)
= cos

(
13πn

6
− φ

)
= cos

(
25πn

6
− φ

)
¤

1.5.4 Periodicity of Discrete-Time Sinusoids

While continuous-time sinusoids are always periodic with period T = 2π/Ω,
periodicity is the exception (rather than the rule) for discrete-time sinusoids.
First, a refresher on periodicity:

Definition 1.5.3. A discrete-time signal s[n] is periodic if there exists an
integer N > 0 such that for all n ∈ Z,

s[n + N ] = s[n]

The smallest such N is called the (fundamental) period of s[n].

For z[n] = Aej(ωn+φ), the condition

(∀n) z[n + N ] = z[n]

holds for a given N > 0 if and only if

ω(n + N) + φ = ωn + φ + 2kπ

which reduces to
ω =

k

N
· 2π

Thus z[n] is periodic if and only if its frequency is a rational (i.e., ratio
of two integers) multiple of 2π. The period (smallest such N) is found by
cancelling out common factors between the numerator k and denominator
N .

The same condition for periodicity can be obtained for the real-valued
sinusoid x[n] = A cos(ωn + φ).
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Example 1.5.6. The signal

x[n] = cos(10n + 0.2)

is not periodic, while

s[n] = cos
(

13πn

15
+ 0.4

)

is. Since
13π
15

=
13
30
· 2π

(note that there are no common factors in the numerator and the denomi-
nator of the last fraction), the period of s[n] is N = 30.
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1.6 Sampling of Continuous-Time Sinusoids

1.6.1 Sampling

Sampling is the process of recording the values taken by a continuous-time
signal at discrete sampling instants. Uniform sampling is most commonly
used: the sampling instants Ts are seconds apart in time, where Ts is the
sampling period. The sampling rate, or sampling frequency, fs is the recip-
rocal of the sampling period:

fs =
1
Ts

(samples/sec)

If the continuous time signal is x(t), the discrete-signal resulting from sam-
pling is

x[n] = x(nTs)

.
.

. . .
.

.
..

                         −2.0     0      2.0                              t

x(t)
x[0]

x[1]

x[-1]

Figure 1.16: Sampling every two seconds (i.e., Ts = 2.0).

Sampling is one of two main components of analog-to-digital (A-to-D),
the other component being quantization. The reverse process of digital-
to-analog (D-to-A) conversion involves interpolation, namely reconstructing
the continuous-time signal from the discrete (and quantized) samples. The
sampling rate fs determines, to a large extent, the quality of the interpolated
analog signal. If the sampling rate is high enough, the samples will contain
sufficient information about the sampled analog signal to allow accurate
interpolation; otherwise, fine detail will be lost and the reconstructed signal
will be a poor replica of the original. The minimum sampling rate fs required
for accurate interpolation is known as the Nyquist rate, which depends on the
range of frequencies spanned by the original signal (in terms of its sinusoidal
components). Although the theory behind the Nyquist rate is beyond the
scope of this chapter, the necessity of sampling at the Nyquist rate (or
higher) can be seen by considering simple properties of sampled sinusoidal
signals.
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1.6.2 Discrete-Time Sinusoids Obtained by Sampling

Sampling a continuous-time sinusoid produces a discrete-time sinusoid. Con-
sider, for example, the real-valued sinusoid

x(t) = A cos(Ωt + φ)

which has period T = 2π/Ω and cyclical frequency f = Ω/2π. We have

x[n] = A cos(ΩnTs + φ)
= A cos(ωn + φ)

where

ω = ΩTs =
Ω
fs

Note that, as expected, ω has no physical dimensions, i.e., it is just an angle.
It can also be expressed as

ω = 2π · Ts

T
= 2π · f

fs

Thus the frequency of the discrete-time sinusoid obtained by sampling a
continuous-time sinusoid is directly proportional to the sampling period Ts,
or equivalently, inversely proportional to the sampling frequency fs.

Suppose Ts is small in relation to T , or equivalently, fs is high compared
to f . Since many samples are taken in each period, the sample values
will vary slowly, and thus frequency of the discrete-time signal will be low.
As Ts increases (i.e., fs decreases), the frequency ω of the discrete-time
sinusoid also increases. Recall, however, that there is an upper limit, equal
to π rad/sample, on the effective frequency of a real-valued discrete-time
sinusoid. That value will be attained for

Ts =
π

Ω
=

T

2
,

(equivalently, for fs = 2f). When Ts exceeds T/2, the effective frequency of
the resulting samples will decrease with Ts. This is consistent with the fact
that

π + δ and π − δ = −(π + δ) + 2π

are equivalent frequencies. The effective frequency will become zero when
Ts = T (or fs = f), and then it will start increasing again, etc.
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Example 1.6.1. Consider the continuous-time sinusoid

x(t) = cos(400πt + 0.8)

which has period T = 5 ms and frequency f = 200 Hz. Suppose the following
three sampling rates are used: 1,000, 500, and 250 samples/sec.

In the first case, Ts = 1 ms and ω = (400π)/1000 = 2π/5. The resulting
signal is

x1[n] = cos
(

2πn

5
+ 0.8

)

In the second case, Ts = 2 ms and ω = 4π/5. The resulting signal is

x2[n] = cos
(

4πn

5
+ 0.8

)

In the third case, Ts = 4 ms and ω = 8π/5. The resulting signal is

x3[n] = cos
(

8πn

5
+ 0.8

)
= cos

(
2πn

5
− 0.8

)

i.e., it is a sinusoid of the same frequency as x1[n] (but with different phase
shift).

Example 1.6.2. The graphs show the continuous time sinusoid A cos(2πft)
sampled at fs = 8f (left) and fs = (8f)/7 (right). The sample sequence
on the right is formed by taking every seventh sample from the sequence
on the left. Clearly, the two sequences are identical, and are given by the
discrete-time sinusoid A cos(πn/4).

1.6.3 The Concept of Alias

The notion of equivalent frequency was implicitly used in Example 1.6.1 to
show that a given continuous-time sinusoid can be sampled at two different
sampling rates to yield discrete sinusoids of the same frequency (differing
possibly in the phase). If we were to plot the two sample sequences using an
actual time axis, i.e., t instead of n (as in the graphs of Example 1.6.2), we
would observe that one sequence of samples contains a lot more information
about the analog signal. In the case of a sinusoidal signal, most of this
information is redundant: as few as three samples may suffice to determine
the unknown parameters Ω, φ and A (only two samples if the frequency Ω
is known), and hence to interpolate the signal perfectly. On the other hand,
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0 t

A

0 t

A

Example 1.6.2

for an arbitrary signal x(t) that is neither sinusoidal nor (more generally)
periodic, interpolation from a finite number of samples is impossible; for such
a signal, a higher sampling rate is likely to result in better (more faithful)
reconstruction.

Most analog (i.e., continuous-time) signals encountered in practice can
be formed by summing together sinusoids of different frequencies and phase
shifts. In most cases, the frequencies involved span an entire (continuous)
interval or band, in which case integration is more appropriate than summa-
tion. The details of the sinusoidal representation of continuous-time signals
(known as the Fourier transform) are not essential at this point. To appreci-
ate a key issue which arises in sampling analog signals, it suffices to consider
the simple class of signals which are sums of finitely many sinusoids.

Consider again the sinusoid

x(t) = A cos(Ωt + φ)

sampled at a rate fs which is fixed (unlike the situation discussed in the
previous subsection). The resulting discrete-time sinusoid x[n] has frequency
ω = ΩTs = 2π(f/fs).

Consider also a second sinusoid

x′(t) = A′ cos(Ω′t + φ′)

sampled at the same rate, resulting in x′[n] having frequency ω′ = Ω′Ts =
2π(f ′/fs).
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The two frequencies ω and ω′ are equivalent (allowing both x[n] and
x′[n] to be expressed in terms of the same frequency) provided that

ω′ = ±ω + 2kπ , k integer

This is equivalent to
f ′

fs
= ± f

fs
+ k

or, simply,
f ′ = ±f + kfs

for some integer k.
Frequencies f and f ′ (in Hz) satisfying the above relationship are known

as aliases of each other with respect to the sampling rate fs (in sam-
ples/second). Continuous-time sinusoids at frequencies related in that man-
ner, will, when sampled at the appropriate rate, yield discrete-time samples
having the same (effective) frequency.

Example 1.6.3. Consider again Example 1.6.1, where f = 200 Hz.
If fs = 1, 000 Hz, the aliases of f are at

f ′ = 200 + k(1000) and f ′ = −200 + k(1000) Hz

If fs = 500 Hz, the aliases of f are at

f ′ = 200 + k(500) and f ′ = −200 + k(500) Hz

If fs = 250 Hz, the aliases of f are at

f ′ = 200 + k(250) and f ′ = −200 + k(250) Hz

The aliases (in Hz) are plotted for each sampling rate. Clearly, only
positive frequencies are of interest, and thus it suffices to consider k ≥ 0 in
both series. In the first two cases, the lowest (positive) alias is f itself. In
the third case, the lowest alias is at −200 + 250 = 50 Hz.

Example 1.6.4. The graphs illustrate how three continuous-time sinusoids
with frequencies f = 0, f = fs and f = 2fs can yield the same discrete-time
sequence with ω = 0.
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−200                 0                   200                                                           800                                     1,200

Sampling Rate = 1,000 samples/sec

−200                 0                   200     300                                      700     800                                     1,200

Sampling Rate = 500 samples/sec

−200                 0    50           200     300          450     550            700   800           950    1,050        1,200

Sampling Rate = 250 samples/sec

Example 1.6.3

Example 1.6.4

1.6.4 The Nyquist Rate

The term aliasing is used in reference to sampling continuous-time signals
which are expressible as sums of sinusoids of different frequencies (most
signals fall in that category). Aliasing occurs in sampling a continuous-time
signal x(t) if two (or more) sinusoidal components of x(t) are aliases of each
other with respect to the sampling rate.

For example, consider

x(t) = cos Ωt + 4 cos Ω′t

where Ω and Ω′ are aliases with respect to the sampling rate fs. The result-
ing sequence of samples can be expressed as

x[n] = cosωn + 4 cosω′n

Since ω and ω′ are equivalent frequencies (and no phase shifts are involved
here), we can also write

x[n] = 5 cosωn
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Reconstructing x(t) from the samples x[n] without knowing the ampli-
tudes of the two components cos Ωt and cos Ω′t is a hopeless task: the same
sequence of samples could have been obtained from, e.g.,

u(t) = 2 cos Ωt + 3 cosΩ′t or v(t) = − cosΩt + 6 cos Ω′t

which are very different signals from x(t). This shows convincingly that
aliasing is undesirable in sampling signals composed of sinusoids. Thus
absence of aliasing is a necessary condition for the faithful reconstruction of
the sampled signal.

As we mentioned earlier, typical analog signals consist of a continuum of
sinusoids spanning an entire interval, or band, of frequencies; these sinusoidal
components are “summed” by an integral over frequency (rather than by a
conventional sum). The effect of aliasing is the same whether we sum or
integrate over frequency: components at frequencies that are aliases of each
other cannot be resolved on the basis of the samples obtained, hence the
amplitude and phase information needed to incorporate those components
into the reconstructed signal will be unavailable.

If the sinusoidal components of x(t) have frequencies which are limited to
the frequency band [0, fB] Hz (where fB is the signal bandwidth), aliasing is
avoided if no frequency f in that band has an alias f ′ = ±f +kfs (excluding
itself) in the same band. With the aid of Figure 1.17, we will determine the
minimum sampling rate fs such that no aliasing occurs.

  −f                   f −f                      0                      f                          f                   f +f
s                          B    s                                                               B                                   s                          B    s

    −f                        −f                   0                       −f +f                   f                     −f +2f
s                                   B                                                               B    s                           s                               B       s  

Figure 1.17: Illustration of the Nyquist condition: −fB +fs > fB ,
i.e., fs > 2fB .

Consider the alias relationship f ′ = f + kfs first. Each k corresponds to
an interval [kfs, fB +kfs] of aliases of frequencies in [0, fB] (top graph). No
aliasing means that neither of the intervals [−fs, fB − fs] and [fs, fB + fs]
(corresponding to k = −1 and k = 1, respectively) overlaps with [0, fB].
This is ensured if and only if fs > fB.
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Next, consider the alias relationship f ′ = −f +kfs, which gives aliases of
[0, fB] in the interval [−fB + kfs, kfs] (bottom graph). No aliasing means
that the interval [−fB+fs, fs] does not overlap with [0, fB], which is ensured
if and only if fs > 2fB.

Thus aliasing is avoided if fs > 2fB. In other words, the sampling
rate must be greater than twice the bandwidth of the analog signal. This
minimum rate is known as the Nyquist rate. Sampling at a rate higher than
the Nyquist rate is a necessary condition for the faithful reconstruction of
the signal x(t) from its samples x[n].

It turns out that the condition fs > 2fB is also sufficient for the complete
recovery of the analog signal from its samples. The proof of this fact requires
more advanced tools in signal analysis, and will be outlined in the epilogue
following Chapter 4.
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Problems

Section 1.1

P 1.1. What is the IEEE 754 double-precision encoding (in hexadecimal form)
of the decimal numbers 0.125 and −15.75? You can use MATLAB (format
hex) to verify your answers.

P 1.2. Type help round and help fix in MATLAB and read the description
of these two functions. If x is an arbitrary number and m is a positive integer,
explain in your own words the effect of using the MATLAB commands

10^(-m)*round(x*10^m)

and

10^(-m)*fix(x*10^m)

P 1.3. A terminating decimal expansion may correspond to an infinite (non-
terminating) binary expansion. Such is the case with the decimal num-
ber 0.1, which is rounded in MATLAB—i.e., it is represented by a dif-
ferent precise binary number a. What is the value of the error a − 0.1?
(Hint: using format hex, you can obtain the hexadecimal representation
3FB999999999999A for a. You may find the geometric sum formula useful
here.)

Section 1.2

P 1.4. (i) Using your calculator, compute the value of

y = 1− sinx

x

for x = 0.05 radians, rounding to four significant digits at the end. Denote
your answer by y1.
(ii) Repeat the calculation of y, rounding to four significant digits at each
stage. Denote your answer by y2.
(iii) Compute the value of y using the expansion

sinx = x− x3

6
+

x5

120
− · · ·

rounding to four significant digits at each stage. Denote your answer by y3.
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P 1.5. (i) Let x = 0.02. Using the full precision available on your calculator,
compute

y =
1 + x√
1 + 2x

− 1

Denote your answer by y1.
(ii) Repeat the calculation of y, rounding to four significant digits at each
stage. Denote your answer by y2. Also compute the error relative to y1.
(iii) Compute the value of y using the binomial expansion

(1 + a)r = 1 + ra +
r(r − 1)

2!
a2 +

r(r − 1)(r − 2)
3!

a3 + · · ·

(valid for any r and |a| < 1). Include powers of x up to x2 and use four-digit
precision. Denote your answer by y3. Again, compute the error relative to
y1.

P 1.6. (i) Compute ln(1 + c) + ln(1− c) for c = 0.002 using the full precision
available on your calculator (or MATLAB).
(ii) Repeat the computation with reduced precision, rounding each loga-
rithm to six significant digits. What is the relative error (using the answer
obtained in (i) above as the true value)?
(iii) Compute the same quantity using the Taylor series expansion

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·

(valid for −1 < x ≤ 1) with six-digit precision. What is the relative error in
this computation?
(iv) Use the approximate form

f ′′(x) ≈ f(x + ∆)− 2f(x) + f(x−∆)
∆2

(where f ′′ denotes second derivative and ∆ is small) to obtain a new ap-
proximation to ln(1 + c) + ln(1 − c) using six-digit precision. What is the
relative error in this computation?

P 1.7. Suppose N is an integer. In infinite precision arithmetic, summing
together N numbers, each equal to 1/N , yields an answer exactly equal to
1. In finite precision arithmetic, that is not necessarily the case.
Try out the following MATLAB script (sequence of commands), after setting
(i) N = 100, 000 (= 105) and (ii) N = 131, 072 (= 217). Compute the error
relative to the exact answer (= 1) in each case. Explain any differences
between the two cases.
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y = 0;
for i = 1:N
y = y+(1/N);
end
y

Section 1.3

P 1.8. Which of the following expressions represents the complex number
2 + 3j in MATLAB?

2 + 3*j
2 + 3*i
2 + j3
2 + 3j
[2+3j]
[2 + 3j]
[2 +3j]

P 1.9. Simplify the complex fraction

(1 + j
√

3)(1− j)
(
√

3 + j)(1 + j)

using (i) Cartesian forms; and (ii) polar forms, throughout your calculation.

P 1.10. Let N be an arbitrary positive integer. Evaluate the product

N−1∏

k=1

(
cos

(
kπ

N

)
+ j sin

(
kπ

N

))
,

expressing your answer in Cartesian form.

Section 1.4

P 1.11. Consider the continuous-time sinusoid

x(t) = 5 cos(500πt + 0.25)
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where t is in seconds.
(i) What is the first value of t greater than 0 such that x(t) = 0?
(ii) Consider the following MATLAB script which generates a discrete ap-
proximation to x(t):

t = 0 : 0.0001 : 0.01 ;
x = 5*cos(500*pi*t + 0.25) ;

For which values of n, if any, is x(n) zero?

P 1.12. The value of the continuous-time sinusoid x(t) = A cos(Ωt+φ) (where
A > 0 and 0 ≤ φ < 2π) is between −2.0 and +2.0 for 70% of its period.
(i) What is the value of A?
(ii) If it takes 300 ms for the value of x(t) to rise from −2.0 to +2.0, what
is the value of Ω?
(iii) If t = 40 ms is the first positive time for which x(t) = −2.0 and x′(t)
(the first derivative) is negative, what is the value of φ?

P 1.13. The input voltage v(t) to a light-emitting diode circuit is given by
A cos(Ωt + φ), where A > 0, Ω > 0 and φ are unknown parameters. The
circuit is designed in such a way that the diode turns on at the moment the
input voltage exceeds A/2, and turns off when the voltage falls below A/2.
(i) What percentage of the time is the diode on?
(ii) Suppose the voltage v(t) is applied to the diode at time t = 0. The
diode turns on instantly, turns off at t = 1.5 ms, then turns on again at
t = 9.5 ms. Based on this information, determine Ω and φ.

P 1.14. Using stationary phasors, express each of the following sums in the
form A cos(Ωt + φ).
(i)

cos
(
7πt− π

6

)
− sin

(
7πt− π

6

)
+ 3 cos

(
7πt +

π

4

)

(ii)

2.26 cos(43t + 0.11)− 5.77 cos(43t + 2.08) + 0.49 cos(43t + 1.37)
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Section 1.5

P 1.15. (i) For exactly one value of ω in [0, π], the discrete-time sinusoid

v[n] = A cos(ωn + φ)

is periodic with period equal to N = 4 time units. What is that value of ω?
(ii) For that value of ω, suppose the first period of v[n] is given by

v[0] = 1, v[1] = 1, v[2] = −1 and v[3] = −1

What are the values of A > 0 and φ?

P 1.16. (i) Use the trigonometric identity

cos(α + β) = cosα cosβ − sinα sinβ

to show that

cos(ω(n + 1) + φ) + cos(ω(n− 1) + φ) = 2 cos(ωn + φ) cos ω

(ii) Suppose

x[1] = 1.7740, x[2] = 3.1251 and x[3] = 0.4908

are three consecutive values of the discrete-time sinusoid x[n] = A cos(ωn +
φ), where A > 0, ω ∈ [0, π] and φ ∈ [0, 2π]. Use the equation derived in (i)
to evaluate ω. Then use the ratio x[2]/x[1] together with the given identity
for cos(α + β) to evaluate tanφ and hence φ. Finally, determine A.

P 1.17. (i) Use MATLAB to plot four periods of the discrete-time sinusoid

x1[n] = cos
(

7πn

9
+

π

6

)

(ii) Show that the product

x2[n] = x1[n] · cos(πn)

is also a (real-valued) discrete-time sinusoid. Express it in the form A cos(ωn+
φ), where A > 0, ω ∈ [0, π] and φ ∈ (0, 2π).
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Section 1.6

P 1.18. The continuous-time sinusoid

x(t) = cos(2πft + φ)

is sampled every Ts = 1/(12f) seconds to produce the discrete-time sinusoid

x[n] = x(nTs)

(i) Write an expression for x[n]. What is the angular frequency ω of x[n],
in radians?

(ii) Consider the discrete-time signal

y[n] = x[n + 1] + 2x[n] + x[n− 1]

Using phasors, express y[n] in the form

y[n] = A cos(ωn + ψ)

clearly showing the values of A and ψ.

P 1.19. The continuous-time sinusoid

x(t) = cos(150πt + φ)

is sampled every Ts = 3.0 ms starting at t = 0. The resulting discrete-time
sinusoid is

x[n] = x(nTs)

(i) Express x[n] in the form x[n] = cos(ωn + φ) i.e., determine the value of
ω.

(ii) Is the discrete-time sinusoid x[n] periodic? If so, what is its period?

(iii) Suppose that the sampling rate fs = 1/Ts is variable. For what values
of fs is x[n] constant for all n? For what values of fs does x[n] alternate in
value between − cosφ and cosφ?

P 1.20. Consider the continuous-time sinusoid

x(t) = 5 cos(200πt− 0.8) + 2 sin(200πt)
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where t is in seconds.
(i) Express x(t) in the form

x(t) = A cos(200πt + φ)

(ii) Suppose x(t) is sampled at a rate of fs = 160 samples/second. The
discrete-time signal x[n] = x(n/fs) is expressed as

x[n] = A cos(ωn + ψ)

with ω in the interval [0, π]. What is the value of ω? What is the relationship
between ψ and φ?

P 1.21. For what frequencies f in the range 0 to 3.0 KHz does the sinusoid

x(t) = cos(2πft)

yield the signal
x[n] = cos(0.4πn)

when sampled at a rate of fs = 1/Ts = 800 samples/sec?

P 1.22. The continuous-time sinusoid

x(t) = cos(300πt)

is sampled every Ts = 2.0 ms, so that

x[n] = x(0.002n)

(i) For what other values of f in the range 0 Hz to 2.0 KHz does the sinusoid

v(t) = cos(2πft)

produce the same samples as x(t) (i.e., v[·] = x[·]) when sampled at the same
rate?
(ii) If we increase the sampling period Ts (or equivalently, drop the sampling
rate), what is the least value of Ts greater than 2 ms for which x(t) yields
the same sequence of samples (as for Ts = 2 ms)?
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2.1 Introduction to Matrix Algebra

The analysis of signals and linear systems relies on a variety of mathematical
tools, different forms of which are suitable for signals and systems of differing
complexity. The simplest type of signal we consider is a discrete-time signal
of finite duration, which is the same as an n-dimensional vector consisting
of real or complex-valued entries. In representing such signals and their
transformations resulting from numerical processing, certain concepts and
methods of linear algebra are indispensable. Understanding the role played
by linear algebra in the analysis of such simple (finite-dimensional) signals
also provides a solid foundation for studying more complex models where the
signals evolve in discrete or continuous time and are infinite-dimensional.

2.1.1 Matrices and Vectors

A m× n matrix is an ordered array consisting of m rows and n columns of
elements:

A =




a11 a12 . . . a1n

a21 a21 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




A compact notation for the above matrix is

A = [aij ]m×n = [aij ]

The last form is used whenever the dimensions m and n of A are known or
can be easily inferred.

The elements (also called entries) of the matrix A are real or, more
generally, complex numbers. We define

Rm×n = space of all (m× n)-dimensional real -valued matrices
Cm×n = space of all (m× n)-dimensional complex -valued matrices

where C denotes the complex plane.
A vector is a special case of a matrix where one of the dimensions (m or

n) equals unity. A row vector has the form

[
a1 a2 . . . an

]

and lies in the space R1×n or, more generally, C1×n.
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A column vector has the form



a1

a2
...

am




and lies in the space Rm×1 or, more generally, Cm×1.
Row vectors and column vectors can be used interchangeably to represent

an ordered set of (finitely many) numbers. Thus, in many ways, the spaces
R1×n and Rn×1 are no different from Rn, the space of all n-tuples of real
numbers. In fact, the redundant dimension (unity) in R1×n and Rn×1 is
often omitted when the orientation (row or column) of the vector can be
easily deduced from the context. The same holds for C replacing R.

The usual notation for a vector in Rn or Cn is a lower-case boldface
letter, e.g.,

a = (a1, . . . , an)

In operations involving matrices, the distinction between row and column
vectors is important. Unless otherwise stated, a lower-case boldface letter
will denote a column vector, i.e.,

a =




a1

a2
...

am




To denote row vectors in expressions involving matrix operations, the trans-
pose (T ), or complex-conjugate transpose (H), operators will be used, i.e.,
a row vector will be denoted by aT or aH .

In MATLAB, matrices are entered row-by-row, where rows are separated
with a semicolon:

A = [-1 3 4; 0 1 5; 2 2 1]

Thus [-1 3 4] is a row vector, while [-1; 0; 2] is a column vector. The
transpose operator T is entered as .’ and the complex conjugate transpose
H as ’. Both produce the same result in the case of real-valued vectors:

[-1; 0; 2].’

and
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[-1; 0; 2]’

are the same as

[-1 0 2]

The default orientation of a vector in MATLAB is horizontal, i.e., a row.
This means that MATLAB functions returning vector-valued answers from
scalar arguments will (usually) do so in row-vector format. An example of
this is the notation start:increment:end, which generates a row vector.
MATLAB will ignore the orientation of row and column vectors in places
where it is unimportant, e.g., in arguments of certain functions.

An error message will be generated if the orientation of the vector is
inconsistent with the matrix computation being performed. A notable ex-
ception is the addition of a scalar to a vector, which is interpreted in an
element-wise fashion, i.e.,

1 + [-1 9 7]

results in

[0 10 8]

and

1 - [-1; 9; 7]

is the same as

[2; -8; -6]

2.1.2 Signals as Vectors

A discrete-time signal consisting of finitely many samples can be represented
as a vector

x = (x1, . . . , xn)

where n is the total number of samples. Here, xi is an abbreviated form
of x[i] (in the earlier notation). The choice of i = 1 for the initial time
is mainly for consistency with standard indexing for matrices. The initial
index i = 0 will be used at a later point.

From now on, and through the end of Section 2.12, all matrices and
vectors will be assumed to be real-valued.
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Definition 2.1.1. The linear combination of n-dimensional vectors x(1), . . . ,x(r)

with coefficients c1, . . . , cr in R is defined as the n-dimensional vector

x = c1x(1) + · · ·+ crx(r) ¤

(Recall that multiplication of a vector by a scalar amounts to multiplying
each entry of the vector by the scalar; while addition of two or more vectors
amounts to adding their respective components.)

Any vector x in Rn can be expressed as a linear combination of the
standard unit vectors e(1), . . . , e(n), defined by

e
(i)
j =

{
1, i = j;
0, i 6= j.

Example 2.1.1. Consider the three-dimensional vector x = (1,−2, 3). Ex-
pressing it as a column-vector (the default format for matrix operations),
we have

x =




1
−2

3


 = (1)




1
0
0


 + (−2)




0
1
0


 + (3)




0
0
1


 = e(1)− 2e(2) + 3e(3)

The linear combination of unit vectors shown above is illustrated graph-
ically. Note that the ith unit vector corresponds to a single pulse of unit
height at time i.

.
. ..

.
. .

.
. ...

.

.
.1

−2

3

1

1

1

(−2)

(1)

(3)

Example 2.1.1
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2.1.3 Linear Transformations

The concept of linearity is crucial for the analysis of signals and systems.
The most important time-frequency transformations of signals, such as the
Laplace, Fourier and z-transforms, are linear. Linear systems form a class
which is by far the easiest to study, model and simulate. In fact, in study-
ing the behavior of many nonlinear systems, it is common to use linear
approximations and techniques from the theory of linear systems.

The simplest model for a linear system involves a finite-dimensional input
signal x ∈ Rn and a finite-dimensional output signal y ∈ Rm. The system
A, and more precisely,

A : Rn 7→ Rm ,

acts on the input x to produce the output signal y represented by

y = A(x)

Ax y

Figure 2.1: A system A with input x and output y.

Definition 2.1.2. (Linearity) We say that the transformation (or system)
A is linear if, for any two input vectors x(1) and x(2) and coefficients c1 and
c2,

A(c1x(1) + c2x(2)) = c1A(x(1)) + c2A(x(2)) ¤

To interpret this property in terms of an actual system, suppose at first
that an input signal signal x(1) is applied to such a system, resulting in a
response (i.e., output) y(1). The system is then “reset” and is run again
with input x(2), resulting in a response y(2). Finally, the system is reset
(once again) and run with input

x = c1x(1) + c2x(2)

If the system is linear, the final response of the system will be

y = c1y(1) + c2y(2)



55

This defining property of linear systems is also known as the superposition
property, and can be extended to an arbitrary number of input signals:

A(c1x(1) + · · ·+ crx(r)) = c1A(x(1)) + · · ·+ crA(x(r))

As a consequence of the superposition property, knowing the response of a
linear system to a number of different inputs allows us to determine and
predict its response to any linear combination of those inputs.

Example 2.1.2. Consider the transformation A : Rn 7→ Rn which scales
an n-dimensional vector by λ ∈ R:

A(x) = λx

Clearly,

A(c1x(1) + c2x(2)) = λ(c1x(1) + c2x(2))
= c1(λx(1)) + c2(λx(2))
= c1A(x(1)) + c2A(x(2))

and thus the transformation is linear. Scaling is one of the simplest linear
transformations of n-dimensional vectors; and in the case n = 1, it is the
only linear transformation.

Example 2.1.3. Consider the transformation A : R3 7→ R3 which cyclically
shifts the entries of x to the right:

A(x1, x2, x3) = (x3, x1, x2)

We have

A(c · (u1, u2, u3) + d · (v1, v2, v3)) = A(cu1 + dv1, cu2 + dv2, cu3 + dv3)
= (cu3 + dv3, cu1 + dv1, cu2 + dv2)
= c · (u3, u1, u2) + d · (v3, v1, v2)
= cA(u1, u2, u3) + dA(v1, v2, v3)

Thus a cyclical shift is also a linear transformation.
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2.2 Matrix Multiplication

2.2.1 The Matrix of a Linear Transformation

The superposition property of a linear transformation A : Rn 7→ Rm was
stated as

A(c1x(1) + c2x(2)) = c1A(x(1)) + c2A(x(2))

We also saw that any n-dimensional vector x can be expressed as a linear
combination of the unit vectors e(1), . . . , e(n):

x = x1e(1) + · · ·+ xne(n)

Thus the result of applying the linear transformation A to any vector x is
given by

A(x) = x1A(e(1)) + · · ·+ xnA(e(n))

We conclude that knowing the effect of a linear transformation on each unit
vector in Rn suffices to determine the effect of that transformation on any
vector in Rn.

In systems terms, we can say that the response of a linear system to an
arbitrary input can be computed from the responses of the system to each of
the unit vectors in the input signal space. It follows that the m-dimensional
vectors A(e(1)), . . . , A(e(n)) completely specify the linear transformation A.

Definition 2.2.1. The matrix of a linear transformation A : Rn 7→ Rm is
the m× n matrix A whose jth column is given by A(e(j)).

Example 2.2.1. Suppose the transformation A : R3 7→ R2 is such that

A(e(1)) =
[

2
1

]
, A(e(2)) =

[ −1
0

]
and A(e(3)) =

[
4

−1

]

Then the matrix of A is given by

A =
[

2 −1 4
1 0 −1

]

Applying A to x = (x1, x2, x3) produces

A(x) = x1

[
2
1

]
+ x2

[ −1
0

]
+ x3

[
4

−1

]
=

[
2x1 − x2 + 4x3

x1 − x3

]
¤
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2.2.2 The Matrix-Vector Product

Definition 2.2.2. Let A be a m× n matrix representing a linear transfor-
mation A : Rn 7→ Rm, and let x be a n-dimensional column vector. The
product Ax is defined as the result of applying the transformation A to
x. In other words, Ax is the linear combination of the columns of A with
coefficients given by the corresponding entries in x.

Example 2.2.1. (Continued.) If

A =
[

2 −1 4
1 0 −1

]
and x =




x1

x2

x3




then

Ax =
[

2x1 − x2 + 4x3

x1 − x3

]
¤

A different way of obtaining the product Ax is by taking the inner (dot)
product of each row of A with x. To see why this is so, let

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




Then, for x = (x1, . . . , xn), we have

Ax = x1




a11

a21
...

am1


 + x2




a12

a22
...

am2


 + · · ·+ xn




a1n

a2n
...

amn




=




a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn




Thus the ith element of the resulting vector y = Ax is given by

yi = (Ax)i = ai1x1 + ai2x2 + · · ·+ ainxn =
n∑

j=1

aijxj

i.e., it equals the inner product of the ith row of A and x.
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2.2.3 The Matrix-Matrix Product

The matrix-vector product can be generalized to the product of two matri-
ces, A and B, by considering the linear transformations represented by A
and B.

Suppose A : Rp 7→ Rm and B : Rn 7→ Rp are two linear transformations,
and consider the composition A ◦B defined by

(A ◦B)(x) = A(B(x))

where x is n-dimensional. Thus B is applied to x first, to produce a p-
dimensional vector B(x); then A is applied to B(x) to produce (A ◦B)(x).
In systems terms, we have two linear systems A and B connected in series
(also tandem or cascade), as illustrated in Figure 2.2.

Ax y=A(B(x))B B(x)

Figure 2.2: Two systems connected in series.

Definition 2.2.3. If A is the m × p matrix of the transformation A :
Rp 7→ Rm and B is the p × n matrix of the transformation B : Rn 7→ Rp,
then the product AB is defined as the m× n matrix of the transformation
A ◦B : Rn 7→ Rm.

To obtain AB in terms of the entries of A and B, we examine the jth

column of AB, which we denote here by (AB)·j .
We know that (AB)·j is obtained by applying A◦B to the jth unit vector

e(j) in the input space Rn, i.e.,

(AB)·j = (A ◦B)(e(j)) = A(B(e(j)))

Since B(e(j)) is the jth column of B (denoted by (B)·j), we have

(AB)·j = A((B)·j) = A(B)·j

Thus the jth column of the product AB is given by the product of A and
the jth column of B:

(AB)·j =




a11 a12 . . . a1p

a21 a22 . . . a2p
...

...
. . .

...
am1 am2 . . . amp







b1j

b2j
...

bpj
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It can be seen that the ith entry of (AB)·j , which is the same as the (i, j)th

entry of AB, is given by the inner product of the ith row of A and the jth

column of B.

Fact. If A is m × p and B is p × n, then AB is the m × n matrix whose
(i, j)th entry is given by

(AB)ij = ai1b1j + ai2b2j + · · ·+ aipbpj =
p∑

k=1

aikbkj ¤

Example 2.2.2. If

A =
[

2 −1 4
1 0 −1

]
and B =




1 −2
0 3
1 5




then

AB =
[

6 13
0 −7

]
¤

Example 2.2.3. If

A =




4
1

−2


 and B =

[
1 −3 2

]

then

AB =




4 −12 8
1 −3 2

−2 6 −4




Note that in this case, the (i, j)th element of AB is simply aibj ; this is
because the rows of A and columns of B each consist of a single element.

2.2.4 Associativity and Commutativity

Fact. Matrix multiplication is associative.

If the dimensions of A, B and C are such that the products AB and
BC can be formed, we can also form the product ABC, which is the matrix
of the cascaded transformation A ◦B ◦ C depicted in Figure 2.3.

Grouping C and B together, we can write the output y of the cascade
as A(BC)x. Grouping B and A together, we have the equivalent expression
(AB)Cx. Thus

ABC = A(BC) = (AB)C
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Ax y=A(B(C(x)))B B(C(x))C C(x)

Figure 2.3: Three systems connected in series.

which is also known as the associative property of matrix multiplication. It
can be extended to the product of L matrices, where L is arbitrary. The
number of matrices in the product can be reduced to L−1 by multiplying out
any two adjacent matrices without changing their position in the product;
this procedure can then be repeated until the product is expressed as a single
matrix.

Fact. Matrix multiplication is not commutative.

We say that A and B commute if

AB = BA

Clearly, the only way the products AB and BA can both exist and have
the same dimensions is if the matrices A and B are both square, i.e., n×n.
Still, this is not sufficient for commutativity, as Example 2.2.4 below shows.

Example 2.2.4. Consider the two-dimensional case (n = 2). Let A repre-
sent projection of (x1, x2) on the horizontal (x1) axis. The linear transfor-
mation A applied to the two unit vectors (1, 0) and (0, 1) yields

A(1, 0) = (1, 0), A(0, 1) = (0, 0)

and therefore

A =
[

1 0
0 0

]

Let B represent a counterclockwise rotation of (x1, x2) by an angle θ. We can
obtain the elements of B either from geometry, or by noting that rotation
by angle θ amounts to multiplication of the complex number x1 + jx2 by
ejθ = cos θ + j sin θ. The result of the multiplication is

x1 cos θ−x2 sin θ+j(x1 sin θ+x2 cos θ) = (x1 cos θ−x2 sin θ, x1 sin θ+x2 cos θ)

and thus

B =
[

cos θ − sin θ
sin θ cos θ

]
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Clearly,

AB =
[

cos θ − sin θ
0 0

]

while

BA =
[

cos θ 0
sin θ 0

]

Thus the two matrices do not commute except in the trivial case where
sin θ = 0, i.e, θ = 0 or θ = π. This can be also seen using a geometrical
argument. Briefly, the transformation A ◦ B (whose matrix is AB) is a
cascade of a rotation (first), followed by projection on the x1-axis. The
result of the transformation is therefore always on the x1-axis, i.e., it has
x2 = 0. On the other hand, projection on the x1-axis followed by rotation
through an angle other than 0 or π will result in a vector with x2 6= 0.

Example 2.2.5. If A and B are rotations by angles φ and θ, respectively,
then

AB = BA

i.e., the two matrices commute. This is because the order of the two rotations
is immaterial—both AB and BA represent a rotation by an angle θ+φ.
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2.3 More on Matrix Algebra

2.3.1 Column Selection and Permutation

We saw that if A is a m× n matrix and e(j) is the jth unit vector in Rn×1,
then

Ae(j) = (A)·j

where (A)·j is the jth column of the matrix A. Thus multiplication of a
matrix A by a (column) unit vector is the same as column selection, as
illustrated in Example 2.3.1.

Example 2.3.1. 


a b c
d e f
g h i







0
1
0


 =




b
e
h


 ¤

By appending one or more unit vectors to e(j), it is possible to select two
or more columns from the matrix A. This is based on the following general
fact.

Fact. If
B =

[
B(1) B(2)

]

where B(1) and B(2) are submatrices of B, each having the same number of
rows as B, then

AB =
[

AB(1) AB(2)
]

Similarly, if

A =
[

A(1)

A(2)

]

where A(1) and A(2) are submatrices of A, each having the same number of
columns as A, then

AB =
[

A(1)B
A(2)B

]

Also,

AB =
[

A(1)B(1) A(1)B(2)

A(2)B(1) A(2)B(2)

]
¤

The formulas above are easily obtained by recalling that the (i, j)th el-
ement of the product AB is the inner product of the ith row of A and the
jth column of B. They can be extended to horizontal partitions of A and
vertical partitions of B involving an arbitrary number of submatrices.
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Choosing B(1),B(2), . . . as unit vectors in Rn×1, we obtain a matrix
consisting of columns of A. This is illustrated in Example 2.3.2 below.

Example 2.3.2.




a b c
d e f
g h i







0 0
1 1
0 0


 =




b b
e e
h h







a b c
d e f
g h i







0 0 1
1 0 0
0 1 0


 =




b c a
e f d
h i g




Note that the second product in Example 2.3.2 resulted in a matrix with
the same columns as those of A, but permuted. This is because




0 0 1
1 0 0
0 1 0




consists of all the unit (column) vectors in arbitrary order. This type of
matrix is known as a permutation matrix.

Definition 2.3.1. A n×n matrix P is a permutation matrix if all rows and
columns of P are unit vectors in Rn.

Two equivalent conditions are:

• the rows of P are the unit vectors in R1×n (in any order); and

• the columns of P are the unit vectors in Rn×1 (in any order).

The product AP is a matrix whose columns are the same as those of A,
ordered in the same way as the unit vectors are in the columns of P. Note
that A can be any m× n matrix, i.e., it need not be square.

2.3.2 Matrix Transpose

If A is a m × n matrix, then AT is the n ×m matrix whose rows are the
columns of A (equivalently, whose columns are the rows of A). AT is known
as the transpose of A, and T is known as the transpose operator.
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Definition 2.3.2. If A = [aij ], then AT is defined by

(AT )ij = (A)ji = aji

for every pair (i, j).

Example 2.3.3.

[
a b c

]T =




a
b
c







a b c
d e f
g h i




T

=




a d g
b e h
c f i







a b c
b d e
c e f




T

=




a b c
b d e
c e f




Note that the third transposition in Example 2.3.3 above resulted in
the same (square) matrix. This was a consequence of symmetry about the
leading diagonal.

Definition 2.3.3. A n× n matrix A is symmetric if A = AT . Equivalent
conditions are:

• for every (i, j), aij = aji; and

• for every i, the ith row of A equals (the transpose of) its ith column.

Fact.
(AT )T = A ¤

Fact. Assuming the product AB exists,

(AB)T = BTAT

To prove this fact, note that the (i, j)th element of (AB)T is the (j, i)th

element of AB. This equals the inner product of the jth row of A and the ith

column of B; which is the same as the inner product of the the jth column
of AT and the ith row of BT . This is just the (i, j)th element of BTAT .
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2.3.3 Row Selection

As usual, let A be a m × n matrix. If e(i) is the ith unit vector in Rm×1,
then (e(i))T is also the ith unit vector in R1×m. The product

(e(i))TA

is a row vector whose transpose equals

((e(i))TA)T = ATe(i)

namely the ith column of the n×m matrix AT . As we know, this is the same
as the ith row of A. We therefore see that left multiplication of a matrix A
by a row unit vector results in selecting a row from A.

Example 2.3.4.

[
0 1 0

]



a b c
d e f
g h i


 =

[
d e f

]
¤

Similarly, left-multiplying A by a m×m permutation matrix results in
a permutation of the rows or A. That is, PA is a matrix whose rows are the
same as those of A, ordered in the same way as the unit vectors are ordered
in the rows of P. (Note that this ordering is not necessarily the same as
that of the unit vectors in the columns of P.)

Example 2.3.5.



0 1 0
1 0 0
0 0 1







a b c
d e f
g h i


 =




d e f
a b c
g h i


 ¤

Fact. If P is a permutation matrix, then so is PT . Furthermore,

PTP = I

where

Iij =
{

1, i = j;
0, i 6= j.

The first statement follows directly from the definition of a permutation
matrix. To prove the second statement, note that the (i, j)th element of
PTP equals the inner product of the ith and jth columns of P. Since the
columns of P are distinct unit vectors, it follows that the inner product
equals unity if i = j, zero otherwise.



66

2.4 Matrix Inversion and Linear Independence

2.4.1 Inverse Systems and Signal Representations

We used the equation
y = A(x) = Ax

to describe the response y of a linear system A to an input signal x. In
general, the matrix A is of size m×n, which means that the input vector x
is n-dimensional and the output vector y is m-dimensional.

In almost all cases, the output signal y contains useful information about
the input signal x, which may otherwise be “hidden” (i.e., not directly acces-
sible). The natural question to ask is whether this information is complete;
in other words, whether it possible to recover x from y. The transformation
y → x, if properly defined, would be the inverse system A−1.

A careful approach to this (inversion) problem must first address the
following two issues:

• Existence of an inverse: Given any y in the output space (Rm), can
we find a vector x in the input space (Rn) such that y = A(x)? If
not, for which vectors y in Rm is this possible?

• Uniqueness of the inverse: If, for a particular vector y in Rm, there
exists x in Rn such that y = A(x), is x unique? Or do there exist
other vectors x′ 6= x which also satisfy y = A(x′)?

As we will soon see, the answers to questions posed above (for a given
system A) determine whether the inverse system A−1 can be defined in a
meaningful way. How that system can be obtained practically from A is a
separate problem which we will discuss later.

Inversion of linear transformations is also important in signal analysis.
Consider a m× n matrix V consisting of columns v(1), . . . ,v(n):

V =
[

v(1) . . . v(n)
]

If the column vectors are taken as reference signals (e.g., discrete-time sinu-
soids in Fourier analysis), a natural question to ask is whether an arbitrary
signal s in Rm can be expressed as a linear combination of these reference
signals, i.e., whether there exists a vector c of coefficients c1, . . . , cn such
that

s =
n∑

r=1

crv(r)
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or equivalently,
s = Vc

This problem of signal representation is analogous to the system inversion
problem posed earlier, with a change of notation from y = Ax to s = Vc.
In particular, the existence and uniqueness questions formulated earlier are
also relevant in signal representation.

In some applications, the set of reference signals v(1), . . . ,v(n) may not
be sufficiently large to provide a representation for every signal s in Rm,
i.e., the answer to the existence question is negative. In such cases, we
are often interested in the best approximation to a signal s in terms of a
linear combination of the columns of V. In other words, we are interested
in minimizing some function of the error vector

Vc− s

by choice of c. We will later study the solution to this problem in the case
where the function chosen for that purpose is the sum of squares of the error
vector entries.

2.4.2 Range of a Matrix

The range, or column space, of a m× n matrix A is defined as the set of all
linear combinations of its columns, and is denoted by R(A). Thus

R(A) = {Ac : c ∈ Rn×1}

R(A) is also the range of the transformation A, which maps Rn into Rm.
Clearly,

R(A) ⊂ Rm×1

The concept of range allows us to reformulate the existence and unique-
ness questions of the previous section as follows:

• Existence of an inverse: What is the range R(A)? Does it coincide
with Rm×1, or is it a proper subset of Rm×1?

• Uniqueness of an inverse: For y ∈ R(A), does the set of vectors
x ∈ Rn×1 satisfying y = Ax consist of a single element? Or does it
contain two or more vectors?

In what follows, we will examine the properties of the range of a square
(i.e., n × n) matrix A, and argue that the answers to the existence and
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uniqueness questions posed above are either both affirmative or both nega-
tive. Our discussion will involve the concept of linear independence of a set
of vectors, and will also allow us to draw certain conclusions about matrices
of arbitrary size m× n.

2.4.3 Geometrical Interpretation of the Range

R(A) is a linear subspace of Rm×1. Here, “linear” means that all linear
combinations of vectors in R(A) also lie in R(A). To see why this has to
be so, take two vectors in R(A), say Ac(1) and Ac(2), and form their linear
combination λAc(1) + µAc(2). This can be written as A(λc(1) + µc(2)), and
therefore also lies in R(A).

The largest Euclidean space Rm×1 which we comfortably visualize is the
three-dimensional one, i.e., R3×1. It has four types of subspaces, categorized
by their dimension d:

• d = 0: Only one such subspace exists, consisting of a single point,
namely the origin 0 = [0 0 0]T .

• d = 1: Straight lines through the origin.

• d = 2: Planes through the origin.

• d = 3: Only one such subspace exists, namely R3×1 itself.

The range of a 3 × n matrix will fall into one of the above categories,
i.e., it will have dimension 0, 1, 2 or 3. To see how algebraic relationships
between columns affect the dimension of the range, let us focus on the special
case of a square (3× 3) matrix A given by

A =
[

a(1) a(2) a(3)
]

The range of the first column a(1) consists of all vectors of the form
c1a(1), where c1 ∈ R. As c1 varies, we obtain a full line through the origin
unless a(1) = 0. Thus with only one exception, the range of a single column
vector is one-dimensional, as illustrated in Figure 2.4.

Clearly, the same statements can be made about the range of the second
column a(2). If we now consider the range of the matrix [a(1) a(2)], we
observe the following: provided R(a(2)) and R(a(2)) are two distinct lines
through the origin, linear combinations of a(1) and a(2) will produce a linear
subspace of higher dimension, i.e., a plane. In fact, R([a(1) a(2)]) is the
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y1

y2

y3

a(1)

R(a    )(1)

0

Figure 2.4: The range of a single nonzero vector a(1) is a straight
line through the origin.

unique plane which contains the lines R(a(2)) and R(a(2)), as illustrated in
Figure 2.5 (on the left).

It is important to note that any vector y on the plane R([a(1) a(2)]) has
a unique representation as a linear combination of a(1) and a(2). This is
illustrated in Figure 2.5 (on the right), where a line parallel to a(2) is drawn
through y to intersect the line containing a(1). This results in two vectors,
c1a(1) and c2a(2), and the unique representation

y = c1a(1) + c2a(2)

a(1)

R([a     a    ])(1) (2)

0

a(2)

R([a     a    ])(1) (2)

a(1)

a(2)

0

y

c a (1)
1

c a(2)
2

Figure 2.5: The range of [a(1) a(2)] is a plane through the origin
(left). Any point on that plane has a unique representation as a
linear combination of a(1) and a(2) (right).

As pointed out earlier, R([a(1) a(2)]) is two-dimensional if and only if
R(a(1)) and R(a(2)) are two distinct lines through the origin. This is the
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same as saying that neither a(1) nor a(2) is an all-zeros vector; and, in
addition, the two vectors are not multiples of each other. These conditions
can be concisely stated as follows: The only linear combination

c1a(1) + c2a(2)

which equals the all-zeros vector 0 = [0 0 0]T is the one with c1 = c2 = 0.
Finally, let us consider the third column a(3). Arguing in the same way

as before, we see that, provided R([a(1) a(2)]) is a (two-dimensional) plane
that does not contain a(3), linear combinations of vectors in R([a(1) a(2)])
with a(3) will produce a linear subspace of higher dimension, namely R3×1

itself. Furthermore, any vector in R3×1 will have a unique representation of
the form

y = c1a(1) + c2a(2) + c3a(3)

This is illustrated in Figure 2.6 (on the right), where a line parallel to a(3)

is drawn through y to intersect the plane R([a(1) a(2)]). We thus determine
c3, and, proceeding as before (i.e., as in the two-dimensional case), we also
determine c1 and c2.

a(1)

R([a     a    ])(1) (2)

0

a(2)

a(3)

a(2)

a(1)

a(3)

c a(3)
3

y

0

Figure 2.6: The range of the matrix [a(1) a(2) a(3)] is the en-
tire three-dimensional space R3×1 (left). Any point inR3×1 has a
unique representation as a linear combination of a(1), a(2) and a(3)

(right).

In conclusion, R(A) = R3×1 if and only if none of the columns of A
can be expressed as a linear combination of the others; this condition also
prohibits any of the columns from being an all-zeros vector or a multiple of
another column. An equivalent way of stating this is as follows: The only
linear combination

c1a(1) + c2a(2) + c3a(3)
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which equals the all-zeros vector 0 is the one where c1 = c2 = c3 = 0.
We have thus arrived at one of the most important concepts in linear

algebra, that of linear independence. We restate it for an arbitrary set of
m-dimensional vectors.

Definition 2.4.1. The vectors a(1), . . . ,a(n) in Rm×1 are linearly indepen-
dent if the only linear combination

c1a(1) + · · ·+ cna(n)

which equals the all-zeros vector 0 is the one where c1 = . . . = cn = 0.

An equivalent definition of linear independence in terms of the m × n
matrix

A =
[

a(1) . . . a(n)
]

is the following: The columns of A are linearly independent if the only
solution to the equation

Ac = 0

is the all-zeros vector c = 0 (in Rn×1).



72

2.5 Inverse of a Square Matrix

2.5.1 Nonsingular Matrices

In the previous section, we showed that linear independence of the columns
of a 3× 3 matrix A is a necessary and sufficient condition for the range (or
column space) R(A) of A to have dimension d = 3, i.e., coincide with R3×1.
Since R(A) is the set of vectors y ∈ R3×1 for which the equation

Ax = y

has a solution (given by x), it follows that linear independence is a necessary
and sufficient condition for the above equation to have a solution for every
y in R3×1.

By extension, the same argument can be applied to an arbitrary n ×
n matrix. In other words, linear independence of the columns of A is a
necessary and sufficient condition for R(A) to coincide with Rn×1, and for
the above equation to have a solution for every y in Rn×1. Thus linear
independence provides an answer to the question of existence of an inverse.

The uniqueness of the inverse can be also addressed using the concept
of linear independence. Using the argument made for the case n = 3, we
conclude that if R(A) = Rn×1, then every vector in Rn×1 has a unique rep-
resentation as a linear combination of columns of A, i.e., the above equation
has a unique solution. If, on the other hand, R(A) has dimension d < n,
meaning that the columns of A are linearly dependent, then at least one
column of A lies on the subspace generated by the remaining columns and
can thus be expressed as a linear combination of those columns. Any point
in that subspace will have infinitely many representations. As an example,
take the case n = 3 and suppose that

c1a(1) + c2a(2) + c3a(3) = 0

where c is such that (say) c3 6= 0. Then

a(3) = −λc1

c3
a(1) − λc2

c3
a(2) + (1− λ)a(3)

for every value of λ ∈ R, showing that a(3) (and by extension, every linear
combination of a(1), a(2) and a(3)) has infinitely many representations.

In conclusion, linear independence of the columns of a n × n matrix is
a necessary and sufficient condition for the existence of a solution to the
equation

Ax = y
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for every y ∈ Rn×1, as well as for the uniqueness of that solution.

Definition 2.5.1. A n×n matrix is nonsingular if its columns are linearly
independent. It is singular if its columns are linearly dependent.

Example 2.5.1. The 3× 3 matrix

A =




1 a b
0 1 c
0 0 1




is nonsingular. Note that the first column does not equal the all-zeros vector.
Also, the second column cannot be obtained as from the first one by scaling
(no scaling of zero can produce a nonzero entry in the second row). Similarly,
the third column cannot be obtained as a linear combination of the first and
second columns (no linear combination of zeros can produce a nonzero entry
in the third row).

Example 2.5.2. The 3× 3 matrix

A =




1 1 3
−1 0 −1

0 1 2




is singular, since 


1
−1

0


 + (2)




1
0
1


 =




3
−1

2




(A test for nonsingularity will be developed later in conjunction with Gaus-
sian elimination.)

2.5.2 Inverse of a Nonsingular Matrix

From the foregoing discussion, it follows that a nonsingular matrix A defines
a linear transformation A : Rn 7→ Rn which is a one-to-one correspondence.
In particular, an inverse transformation A−1 : Rn 7→ Rn also exists, and

y = A(x) ⇔ x = A−1(y)

The transformation A−1 is also linear. To see this, let y(1) and y(2) be
any two vectors in Rn, and let

x(1) = A−1(y(1)) and x(2) = A−1(y(2))
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Since the forward transformation A is linear, we have for any c1 and c2,

A(c1x(1) + c2x(2)) = c1A(x(1)) + c2A(x(2))
= c1y(1) + c2y(2)

Therefore

A−1(c1y(1) + c2y(2)) = c1x(1) + c2x(2)

= c1A
−1(y(1)) + c2A

−1(y(2))

which proves that A−1 is a linear transformation. As such, it has a matrix,
denoted by A−1.

Definition 2.5.2. If A is a nonsingular matrix corresponding to a linear
transformation A, then A−1 is the matrix of the inverse transformation
A−1.

From the above definition, we have

(A−1)−1 = A

and we can also evaluate the product AA−1. Indeed, AA−1 is the matrix
of the cascade A ◦A−1. Since

A−1(A(x)) = x

for every x ∈ Rn, it follows that

A−1 ◦A = I

namely the identity transformation. The corresponding matrix is the n× n
identity matrix

I =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




which clearly satisfies
Ix = x

for every x ∈ Rn×1. We conclude that

AA−1 = I

Similarly, A−1 ◦A is also an identity system, and therefore

A−1A = I

Either of the last two equations can be used to check whether two given
matrices are inverses of each other.



75

2.5.3 Inverses in Matrix Algebra

Fact. If A and B are both nonsingular, then so is the product AB, and

(AB)−1 = B−1A−1

This fact can be demonstrated schematically (see Figure 2.7), by noting
that the AB is the matrix of the cascade A◦B. This cascade can be inverted
by applying the transformation A−1 to the output, followed by B−1.

yABx

y A B x−1−1

Figure 2.7: Illustration of the identity (AB)−1 = B−1A−1.

Thus
(A ◦B)−1 = B−1 ◦A−1

and consequently
(AB)−1 = B−1A−1

An alternative proof is based on the identities developed in the previous
section. We have

A−1(AB) = (A−1A)B = B

where the first equality is due to the associativity of the matrix product. It
follows that

B−1A−1(AB) = B−1B = I

and thus AB and B−1A−1 are inverses of each other.

Fact. If A is nonsingular, then so is AT , and

(AT )−1 = (A−1)T

To prove this identity, recall that

(AB)T = BTAT
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Taking B = A−1, we obtain

IT = (A−1)TAT

But I is symmetric: IT = I. Therefore

(A−1)TAT = I

which means that
(AT )−1 = (A−1)T ¤

2.5.4 Nonsingularity of Triangular Matrices

Definition 2.5.3. A lower triangular matrix A is a square matrix defined
by

(∀j > i) aij = 0

i.e., all elements above the main diagonal (also known as superdiagonal el-
ements) are zero. Similarly, an upper triangular matrix A is a square
matrix whose elements below the main diagonal (the subdiagonal elements)
are zero.

Triangular matrices have numerous applications in linear algebra, and
are particularly useful in solving equations of the form Ax = b, where
A is square. The question of invertibility (i.e, nonsingularity) of triangular
matrices is important in all such applications. As it turns out, nonsingularity
can be readily determined by inspection of the matrix.

Recall how, in Example 2.5.1, we argued that the upper triangular matrix



1 a b
0 1 c
0 0 1




is nonsingular. A similar argument could be given for the lower triangular
matrix 


1 0 0
a 1 0
b c 1




but there is no need to do so: a matrix is nonsingular if and only if its trans-
pose is. In what follows, we make a general observation about triangular
matrices of arbitrary size.

Fact. A triangular matrix A is nonsingular if and only if all elements on
its main diagonal are nonzero, i.e., aii 6= 0 for all i.
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To prove the “if” statement, suppose that all (main) diagonal elements
are nonzero. Arguing as in Example 2.5.1, we see immediately that the
first column does not equal the all-zeros vector (since a11 6= 0). Examining
each of the following columns in turn, we see that the jth column cannot be
expressed as a linear combination of the first j−1 columns since its nonzero
diagonal entry ajj would have to be obtained by a linear combination of
zeros—which is clearly impossible. Thus the columns of A are linearly
independent, and A is nonsingular.

To prove the “only if” statement, we argue by contradiction. Suppose
that there is at least one zero on the diagonal, and that the leftmost such
zero is in the jth column, i.e.,

ajj = 0 and (∀i < j) aii 6= 0

This means that the first j columns of A will be of the form



a11 a12 a13 . . . a1,j−1 a1j

0 a22 a23 . . . a2,j−1 a2j

0 0 a33 . . . a3,j−1 a3j
...

...
...

. . .
...

...
0 0 0 . . . aj−1,j−1 aj−1,j

0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0




Since diagonal elements a11 through aj−1,j−1 are all nonzero, the first j − 1
columns will be linearly independent (see the “if” argument above). The
same will be true of the column segments obtained by discarding the zeros
beneath the (j − 1)th row. Since the range of j − 1 linearly independent
vectors in Rj−1 is the entire space Rj−1, we can obtain the first j − 1
entries of the jth column by linearly combining the corresponding segments
of the first j − 1 columns. The entire jth column can therefore be obtained
by a linear combination of the first j − 1 columns, and the matrix A is
singular.

2.5.5 The Inversion Problem for Matrices of Arbitrary Size

The concept of linear independence allows us to investigate the existence
and uniqueness of the solution of the equation

Ax = y
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where y ∈ Rm×1 is known, x ∈ Rn×1 is unknown and the matrix A is of
size m× n, with n 6= m.

In short, depending on whether m > n or m < n, and on whether the
columns of A are linearly dependent or independent, a solution may or may
not exist for a particular y ∈ Rm×1. If a solution exists for all y ∈ Rm×1,
then that solution cannot be unique. This is in sharp contrast to the case
m = n, where existence of a solution for all y ∈ Rm×1 is equivalent to
uniqueness of that solution (and also equivalent to linear independence of
the columns of A). It also tells us that defining an inverse matrix A−1 in
the case n 6= m can be very tricky—in fact, it is not done.

In more specific terms, the equation Ax = y seeks to express the m-
dimensional column vector y as a linear combination of the n columns of
A. A solution exists if and only if y ∈ R(A); and it is unique if and only
if every y ∈ R(A) is given by a unique linear combination of columns of
A, i.e., if and only if the columns of A are linearly independent. Note that
since A has n columns, the dimension d of R(A) must satisfy d ≤ n. And
since R(A) is a subset of Rm×1, we must also have that d ≤ m. Thus

d ≤ min(m, n).

The overdetermined case (n < m). Here d < m, hence R(A) is a lower-
dimensional subspace of Rm×1. Thus there are (infinitely many) y’s for
which the equation has no solution. For those y’s for which a solution exists
(i.e, the y’s in R(A)), the solution is unique if and only if the columns of A
are linearly independent, i.e., d = n.

The underdetermined case (n > m). The number of columns of A exceeds
m, the dimension of Rm×1. We know that at most m of these columns can
be linearly independent, i.e., d ≤ m. There are two possibilities:

• If d = m, then R(A) = Rm×1 and a solution exists for every y ∈
Rm×1. That solution is not unique since the n−m redundant columns
can be also used in the linear combination Ax which gives y.

• If d < m, then R(A) is a lower-dimensional subset of Rm×1. Then a
solution cannot exist for every y; if it does exist, it cannot (again) be
unique.

The overdetermined case will be examined later on from the viewpoint
of signal approximation, i.e, solving for x which minimizes a function of the
error vector Ax− y.
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2.6 Gaussian Elimination

2.6.1 Statement of the Problem

We now focus on solving the equation

Ax = b

where A is a n × n matrix, and x and b are both n-dimensional column
vectors. This (matrix-vector) equation can be expanded into n simultaneous
linear equations in the variables x1, . . . , xn:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
an1x1 + an2x2 + · · ·+ annxn = bn

We know that a unique solution x exists for every b if and only if A
is nonsingular. The procedure (algorithm) known as Gaussian elimination
produces the unique solution x in the case where A is nonsingular, and can
be also used to detect singularity of A.

2.6.2 Outline of Gaussian Elimination

The algorithm is based on the fact that if

Ax = b

and
MAv = Mb

for two nonsingular matrices A and M, then x = v. Indeed,

v = (MA)−1Mb = A−1M−1Mb = A−1b = x

where all the inverses in the above equalities are valid by the assumption
of nonsingularity. Thus the equations Ax = b and MAx = Mb have the
same solution.

In Gaussian elimination, left-multiplication of both sides of the equation
by a nonsingular matrix is performed repeatedly until the matrix on the left



80

is reduced to the n× n identity:

Ax = b

M(1)Ax = M(1)b

M(2)M(1)Ax = M(2)M(1)b
...

...
...

M(l) · · ·M(2)M(1)Ax = M(l) · · ·M(2)M(1)b

where

M(l) · · ·M(2)M(1)A = I or equivalently, M(l) · · ·M(2)M(1) = A−1

The solution is then given by the right-hand side vector:

x = M(l) · · ·M(2)M(1)b

Recall that left multiplication of a matrix by a row vector (i.e., a vector-
matrix product) produces a linear combination of the matrix rows, with
coefficients given by the corresponding entries in the row vector. By con-
sidering each row of the matrix M separately, we see that the product MA
(which has the same dimensions as A) consists of rows that are linear combi-
nations of the rows of A. Thus Gaussian elimination proceeds by a sequence
of steps, each step involving certain row operations which are “encoded” as
a nonsingular matrix M(j). We should add that, since the same matrix
M(j) also multiplies the right-hand side vector, we effectively take linear
combinations of entire equations (not just matrix rows).

Gaussian elimination is completed in two phases:

• forward elimination (also known as forward substitution), followed by

• backward substitution (also known as backward elimination).

The forward elimination phase is completed in n−1 steps. During the jth

step, scaled versions of the jth equation are subtracted from the equations
below it so as to eliminate the variable xj from all these equations. The
matrix M(j) is a (nonsingular) lower triangular matrix whose form we will
soon examine. As we shall see later, in certain situations it may be desirable
(or even necessary) to change the order of equations indexed j through n
prior to executing the jth step. Such interchanges can be formally dealt
with by inserting permutation matrices into the string M(l) · · ·M(1); an
easier, and more practical, way of representing such permutations will also
be discussed.
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The backward substitution phase is completed in n steps. The jth

step solves for variable xn−j+1 using the previously computed values of
xn, xn−1, . . . , xn−j+2. The matrices M(j) are (nonsingular) upper triangular
matrices. Different equivalent forms for these matrices will be examined in
Section 2.7. The solution of Ax = b is thus obtained in a total of l = 2n−1
steps.

2.6.3 Gaussian Elimination Illustrated

Consider the 3× 3 equation given by

2x1 + x2 − x3 = 6
4x1 − x3 = 6

−8x1 + 2x2 + 3x3 = −10

Since row operations (i.e., multiplication by matrices M(j)) are per-
formed on both sides of the equations, it is convenient to append the vector
b to the matrix A:

S =
[

A b
]

We will use the symbol S to denote the initial matrix [A b] as well as
its updates; thus sij will refer to the (i, j)th element in the current matrix
S.

We display S in a table, with an additional empty column on the left
labeled “m” (for “multiplier”).

m x1 x2 x3 b

2 1 −1 6
4 0 −1 6

−8 2 3 −10

We eliminate x1 from the second row by adding a multiple of the first
row (to the second row). By inspection of the first column, the value of the
multiplier equals −(4/2) = −2. Similarly, x1 can be eliminated from the
third row by adding a multiple of the first row (to the third row), the value
of the multiplier being −(−8)/2 = 4. These two values are entered in the
m column, in their respective rows. The coefficient of x1 in the first row is
also underlined; this coefficient was used to obtain the multiplier for each
subsequent row.

m x1 x2 x3 b

2 1 −1 6
−2 4 0 −1 6

4 −8 2 3 −10
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Upon adding the appropriate multiples of the first row to the second and
third, we obtain

m x1 x2 x3 b

2 1 −1 6
0 −2 1 −6
0 6 −1 14

To eliminate x2 from the third row, we add a multiple of the second
row (to the third row), the value of the multiplier being −(6/(−2)) = 3.
As before, we enter the multiplier in the m column, in the third row. The
coefficient of x2 in the second equation is also underlined.

m x1 x2 x3 b

2 1 −1 6
0 −2 1 −6

3 0 6 −1 14

Upon adding the multiple of the second row to the third one, we obtain

m x1 x2 x3 b

2 1 −1 6
0 −2 1 −6
0 0 2 −4

At this point we have completed the forward elimination. The resulting
equations are

2x1 + x2 − x3 = 6
−2x2 + x3 = −6

2x3 = −4

In backward substitution, we solve for x3 (third equation):

x3 = (−4)/2 = −2 ;

then use the result to solve for x2 (second equation):

x2 = (−6− x3)/(−2) = 2 ;

and finish by solving for x1 (first equation):

x1 = (6− x2 + x3)/2 = 1 .

Thus x = [1 2 − 2]T .
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2.6.4 Row Operations in Forward Elimination

Let S be the current update of [A b], and denote by (S)i· the ith row of S.
As we saw in the previous subsection, the jth step in the forward elimination
entails replacing each row (S)i· below (S)j· by

(S)i· + mij(S)j·

where
mij = − sij

sjj

Rows (S)1·, . . . , (S)j· are not modified.
These row operations can be carried out using matrix multiplication,

namely by updating S to the product M(j)S, where

M(j) =




1
1

. . .
1

1
mj+1,j 1

...
. . .

mnj 1




(only nonzero elements are shown above). Note that the lower triangular
matrix M(j) differs from the identity only in the subdiagonal segment of the
jth column. That column segment (given by (mj+1,j , . . . , mn,j)) is read off
the m column in the Gaussian elimination table.

Thus, in the example of the previous subsection, we had

M(1) =




1 0 0
−2 1 0

4 0 1


 and M(2) =




1 0 0
0 1 0
0 3 1


 .
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2.7 Factorization of Matrices in Gaussian Elimi-
nation

2.7.1 LU Factorization

Consider again the 3× 3 example of Subsection 2.6.3:

2x1 + x2 − x3 = 6
4x1 − x3 = 6

−8x1 + 2x2 + 3x3 = −10

We saw that the row operations performed during the forward elimination
phase amounted to left-multiplying the matrix

S =
[

A b
]

=




2 1 −1 6
4 0 −1 6

−8 2 3 −10




by the lower-triangular matrices

M(1) =




1 0 0
−2 1 0

4 0 1


 and M(2) =




1 0 0
0 1 0
0 3 1




in succession. The update of S at the end of the forward elimination phase
was



1 0 0
0 1 0
0 3 1







1 0 0
−2 1 0

4 0 1







2 1 −1 6
4 0 −1 6

−8 2 3 −10


 =




2 1 −1 6
0 −2 1 −6
0 0 2 −4




and thus
M(2)M(1)

[
A b

]
=

[
U y

]

where the matrix

U = M(2)M(1)A =




2 1 −1
0 −2 1
0 0 2




was upper triangular. We then solved

Ux = y
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by backward substitution, a procedure which, as we shall soon see, can be
also implemented by a series of matrix products.

Recall that triangular matrices are nonsingular if and only if they have
no zeros on the main diagonal. Thus both M(1) and M(2) are nonsingular
in this case, and since M(2)M(1)A = U, we have that

A = (M(1))−1(M(2))−1U

In general, the inverse of a (nonsingular) lower triangular matrix is also
lower triangular; and the product of two such matrices is also lower trian-
gular. Thus we can write

A = LU

where
L = (M(1))−1(M(2))−1

is lower triangular.
The foregoing discussion is clearly applicable to any dimension n, i.e.,

forward elimination on a nonsingular n× n matrix A yields a factorization
of the form A = LU, where

L = (M(1))−1 · · · (M(n−1))−1

2.7.2 The Matrix L

It turns out L is particularly easy to compute due to the following interesting
fact.

Fact. Let C(j) be a n × n matrix whose entries are zero with the possible
exception of the subdiagonal segment of the jth column. If k ≥ j, then

C(j)C(k) = 0

(Here 0 is the all-zeros matrix in Rn×n.)

To prove this fact, note the special form of C(j) (elements not shown are
zero):

C(j) =




0
0

. . .
0

0
mj+1,j 0

...
. . .

mnj 0
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Right multiplication of C(j) by C(k) will yield all-zero vectors in all columns
of C(j)C(k) except (possibly) the kth column. That column is a linear combi-
nation of the columns of C(j) with coefficients given by corresponding entries
in the kth column of C(k). Since the nonzero entries in the kth column of
C(k) appear below the main diagonal, only columns indexed k + 1 through
n of C(j) are included in the linear combination. But those columns are all
zero, since k + 1 > j by hypothesis. This completes the proof.

Now, the lower triangular matrix

M(j) =




1
1

. . .
1

1
mj+1,j 1

...
. . .

mnj 1




can be expressed as
M(j) = I + C(j)

Using the previous fact, we have

(I + C(j))(I−C(j)) = I−C(j) + C(j) −C(j)C(j) = I

and therefore

(M(j))−1 = I−C(j) =




1
1

. . .
1

1
−mj+1,j 1

...
. . .

−mnj 1




Using the same fact, we have that

(M(1))−1(M(2))−1 = (I−C(1))(I−C(2))
= I−C(1) −C(2) + C(1)C(2)

= I−C(1) −C(2)
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and thus the product (M(1))−1(M(2))−1 is obtained by “overlaying” the two
matrices, i.e., adding their subdiagonal parts while keeping the same (unit)
diagonal. Right multiplication by (M(3))−1, . . . , (M(n−1))−1 in succession
yields the final result

L = (M(1))−1(M(2))−1 · · · (M(n−1))−1 = I−C(1) −C(2) − · · · −C(n−1)

or

L =




1
−m21 1
−m31 −m32

...
...

. . .
−mn−1,1 −mn−1,2 . . . 1
−mn1 −mn2 . . . −mn,n−1 1




(all superdiagonal elements are zero).
In other words, the subdiagonal entries of L are obtained from the m

column of the Gaussian elimination table by a simple sign inversion.

Example 2.7.1. Continuing the example of Subsection 2.7.1, we have

M(1) =




1 0 0
−2 1 0

4 0 1


 and M(2) =




1 0 0
0 1 0
0 3 1




Therefore

(M(1))−1 =




1 0 0
2 1 0

−4 0 1


 and (M(2))−1 =




1 0 0
0 1 0
0 −3 1




Using the overlay property, we obtain

(M(1))−1(M(2))−1 =




1 0 0
2 1 0

−4 −3 1




Thus the LU factorization of A is given by



2 1 −1
4 0 −1

−8 2 3


 =




1 0 0
2 1 0

−4 −3 1







2 1 −1
0 −2 1
0 0 2


 ¤
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Note: The overlay property cannot be used to compute the product

L−1 = M(n−1) · · ·M(2)M(1)

since the order of the nonzero column segments in the M(j)’s is reversed.
Thus in Example 2.7.1,

L−1 = M(2)M(1) 6= M(1)M(2) =




1 0 0
−2 1 0

4 3 1




2.7.3 Applications of the LU Factorization

In many practical situations, the equation

Ax = b

is solved for the same matrix A (which could represent a known system or a
set of standard reference signals), but for many different vectors b. The LU
factorization of A allows us to store the results of the forward elimination
in a way that minimizes the computational effort involved in solving the
equation for a new value of b. Indeed, forward elimination on A can be
performed ahead of time (i.e., off-line). It is interesting to note that the
information contained in the pair (L,U) (ignoring the known zero and unit
elements) amounts to n2 real numbers, which is exactly the same amount
as in the original matrix A.

For a given b, the equation

Ax = b

is equivalent to
LUx = b

which has solution
x = A−1b = U−1L−1b

We saw that forward elimination transforms A to L−1A = U; and that
backward substitution transforms U to U−1U = I. Focusing on the updates
of the right-hand side vector b, we note that forward elimination transforms
b to

y = L−1b

and backward substitution transforms y to

x = U−1y
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Thus in effect, forward elimination solves the equation

Ly = b

while backward substitution solves

Ux = y

The two systems above can be solved using the same principle, namely
substitution of known values to equations below (in the former case) or
above (in the latter case). Thus the terms substitution and elimination can
be used interchangeably in both the forward and the backward phase of
Gaussian elimination. The similarity between the two procedures becomes
more prominent when the factors L and U are known ahead of time, in
which case there is no need to derive L by working on A.

2.7.4 Row Operations in Backward Substitution

The analogy between the lower triangular system Ly = b and the upper
triangular system Ux = y suggests that row operations in backward substi-
tution may also be implemented by a series of matrix multiplications similar
to those used in forward elimination. This is indeed true, and is illustrated
in Example 2.7.2.

Example 2.7.2. The forward elimination phase in Subsection 2.6.3 resulted
in

m x1 x2 x3 b

2 1 −1 6
0 −2 1 −6
0 0 2 −4

Dividing each row by its (main) diagonal element, we obtain

m x1 x2 x3 b

1 1/2 −1/2 3
0 1 −1/2 3
0 0 1 −2

We now enter multipliers 1/2 and 1/2 for the first and second rows respec-
tively. These are sign-inverted entries from the third column (corresponding
to x3).

m x1 x2 x3 b

1/2 1 1/2 −1/2 3
1/2 0 1 −1/2 3

0 0 1 −2



90

Scaling the third row by the multiplier shown and adding it to the cor-
responding row results in eliminating x3 from both the first and second
equation:

m x1 x2 x3 b

−1/2 1 1/2 0 2
0 1 0 2
0 0 1 −2

Finally, we use the multiplier −1/2 (shown above) to scale the second row
prior to adding it to the first one, which results in elimination of x2 from
the first equation:

m x1 x2 x3 b

1 0 0 1
0 1 0 2
0 0 1 −2

We have thus reduced U to the identity I, and obtained the solution x in
the last column.

In terms of matrix multiplications, we have

I = M(5)M(4)M(3)U

where

M(3) =




1/2 0 0
0 −1/2 0
0 0 1/2




M(4) =




1 0 1/2
0 1 1/2
0 0 1




and

M(5) =




1 −1/2 0
0 1 0
0 0 1


 ¤

We make the following additional observations on Example 2.7.2.

• M(3) is actually diagonal, with inverse

D = (M(3))−1 =




2 0 0
0 −2 0
0 0 2
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The result of left-multiplying U by M(3) = D−1 is

V = D−1U =




1 1/2 −1/2
0 1 −1/2
0 0 1




which, like L, has diagonal entries normalized to unity. We thus have
an equivalent normalized factorization

A = LDV

• If the diagonal entries are not normalized prior to backward substitu-
tion, then the multipliers will be of the form −sij/sjj , as was the case
in forward elimination. At the end, U will be reduced to a diagonal
(not necessarily identity) matrix.
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2.8 Pivoting in Gaussian Elimination

2.8.1 Pivots and Pivot Rows

The jth step in the forward elimination process aims at eliminating xj from
all equations below the jth one. This is accomplished by subtracting multi-
ples of the jth row of the updated matrix

S = M(j−1) · · ·M(2)M(1)
[

A b
]

from rows indexed j + 1 through n. Thus for i ≥ j + 1 (only), row (S)i· is
replaced by

(S)i· + mij(S)j·

This is equivalent to left-multiplying S by

M(j) =




1
1

. . .
1

1
mj+1,j 1

...
. . .

mnj 1




The multipliers are given by

mij = − sij

sjj

The denominator sjj in the above expression is known as the pivotal element,
or simply pivot, for xj . The jth row, multiples of which are subtracted from
the remaining n−j rows (below it), is known as the pivot row for xj . Clearly,
the pivot row contains sjj in its jth position (column).

2.8.2 Zero Pivots

If a zero pivot sjj is encountered in the forward elimination process, then
the jth row cannot be used for eliminating xj from the rows below it—the
multipliers mij will equal infinity for all i such that sij 6= 0.

Assuming that such sij 6= 0 exists (for i > j), it makes sense to inter-
change the ith and jth rows and use the nonzero value—formerly sij and
now sjj—as pivot. This is a simple concept which will be illustrated later.
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An interesting question is what happens when sjj , as well as all elements
below it, are zero. To answer this question, suppose that sjj is the first zero
pivot encountered. We will then have

M(j−1) · · ·M(2)M(1)A =




s11 s12 s13 . . . s1,j−1 s1j . . .
0 s22 s23 . . . s2,j−1 s2j . . .
0 0 s33 . . . s3,j−1 s3j . . .
...

...
...

. . .
...

...
...

0 0 0 . . . sj−1,j−1 sj−1,j . . .
0 0 0 . . . 0 0 . . .
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 . . .




where the diagonal entries s11, . . . , sj−1,j−1 are previously used pivots and
are therefore nonzero. As we argued earlier in Subsection 2.5.4, the jth

column can be obtained as a linear combination of columns to its left, and
thus the matrix is singular. Since

M(j−1) · · ·M(2)M(1)

is singular, A must be singular also. (This can be argued by contradiction:
if A were nonsingular, then

M(j−1) · · ·M(2)M(1)A

would be the product of two nonsingular matrices, and would thus be non-
singular.)

Singularity of A will therefore result in a zero pivot during the forward
phase of the Gaussian elimination. Recall that singularity implies that

Ax = b

will have a solution only for certain vectors b, namely those in the range
of A (which has dimension smaller than n − 1). If the solution exists, it
will not be unique. The course of action when singularity in A is detected
depends very much on the application in question.

2.8.3 Small Pivots

We saw that row interchanges are necessary when zero pivots are encoun-
tered (assuming A is nonsingular). Row interchanges are also highly de-
sirable when small pivots are likely to cause problems in finite-precision
calculations.
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Consider the simple 2× 2 system given by

εx1 + a12x2 = b1

a21x1 + a22x2 = b2

where a12, a21, a22, b1 and b2 are of the same order of magnitude, and are
all much larger than ε. The exact solution is easy to obtain in closed form;
if we ignore small contributions due to ε, we have the approximations

x1 ' a12b2 − a22b1

a12a21
and x2 ' b1

a12

Neither x1 nor x2 is particularly large if the constants involved (except ε)
are of the same order of magnitude.

Clearly, the same solution is obtained regardless of the pivoting order.
But if precision is an issue, then the order shown above can lead to large
errors in the variable x1, which is obtained from the computed value of x2

(by back-substitution):

x1 =
b1 − a12x2

ε

We know that the value of x1 is not particularly large; therefore the numer-
ator cannot be that much larger than the denominator. Yet both b1 and
a12x2 are (absolutely) much larger than ε. This means that the difference
b1 − a12x2 is very small compared to either term, and is likely to be poorly
approximated if the precision of the computation is not high enough. The
following numerical example further illustrates these difficulties.

Example 2.8.1. Consider the system

0.003x1 + 6x2 = 4.001
x1 + x2 = 1

which has exact solution x1 = 1/3, x2 = 2/3. Let us solve the system using
four-digit precision throughout.

Treating the equations in their original order, we obtain a multiplier

m21 = −(1.000)/(0.003) = −333.3

and thus the second equation becomes

(1− (333.3)(6))x2 = 1− (333.3)(4.001)
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The resulting value of x2 is

x2 = 0.6668

Although the relative error in x2 is only 0.02%, the effect of this error is
much more severe on x1: using that value for x2 in the first equation, we
have

x1 =
4.001− (6)(0.6668)

0.003

Rounding the product (6)(0.6668) to four digits results in 4.001, and thus
the answer is x1 = 0.000. This is clearly unsatisfactory.

Interchanging the equations and repeating the calculation, we obtain
x2 = 0.6667 and x1 = 0.3333, i.e., the correct values (rounded to four
significant digits).

2.8.4 Row Pivoting

Row pivoting is a simple strategy for avoiding small pivots, which can be
summarized as follows.

1. At the beginning of the jth step, let Ij be the set of indices i corre-
sponding to rows that have not yet been used as pivot rows.

2. Compare the values of |sij | for all i in Ij . If i = i(j) yields the largest
such value, take i(j) as the pivot row for the jth step.

3. Remove index i(j) from the set Ij .

4. For each i in Ij , compute mij = −sij/si(j),j .

5. For each i in Ij , add the appropriate multiple of row i(j) to row i.

6. Increment j by 1.

In implementing row pivoting, we use an additional column (“p” for
“pivot order”) to indicate the first, second, third, etc., pivot row.

Example 2.8.2. Consider the system

−x2 + 3x3 = 6
3x1 + 2x2 + x3 = 15

2x1 + 4x2 − 5x3 = 1
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Clearly, pivoting is required for the first step since a11 = 0. We will follow
the row pivoting algorithm given above. We initialize the table:

p m x1 x2 x3 b

0 −1 3 6
3 2 1 15
2 4 −5 1

To eliminate x1, we look for the (absolutely) largest value in the first (x1)
column, which equals 3. The corresponding row is chosen as the first pivot
row, shown as “1” in the pivot column. Multipliers are also computed for
the remaining rows:

p m x1 x2 x3 b

0 0 −1 3 6
1 3 2 1 15

−2/3 2 4 −5 1

After eliminating x1 from rows 1 (trivially) and 2, we compare the second
(x2) column entries for those rows. The pivot is 8/3, and row 3 is the pivot
row. A “2” is marked for that row in the pivot column, and the multiplier
is computed for row 1:

p m x1 x2 x3 b

3/8 0 −1 3 6
1 3 2 1 15
2 0 8/3 −17/3 −9

After eliminating x2 from row 1, we mark a “3” for that row in the pivot
column (even though it is not used for pivoting subsequently):

p m x1 x2 x3 b

3 0 0 7/8 21/8
1 3 2 1 15
2 0 8/3 −17/3 −9

Backward substitution can be carried out by handling the equations in
pivoting order (i.e., 1, 2, 3, from the p column):

3x1 + 2x2 + x3 = 15
(8/3)x2 − (17/3)x3 = −9

(7/8)x3 = 21/8

Solving in the usual fashion, we obtain x3 = 3, x2 = 3 and x1 = 2.
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Row pivoting results in a so-called permuted LU factorization of the
matrix A:

LU = PA

where L and U are lower and upper triangular, respectively, and P is a
permutation matrix which rearranges the rows of A in the order in which
they were used for pivoting. Thus in Example 2.8.2,

P




1
2
3


 =




2
3
1




where the vector on the right is just the pivot order column at the end of
the forward elimination. Thus

P =




0 1 0
0 0 1
1 0 0


 and PA =




2 4 −5
3 2 1
0 −1 3




The matrices L and U are obtained by applying the same permutation
to the multiplier vectors and S (at the end of forward elimination). Thus in
the same example,

L = I−P




0 3/8 0
0 0 0

−2/3 0 0


 =




1 0 0
2/3 1 0

0 −3/8 1




and

U = P




0 0 7/8
3 2 1
0 8/3 −17/3


 =




3 2 1
0 8/3 −17/3
0 0 7/8




If the permuted LU factorization of A is known, then the equation Ax =
b can be solved using the forward elimination and backward substitution
equations

Ly = Pb and Ux = y .
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2.9 Further Topics in Gaussian Elimination

2.9.1 Computation of the Matrix Inverse

In most computations, the inverse A−1 of a nonsingular n × n matrix A
appears in a product such as A−1b or, more generally, A−1B. As long as
A is available, it is best to compute that product via Gaussian elimination,
i.e., by solving

Ax = b

or, if B has more than one column,

AX = B

(here X has the same number of columns as B). This approach is faster (at
least by a factor of two), and produces a much smaller average error in the
resulting entries of Ax−b, than computing the inverse A−1 followed by the
product A−1b.

If Ax = b needs to be solved for many different vectors b, having A−1

computed and stored off-line offers no particular advantage over the standard
LU factorization of A. This is because the product A−1b requires the same
number (≈ 2n2) of floating-point operations as the two triangular systems
Ly = b and Ux = y combined.

If we are asked to compute A−1 explicitly, we can do so by solving the
n2 simultaneous equations in

AX = I

where X = [x(1) . . . x(n)]. This is equivalent to solving n systems of n
simultaneous equations each:

Ax(1) = e(1) , Ax(2) = e(2) , . . . , Ax(n) = e(n)

We illustrate this procedure, also known as Gauss-Jordan elimination, by
an example.

Example 2.9.1. To invert

A =




1 −1 2
−2 1 1
−1 2 1




we construct a table with the elements of S = [A I]:

m x1 x2 x3 b1 b2 b3

1 −1 2 1 0 0
2 −2 1 1 0 1 0
1 −1 2 1 0 0 1
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Eliminating x1 from rows 2 and 3 (using the pivot and multipliers shown
above), we obtain

m x1 x2 x3 b1 b2 b3

1 −1 2 1 0 0
0 −1 5 2 1 0

1 0 1 3 1 0 1

Eliminating x2 from row 3 (using the pivot and multiplier shown above), we
obtain

m x1 x2 x3 b1 b2 b3

1 −1 2 1 0 0
0 −1 5 2 1 0
0 0 8 3 1 1

i.e., S = [U L−1] at this point. Scaling the rows of U by the diagonal
elements, we obtain

m x1 x2 x3 b1 b2 b3

−2 1 −1 2 1 0 0
5 0 1 −5 −2 −1 0

0 0 1 3/8 1/8 1/8

Substituting x3 back into rows 2 and 1 (using the multipliers shown above),
we obtain

m x1 x2 x3 b1 b2 b3

1 1 −1 0 2/8 −2/8 −2/8
0 1 0 −1/8 −3/8 5/8
0 0 1 3/8 1/8 1/8

Substituting x2 back into row 1 (using the multiplier shown above), we
obtain

m x1 x2 x3 b1 b2 b3

1 0 0 1/8 −5/8 3/8
0 1 0 −1/8 −3/8 5/8
0 0 1 3/8 1/8 1/8

i.e., S = [I A−1] at the end. Thus

A−1 =




1/8 −5/8 3/8
−1/8 −3/8 5/8

3/8 1/8 1/8


 ¤
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In case where zero pivots are encountered, pivoting is necessary in the
above procedure. The final table is of the form

[P−1 P−1A−1]

where P is the permutation matrix in the (permuted) LU factorization of
A:

LU = PA

Note that P−1 = PT by the fact given in Subsection 2.3.2.

2.9.2 Ill-Conditioned Problems

In Section 2.8, we saw how small pivots can cause large errors in finite-
precision computation, and how simple techniques such as row pivoting can
essentially eliminate these errors. There are, nevertheless, problems where
errors due to finite precision are unavoidable, whether pivoting is used or
not. Such problems are referred to as ill-conditioned, primarily in regard to
the matrix A.

We can think of an ill-conditioned matrix A as one that is “nearly sin-
gular” in terms of the precision used in solving Ax = b. This concept can
quantified in terms of the so-called condition number of A, which can be
computed in MATLAB using the function COND. A well-conditioned ma-
trix is one whose condition number is small (the minimum possible value is
1). An ill-conditioned matrix is one whose condition number is of the same
order of magnitude as 10K , where K is the number of significant decimal
digits used in the computation—the same definition can be given in terms
of binary digits by changing the base to 2.

Ill-conditioned problems are characterized by large variations in the solu-
tion vector x caused by small perturbations of the parameter values (entries
of A and b). They are thus extremely sensitive to rounding. The following
example demonstrates this sensitivity.

Example 2.9.2. Consider the system

1.001x1 + x2 = 2.001
x1 + 1.001x2 = 2.001

which has exact solution
x1 = x2 = 1.

Note how the two columns of A are nearly equal, and thus A is nearly singu-
lar. The condition number of A equals 2.001× 103. Based on the foregoing
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discussion, large errors are possible when rounding to three significant digits.
In fact, we will show that this is the case even with four-digit precision.

Suppose we change the right-hand vector to

b1 = 2.0006 , b2 = 2.0014

Both these values are rounded to 2.001 using four-digit precision, with an
error of 0.02%. Ignoring any further round-off errors in the solution of the
system (i.e., solving it exactly), we have the exact solution

x1 = 1.600 , x2 = 0.3995

Note the 60% error in each entry relative to the earlier solution.
We give a graphical illustration of the difficulties encountered in this

problem. The two equations represent two nearly parallel straight lines on
the (x1, x2) plane. A small parallel displacement of either line (as a result
of changing the value of an intercept bi) will cause a large movement of the
solution point.
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Example 2.9.2

Ill-conditioned problems force us to reconsider the physical parameters
and models involved. For example, if the signal representation problem
s = Vc is ill-conditioned, we may want to choose a different set of reference
signals in the matrix V. In a systems context, where, for example, y = Ax
is an observation signal for a hidden state vector x, an ill-conditioned matrix
A might force us to seek a different measuring device or observation method.
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2.10 Inner Products, Projections and Signal Ap-
proximation

2.10.1 Inner Products and Norms

The inner product of two vectors a and b in Rm×1 is defined by

〈a,b〉 =
m∑

i=1

aibi

Clearly, the inner product is symmetric in its two arguments and can be
expressed as the product of a row vector and a column vector:

〈a,b〉 = aTb = bTa = 〈b,a〉

Also, the inner product is linear in one of its arguments (i.e., vectors) when
the other argument is kept constant:

〈c1a(1) + c2a(2), b〉 =
m∑

i=1

(
c1a

(1)
i + c2a

(2)
i

)
bi = c1〈a(1),b〉+ c2〈a(2),b〉

The norm of a vector a in Rm×1 is defined as the square root of the
inner product of a with itself:

‖a‖ = 〈a,a〉1/2 =

(
m∑

i=1

a2
i

)1/2

or equivalently,

‖a‖2 = 〈a,a〉 =
m∑

i=1

a2
i

By the Pythagorean theorem, ‖a‖ is also the length of a. Clearly,

‖a‖ = 0 ⇔ a = 0

i.e., the all-zeros vector is the only vector of zero length. Also, if c is a (real)
scaling factor,

‖ca‖ =

(
m∑

i=1

c2a2
i

)1/2

= |c| · ‖a‖
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0 a

bb-a

θ

Figure 2.8: The geometry of vectors a, b and b− a.

2.10.2 Angles, Projections and Orthogonality

In general, two nonzero vectors a and b in Rm×1 define a two-dimensional
subspace (i.e., plane) through the origin. By convention, the angle between
a and b takes value in [0, π].

Applying the cosine rule to the triangle formed by a, b and the dotted
vector (parallel to) b− a in Figure 2.8, we obtain

‖b− a‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖ · ‖b‖ · cos θ

Using the linearity property stated earlier, the left-hand side can be also
expressed as

‖b− a‖2 = 〈b− a, b− a〉
= 〈a,a〉+ 〈b,b〉 − 2〈a,b〉
= ‖a‖2 + ‖b‖2 − 2〈a,b〉

Thus
‖a‖2 + ‖b‖2 − 2〈a,b〉 = ‖a‖2 + ‖b‖2 − 2‖a‖ · ‖b‖ · cos θ

and consequently

cos θ =
〈a,b〉

‖a‖ · ‖b‖
Another feature of the geometry of two vectors in Rm×1 is the projection

of one vector onto the other. Figure 2.9 shows the projection f of b onto a,
which is of the form

f = λa

where λ is a scaling factor having the same sign as cos θ. To determine the
value of λ, note that the length of f equals

‖f‖ = ‖b‖ · | cos θ| = |〈a,b〉|
‖a‖
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0 a

b

f
θ

Figure 2.9: Projection of vector b onto vector a.

The unit vector parallel to a is given by

e(a) =
1
‖a‖a

and f is obtained by scaling e(a) by the “signed” length of f :

f =
〈a,b〉
‖a‖ e(a) =

〈a,b〉
‖a‖2

a

Therefore λ = 〈a,b〉/‖a‖2.

Example 2.10.1. Let a = [−1 1 − 1]T and b = [2 − 5 1]T in R3×1. We
then have

‖a‖2 = 3 ⇒ ‖a‖ =
√

3

and
‖b‖2 = 30 ⇒ ‖b‖ =

√
30

Also,

〈a,b〉 = −2− 5− 1 = −8 ⇒ cos θ = − 8
3
√

10

The projection of b onto a is given by

f = −8
3
a

while the projection of a onto b is given by

g = − 8
30

b = − 4
15

b ¤
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Definition 2.10.1. We say that a and b are orthogonal, and denote that
relationship by

a⊥b

if the angle between a and b equals π/2, or equivalently (since cos(π/2) = 0),

〈a,b〉 = 0 ¤

Clearly, if a and b are orthogonal, then the projection of either vector
onto the other is the all-zeros vector 0.

2.10.3 Formulation of the Signal Approximation Problem

Our discussion of matrix inversion was partly motivated by the following
signal approximation problem. Given n reference signals v(1), . . . ,v(n) in
Rm×1, how can we best approximate an arbitrary signal vector s in Rm×1

by a linear combination of these signals? The approximation would be of
the form

ŝ =
n∑

r=1

crv(r) = Vc

where the m× n matrix V has the n reference signals as its columns:

V =
[

v(1) . . . v(n)
]

Since the approximation ŝ is a linear combination of reference signals, it
makes little sense to include in V a signal which is expressible as a linear
combination of other such (reference) signals; that signal would be redun-
dant. We therefore assume the following:

Assumption. The columns of V, namely v(1), . . . ,v(n), will be assumed
linearly independent for the remainder of this chapter.

The above assumption immediately implies that n ≤ m, i.e., the number
of reference signals is no larger than the signal dimension (i.e., vector size).
As we saw earlier, any set of m linearly independent vectors in Rm×1 can be
used to obtain any vector in that space (by means of linear combinations). It
is therefore impossible to have a set of m+1 (or more) linearly independent
vectors in Rm×1.

The case n = m has already been considered in the context of matrix
inversion. If the columns the (square) matrix V are linearly independent,
then V is nonsingular and the equation

Vc = s
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has a unique solution c given by c = V−1s. Thus there is no need to ap-
proximate here; we have an exact representation of s as a linear combination
of the n = m reference signals.

Thus the only real case of interest is n < m, i.e., where the range R(V)
of V is a linear subspace of Rm×1 of dimension d = n < m. Any signal s
that does not belong to R(V) will need to approximated by a ŝ in R(V).

To properly formulate this problem, we will evaluate each approximation
ŝ based on its distance from s. Thus the best approximation is one that
minimizes the length ‖ŝ−s‖ of the error vector ŝ−s over all possible choices
of ŝ in R(V). Clearly, that approximation will also minimize the square of
that length:

‖ŝ− s‖2 =
m∑

i=1

(ŝi − si)2

By virtue of the expression on the right-hand side (i.e., sum of squares of
entries of the error vector), this solution is known as the least-squares (linear)
approximation of s based on v(1), . . . ,v(n).

2.10.4 Projection and the Signal Approximation Problem

In the case where there is only one reference vector v(1) (i.e., m > n = 1),
the solution of the signal approximation problem can be obtained using two-
dimensional geometry. If, in Figure 2.9, we replace b by s and a by v(1),
we see that the point closest to s on the line generated by v(1) is none other
than the projection f of s onto v(1). Thus the least-squares approximation
of s based on v(1) is given by ŝ = f . It is also interesting to note that the
error vector ŝ− s is orthogonal to v(1), i.e.,

ŝ− s ⊥ v(1)

Similarly, three-dimensional geometry provides the solution to the ap-
proximation problem when two reference vectors v(1) and v(2) are given (i.e.,
m > n = 2). Again, the solution ŝ is obtained by projecting s on the plane
R(V). The error vector satisfies

ŝ− s ⊥ v(1) and ŝ− s ⊥ v(2)

i.e., it is orthogonal to both v(1) and v(2). Figure 2.10 clearly shows that
ŝ− s is also orthogonal to every vector on the plane R(V).

Our intuition thus far suggests that the solution to the signal approxima-
tion problem for any number n < m of reference vectors might be obtained
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0

v
(2)
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v
(1)

s

R(V)

Figure 2.10: The projection of s on the plane generated by v(1)

and v(2).

by projecting s onto the subspace R(V) generated by v(1), . . . ,v(n); where
the projection ŝ ∈ R(V) satisfies

ŝ− s ⊥ v(j)

for every 1 ≤ j ≤ n.

Before showing that this is indeed the case, we note the following:

• If ŝ−s ⊥ v(j) for every vector v(j), then ŝ−s ⊥ a for every a in R(V).
This is because the inner product is linear in one of its arguments
when the other argument is fixed; thus if a is a linear combination of
v(1), . . . ,v(n) and 〈ŝ− s, v(j)〉 = 0 for every j, then 〈ŝ− s,a〉 = 0 also.

• The n conditions 〈ŝ− s, v(i)〉 = (v(i))T (ŝ− s) = 0 can be expressed in
terms of a single matrix-vector product as

VT (ŝ− s) = 0

where the vector 0 is n-dimensional; or equivalently, as

VT ŝ = VT s

We prove our conjecture by showing that if there exists ŝ in R(V) sat-
isfying VT ŝ = VT s, its distance from s can be no larger than that of any
other vector y in R(V); i.e.,

‖y − s‖2 ≥ ‖ŝ− s‖2
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Indeed, we rewrite the left-hand side as

‖y − ŝ + ŝ− s‖2 = 〈y − ŝ + ŝ− s, y − ŝ + ŝ− s〉

Treating y− s and ŝ− s as single vectors, we obtain (as in the derivation of
the formula for cos θ in Subsection 2.10.2)

‖y − s‖2 = ‖ŝ− s‖2 + ‖y − ŝ‖2 + 2〈y − ŝ, ŝ− s〉

The quantity ‖y− ŝ‖2 is nonnegative (and is zero if and only if y = ŝ). The
inner product 〈y − ŝ, ŝ − s〉 equals zero since y − ŝ belongs to R(V) and
ŝ− s is orthogonal to every vector in R(V). We thefore conclude that

‖y − s‖2 ≥ ‖ŝ− s‖2

with equality if and only if y = ŝ. Although the existence of s in R(V)
satisfying

VT ŝ = VT s

has not yet been shown, it follows from the “if and only if” statement (above)
that there can only be one solution ŝ to the signal approximation problem.

2.10.5 Solution of the Signal Approximation Problem

It remains to show that
VT ŝ = VT s

has a solution ŝ in R(V); this means that ŝ = Vc for some c to be deter-
mined. We rewrite the equation as

VTVc = VT s

i.e.,
Ac = b

where:

• A = VTV is an n × n symmetric matrix whose (i, j)th entry equals
the inner product 〈v(i),v(j)〉 (hence the symmetry); and

• b = VT s is a n× 1 vector whose ith entry equals 〈v(i), s〉.
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Note that once the inner products in VTV and VT s have been computed,
the signal dimension m altogether drops out of the picture, i.e., the size of
the problem is solely determined by the number n of reference vectors.

A unique solution c exists for every s provided the n × n matrix VTV
is nonsingular, i.e.,

x 6= 0 ⇒ (VTV)x 6= 0

To see why the above implication is indeed true, recall our earlier as-
sumption that the columns of the m×n matrix V are linearly independent.
Thus

x 6= 0 ⇒ Vx 6= 0

⇔ ‖Vx‖2 > 0

where the squared norm in the last expression can be also expressed as

‖Vx‖2 = (Vx)T (Vx) = xTVTVx

Thus
x 6= 0 ⇒ xT (VTV)x > 0

and hence (VTV)x cannot be the all-zeros vector 0; if it were, then the
scalar xT (VTV)x would equal zero also. This establishes that VTV is
nonsingular.

We therefore obtain the solution to the least squares approximation prob-
lem as

ŝ = Vc

where
c = (VTV)−1VT s

A single expression for ŝ is

ŝ = V(VTV)−1VT s

(Note that the m×m matrix V(VTV)−1VT is also symmetric.)

Example 2.10.2. Consider the case m = 3 and n = 2, with v(1) = [−1 1 −
1]T and v(2) = [2 − 5 1]T (same vectors as in Example 2.10.1). Thus

V =



−1 2

1 −5
−1 1
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and

VTV =
[ ‖v(1)‖2 〈v(1),v(2)〉
〈v(2),v(1)〉 ‖v(2)‖2

]
=

[
3 −8

−8 30

]

Let us determine the projection of ŝ of s = [2 − 1 − 1]T onto the plane
defined by v(1) and v(2). We have

VT s =
[ 〈v(1), s〉
〈v(2), s〉

]
=

[ −2
8

]

and thus ŝ = Vc, where

c =
[

3 −8
−8 30

]−1 [ −2
8

]
=

1
13

[
2
4

]

Therefore

ŝ =
2
13

v(1) +
4
13

v(2) =
2
13




3
−9

1


 ¤

As a final observation, note that the formulas

c = (VTV)−1VT s

and
ŝ = V(VTV)−1VT s

which we derived for the case n < m under the assumption of linear inde-
pendence of the columns of V, also give us the correct answers when n = m
and V−1 exists:

c = (VTV)−1VT s = V−1(VT )−1VT s = V−1s

and
ŝ = V(VTV)−1VT s = VV−1s = s
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2.11 Least-Squares Approximation in Practice

The basic technique of least-squares approximation developed in the previ-
ous section has numerous applications across the engineering disciplines and
in most scientific fields where data analysis is important. Broadly speak-
ing, least-squares methods allow us to to estimate parameters for a variety
of models that have linear structure. To illustrate the adaptability of the
least-squares technique, we consider two rather different examples.

Example 2.11.1. Curve fitting. We are given the following vector s con-
sisting of ten measurements taken at regular time intervals (for simplicity,
every second):

t 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
s −0.7 −0.2 0.6 1.1 1.7 2.5 3.1 3.8 4.5 5.0

Suppose we are interested in fitting a straight line

ŝ(t) = at + b

through the discrete plot {(ti, si), 1 ≤ i ≤ 10} so as to minimize

10∑

i=1

(ŝ(ti)− si)2

Letting ŝ(ti) = ŝi, we see that the vector ŝ is given by

ŝ = at + b1

where 1 is a column vector of unit entries. We can then restate our problem
as follows: choose coefficients a and b for t and 1, respectively, so as to
minimize

‖ŝ− s‖2

We thus have a least-squares problem where

• the length of the data vector is m = 10; and

• the number of reference vectors (i.e., t and 1) is n = 2.
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Again, we begin by computing the matrix of inner products of the reference
vectors, i.e., VTV, where V = [t 1]. We have

tT t =
10∑

i=1

i2 = 385

tT1 =
10∑

i=1

i = 55

1T1 =
10∑

i=1

1 = 10

and therefore

VTV =
[

tT t tT1
tT1 1T1

]
=

[
385 55
55 10

]

Also,

tT s =
10∑

i=1

isi = 171.2

1T s =
10∑

i=1

si = 21.4

and thus

VT s =
[

tT s
1T s

]
=

[
171.2
21.4

]

The least squares solution is then given by
[

a
b

]
=

[
385 55
55 10

]−1 [
171.2
21.4

]
=

[
0.6485

−1.4267

]

and the resulting straight line ŝ(t) = at + b is plotted together with the
discrete data points.

It can be seen that the straight-line fit is very good in this case. The
mean (i.e., average) square error is given by

1
10
‖ŝ− s‖2 = 0.00501

Taking the square root
√

1
10
‖ŝ− s‖2 = 0.0708
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Example 2.11.1

we obtain the root mean square (r.m.s.) error. The mean absolute error is

1
10

10∑

i=1

|ŝi − si| = 0.0648 ¤

Remark. The same technique can be used for fitting any linear combination
of functions through a discrete data set. For example, by expanding the set
of reference vectors to include the squares, cubes, etc., of the entries of the
abscissa (time in this case) vector t, we can determine the optimal (in the
least-squares sense) fit by a polynomial of any degree we choose.

Example 2.11.2. Range estimation. In this example, we assume that we
have two signal sources, each emitting a pure sinusoidal waveform. The
signals have the same amplitude (hence also power), but different frequencies
and phase shifts. The sources are mobile, and their location at any time is
unknown.

A receiver, who knows the two source frequencies Ω1 and Ω2, also knows
that the signal power follows an inverse-power law, i.e., it decays as R−γ ,
where R is the distance from the source and γ is a known positive constant.
Based on this information, the receiver attempts to recover the range ra-
tio R1/R2 (i.e., the receiver’s relative distance from the two sources) from
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samples of the received signal

s(t) = σR
−γ/2
1 cos(Ω1t + φ1) + σR

−γ/2
2 cos(Ω2t + φ2) + z(t)

Here, z(t) represents interference, or noise, that has no particular structure
(at least none that can be used to improve the model for s(t)). Use of
the common parameter σ here is consistent with the assumption that both
sources emit at the same power.

Suppose that the receiver records m samples of s(t) corresponding to
times t1, . . . , tm. Since the distances R1 and R2 both appear in the am-
plitudes of the received sinusoidal components, it makes sense to estimate
those amplitudes. Note that neither of the two components in their respec-
tive form shown above can be used as a reference signal for the least-squares
solution—the unknown phase shifts must somehow be removed. To that
end, we write

cos(Ωkt + φk) = cosφk cos(Ωkt)− sinφk sin(Ωkt)

and use two reference signals for each Ωk, namely cos(Ωkt) and sin(Ωkt). In
their discrete form, these signals are given by vectors

u(1) =
[
cos(Ω1ti)

]m

i=1

w(1) =
[
sin(Ω1ti)

]m

i=1

u(2) =
[
cos(Ω2ti)

]m

i=1

w(2) =
[
sin(Ω2ti)

]m

i=1

We thus seek coefficients a1, b1, a2 and b2 such that

ŝ = a1u(1) + b1w(1) + a2u(2) + b2w(2)

is the least-squares approximation (among all such linear combinations) to
the vector of received samples s. The solution is obtained in the usual
fashion: if

V =
[

u(1) w(1) u(2) w(2)
]

then the optimal coefficients are given by



a1

b1

a2

b2


 = (VTV)−1VT s
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Since, for each k, the sum a2
k+b2

k is approximately equal to σ2R−γ
k (cos2 φk+

sin2 φk) = σ2R−γ
k , the resulting estimate of the ratio R1/R2 is

(
a2

1 + b2
1

a2
2 + b2

2

)−1/γ

¤
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2.12 Orthogonality and Least-Squares Approxima-
tion

2.12.1 A Simpler Least-Squares Problem

The solution of the projection, or least-squares, problem is greatly simplified
when the reference vectors v(1), . . . ,v(n) in V are (pairwise) orthogonal. This
means that v(i)⊥v(j) for any i 6= j, or equivalently,

〈v(i), v(j)〉 =
{ ‖v(i)‖2, i = j;

0, i 6= j.

Recall that 〈v(i), v(j)〉 is the (i, j)th element of the inner product matrix
VTV. Thus if the columns of V are orthogonal, then

VTV =




‖v(1)‖2 0 . . . 0
0 ‖v(2)‖2 . . . 0
...

...
. . .

...
0 0 . . . ‖v(n)‖2




and hence VTV is a diagonal matrix. Since none of v(1), . . . ,v(n) is an all-
zeros vector (by the assumption of linear independence), it follows that all
the squared norms on the diagonal are strictly positive, and thus

(VTV)−1 =




‖v(1)‖−2 0 . . . 0
0 ‖v(2)‖−2 . . . 0
...

...
. . .

...
0 0 . . . ‖v(n)‖−2




is well-defined. The projection ŝ of s on R(V) is then given by ŝ = Vc,
where

c = (VTV)−1VT s =




‖v(1)‖−2 0 . . . 0
0 ‖v(2)‖−2 . . . 0
...

...
. . .

...
0 0 . . . ‖v(n)‖−2







〈v(1), s〉
〈v(2), s〉

...
〈v(n), s〉




i.e., for every i,

ci =
〈v(i), s〉
‖v(i)‖2
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As a result,

ŝ = Vc =
n∑

i=1

〈v(i), s〉
‖v(i)‖2

v(i)

The generic term in the above sum is the projection of s onto v(i) (as we
saw in Subsection 2.10.2). Thus if the columns of V are orthogonal, then
the projection of any vector s on R(V) is given by the (vector) sum of the
projections of s onto each of the columns.

This result is in agreement with three-dimensional geometry, as shown
in Figure 2.11. It is also used extensively—and without elaboration—when
dealing with projections on subspaces generated by two or more of the stan-
dard orthogonal unit vectors e(1), . . . , e(m) in Rm×1. For example, the pro-
jection of

s = 3e(1) + 4e(2) + 7e(3)

on the plane generated by e(1) and e(2) equals

ŝ = 3e(1) + 4e(2) ,

which is the sum of the projections of s on e(1) (given by 3e(1)) and on e(2)

(given by 4e(2)).

0

v
(2)

s

v
(1)

s R(V)

Figure 2.11: Projection on a plane generated by orthogonal vec-
tors v(1) and v(2).

2.12.2 Generating Orthogonal Reference Vectors

The result of the previous subsection clearly demonstrates the advantage
of working with orthogonal reference vectors v(1), . . . ,v(n): least squares
approximations can be obtained without solving simultaneous equations.
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As it turns out, we can always work with orthogonal reference vectors,
if we so choose:

Fact. Any linearly independent set {v(1), . . . ,v(n)} of vectors in Rm×1 (where
n ≤ m) is equivalent to a linearly independent and orthogonal set {w(1),
. . . ,w(n)}, where equivalence means that both sets produce the same subspace
of linear combinations.

In matrix terms, if

V =
[

v(1) . . . v(n)
]

,

we claim that there exists

W =
[

w(1) . . . w(n)
]

such that WTW is diagonal and

R(V) = R(W)

The last condition means that each v(i) is expressible as a linear combination
of w(j)’s and vice versa (with v and w interchanged). In other words, there
exists a nonsingular n× n matrix B such that

V = WB

and (equivalently)
W = VB−1

We will now show how, given any V with linearly independent columns,
we can obtain such a matrix B. The construction is based on the LU fac-
torization of VTV, a matrix known to be be

• nonsingular ;

• symmetric; and

• positive definite, meaning that xTVTVx > 0 for all x 6= 0.

The three properties listed above have the following implications (proofs
are omitted):

• Nonsingularity of VTV implies that a unique normalized LU factor-
ization of the form

VTV = LDU

exists where both L and U have unit diagonal elements and D has
nonzero diagonal elements.
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• Symmetry of of VTV in conjunction with the uniqueness of the above
factorization implies

L = UT

• Finally, positive definiteness of VTV implies that D has (strictly)
positive diagonal elements.

The following example illustrates the above-mentioned features of the
LU factorization of VTV.

Example 2.12.1. Consider the matrix

V =
[

v(1) v(2) v(3)
]

=




−1 3 −3
0 1 −2
1 1 −2

−1 1 −1
−1 1 0




Gaussian elimination on

VTV =




4 −4 2
−4 13 −14

2 −14 18




yields
m x1 x2 x3

4 −4 2
1 −4 13 −14

−1/2 2 −14 18
4 −4 2
0 9 −12

4/3 0 −12 17
4 −4 2
0 9 −12
0 0 1

Therefore

VTV =




1 0 0
−1 1 0
1/2 −4/3 1







4 −4 2
0 9 −12
0 0 1




=




1 0 0
−1 1 0
1/2 −4/3 1







4 0 0
0 9 0
0 0 1







1 −1 1/2
0 1 −4/3
0 0 1
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demonstrating that VTV = UTDU, where D has strictly positive diagonal
entries.

Using the above-mentioned properties of VTV, we will now show that
the matrix

W = VU−1

has n nonzero orthogonal columns, thereby proving the claim made earlier
(with B = U). Indeed,

WTW = (VU−1)TVU−1

= (UT )−1VTVU−1

= (UT )−1UTDUU−1

= D

and thus W has n orthogonal columns w(1), . . . ,w(n) with norms given by

‖w(i)‖ =
√

dii > 0

for all i.

Example 2.12.1. (Continued.) There is no need to compute U−1 explicitly
in order to determine W = VU−1. We have, equivalently,

WU = V ⇔ UTWT = VT

The last equation can be written as (note that UT = L)




1 0 0
−1 1 0
1/2 −4/3 1







w(1)T

w(2)T

w(3)T


 =




v(1)T

v(2)T

v(3)T




We solve this lower triangular system using standard forward elimination,
treating the row vectors w(·)T and v(·)T as scalar variables and omitting the
transpose throughout. Thus

w(1) = v(1)

w(2) = v(1) + v(2)

w(3) = −1
2
v(1) +

4
3
(v(1) + v(2)) + v(3) =

5
6
v(1) +

4
3
v(2) + v(3)
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We have obtained three orthogonal vectors with norms 2, 3 and 1 respec-
tively. In extensive form,

W =
[

w(1) w(2) w(3)
]

=




−1 2 1/6
0 1 −2/3
1 2 1/6

−1 0 −1/2
−1 0 1/2




¤

We make the following final remarks on this topic.

• Dividing each w(i) in the above transformation by its norm ‖w(i)‖ =√
dii, we obtain a new set of orthogonal vectors, each having unit

norm. A set of vectors having these two properties (orthogonality and
unit norm) is known as orthonormal. The new matrix W is related
to V via

V = WD1/2U

and
W = VU−1D−1/2

where D1/2 and D−1/2 are diagonal matrices obtained by taking the
same (respective) powers of the diagonal elements of D.

• The upper triangular matrix D1/2U above can be computed in MAT-
LAB using the function CHOL, with argument given by VTV. This
the same as producing the Cholesky form of the LU factorization of
a positive definite symmetric matrix A, where the lower and upper
triangular parts are transposes of each other:

A = (D1/2U)T (D1/2U)
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2.13 Complex-Valued Matrices and Vectors

2.13.1 Similarities to the Real-Valued Case

Thus far we have considered matrices and vectors with real-valued entries
only. From an applications perspective, this restriction is justifiable, since
real-world signals are real-valued—it therefore makes sense to represent or
approximate them using real-valued reference vectors. One class of refer-
ence vectors of particular importance in signal analysis comprises segments
of sinusoidal signals in discrete time. As the analysis of sinusoids is simpli-
fied by considering complex sinusoids (or phasors), it pays to generalize the
tools and concepts developed so far to include complex-valued matrices and
vectors.

A m×n complex-valued matrix takes values in Cm×n, where C denotes
the complex plane. Since each entry of the matrix consists of a real and an
imaginary part, a complex-valued matrix stores twice as much information as
a real-valued matrix of the same size. This fact has interesting implications
about the representation of real-valued signals by complex-valued reference
vectors.

Partitioning a matrix A ∈ Cm×n into its columns, we see that each
column of A is a vector z in Cm×1, which can be expressed as

z = z1e(1) + · · ·+ zme(m)

Here, e(1), . . . , e(m) are the standard (real-valued) unit vectors, and z1, . . . , zm

are the complex-valued elements of z:

z =




z1

z2
...

zm




Note that the “information-doubling” effect mentioned in the previous para-
graph is due to the fact that each zi is complex; the vector z itself has dimen-
sion m, as does any real-valued vector x (which is also a linear combination
of e(1), . . . , e(m), but with real-valued coefficients x1, . . . , xm).

Complex-valued matrices and vectors behave in exactly the same manner
as real-valued ones. Since all matrix computations are based on scalar addi-
tion and multiplication, one only needs to ensure that in the complex case,
these (scalar) operations are replaced by complex addition and multiplica-
tion. We thus have the following straightforward extensions of properties
and concepts defined earlier:



123

• Matrix addition: Defined as before (using complex addition).

• Matrix multiplication: Defined as before (using complex addition and
multiplication).

• Matrix transposition (T ): Defined as before. No algebraic operations
are needed here. A modified transpose will be defined in the next
subsection.

• Linear Independence: Defined as before, allowing complex coefficients
in linear combinations. Thus linear independence of the columns of A
means that z = 0 is the only solution of Az = 0.

• Matrix inverse: As before, a square matrix is nonsingular (and thus
has an inverse) provided its columns are linearly independent.

• Solution of Az = b: Gaussian elimination is still applicable. In terms
of computational effort, this is a more intensive problem, since each
complex addition involves two real additions; and each complex mul-
tiplication involves four real multiplications and three real additions.
One can also write out the above matrix equation using real constants
and unknowns; twice as many variables are needed, since each complex
variable zi has a real and an imaginary part.

2.13.2 Inner Products of Complex-Valued Vectors

The inner product of v and w in Cm×1 is defined by

〈v,w〉 =
m∑

i=1

v∗i wi = (v∗)Tw

where, as usual, the superscript ∗ denotes complex conjugate. Note that if
the two vectors are real-valued (i.e., have zero imaginary parts), the complex
conjugate has no effect on the value of v, and the above definition becomes
that of the inner product of two real-valued vectors.

The combination of the complex conjugate ∗ and transpose T operators
(in either order) is known as the conjugate transpose, or Hermitian, operator
H. Thus

〈v,w〉 = vHw

The following identities involving complex conjugates of scalars are useful
in manipulating inner products and conjugate transposes of vectors:

(z∗)∗ = z
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(z1 + z2)∗ = z∗1 + z∗2
(z1z2)∗ = z∗1z

∗
2

|z|2 = zz∗

We immediately obtain:

〈w,v〉 =
m∑

i=1

w∗i vi =

(
m∑

i=1

v∗i wi

)∗
= 〈v,w〉∗

or equivalently,
wHv =

(
vHw

)∗

Also, if c is a complex-valued scalar,

〈v, cw〉 = c〈v,w〉
〈cv,w〉 = c∗〈v,w〉
〈cv, cw〉 = |c|2〈v,w〉

The norm (or length) of v in Cm×1 is defined as

‖v‖ =

(
m∑

i=1

|vi|2
)1/2

where | · | denotes the magnitude of the complex element vi:

|vi|2 = v∗i vi = <e2{vi}+ =m2{vi}

We thus see that ‖v‖2 is given by the sum of squares of all real and
imaginary parts contained in the vector v. We also have

‖v‖ =

(
m∑

i=1

v∗i vi

)1/2

= 〈v,v〉1/2

which is the same relationship between norm and inner product as in the
real-valued case. This is a key reason for introducing the complex conjugate
in the definition of the inner product.

Example 2.13.1. Let

v =




1 + j
−j

5− 2j


 and w =




3
1− j
1 + 2j
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Then

〈v,w〉 = vHw

= (1− j) · 3 + j · (1− j) + (5 + 2j) · (1 + 2j) = 5 + 10j

〈w,v〉 = wHv = 5− 10j

‖v‖2 = vHv

= (1 + 1) + (1) + (25 + 4) = 32

‖w‖2 = wHw

= 9 + (1 + 1) + (1 + 4) = 16

Note that by separating complex vectors into their real and imaginary
parts, i.e., v = a + jb and w = c + jd, we can also express inner products
and norms of complex vectors in terms or inner products of real vectors,
e.g.,

〈v,w〉 = (aT − jbT )(c + jd)
= aTc + bTd + j(aTd− bTc)

The following properties of the conjugate transpose H are identical to
those of the transpose T :

(AH)H = A

(AB)H = BHAH

(A−1)H = (AH)−1

As a final reminder, in MATLAB:

• .’ denotes T and ’ denotes H.

• In computations involving real matrices (exclusively), the same result
will be obtained by either transpose.

• Where complex matrices are involved, the conjugate transpose (H or
’) is usually needed.

• For changing the (row-column) orientation of complex vectors, the
ordinary transpose .’ must be used; use of ’ will result in an error
(due to the conjugation).
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2.13.3 The Least-Squares Problem in the Complex Case

Orthogonality of complex-valued vectors is defined in terms of their inner
product:

v⊥w ⇔ 〈v,w〉 = 0 ⇔ 〈w,v〉 = 0

or equivalently:

v⊥w ⇔ vHw = 0 ⇔ wHv = 0

This is essentially the same definition as in the real-valued case.

Remark. Note that in geometric terms, it is considerably more difficult to
visualize Cm×1 than Rm×1, and even simple concepts such as orthogonality
can lead to intuitive pitfalls. For example, the scalars v = 1 and w = j are
at right angles to each other on the complex plane; yet viewed as vectors v
and w in C1×1, they are not orthogonal since 〈v,w〉 = j.

With the given definitions of the inner product and orthogonality for
complex vectors, the formulation and solution of the least-squares approx-
imation problem in the complex case turns out to be the same as in the
real case. Assuming that v(1), . . . ,v(n) are linearly independent vectors in
Cm×1 (where n ≤ m), we seek to approximate s ∈ Cm×1 by Vc so that the
squared norm

‖Vc− s‖2

(i.e., the sum of squares of all real and imaginary parts contained in the
error vector Vc− s) is minimized.

Following the same argument as in the real-valued case, we define the
projection ŝ of s on R(V) by the following n relationships:

ŝ− s ⊥ v(i) ⇔ (v(i))H ŝ = (v(i))Hs

where i = 1, . . . , n. Equivalently, in matrix form we have

VH ŝ = VHs

and letting ŝ = Vc as before, we obtain

VHVc = VHs

Since H is the extension of T to the complex case, we have, in effect, the
same formula for computing projections as before.

The proof that the projection ŝ on R(V) solves the least-squares ap-
proximation problem for complex vectors is identical to the proof given in
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Subsection 2.10.4 for real vectors. Care should be exercised in writing out
one equation: if y is the competing approximation, then

‖y − s‖2 = ‖ŝ− s‖2 + ‖y − ŝ‖2 + 〈y − ŝ, ŝ− s〉+ 〈ŝ− s, y − ŝ〉

The last two terms on the right-hand side (which are conjugates of each
other) are, again, equal to zero by the assumption of orthogonality of ŝ− s
and any vector in R(V).



128

Problems

Section 2.1

P 2.1. (MATLAB) Enter the matrix

A = [1 2 3 4; 5 6 7 8; 9 10 11 12]

(i) Find two-element arrays I and J such that A(I,J) is a 2 × 2 matrix
consisting of the corner elements of A.
(ii) Suppose that B=A initially. Find two-element arrays K and L such that

B(:,K) = B(:,L)

swaps the first and fourth columns of B.
(iii) Explain the result of

C = A(:)

(iv) Study the function RESHAPE. Use it together with the transpose operator
.’ in a single (one-line) command to generate the matrix

[
1 2 3 4 5 6
7 8 9 10 11 12

]

from A.

P 2.2. (MATLAB) Study the functions FLIPUD, HILB and TOEPLITZ.
Let N be integer. How would you define the vector r so that the following
command string returns an all-zero N-by-N matrix?

R = 1./r;
A = toeplitz(R);
B = flipud(A);
B(1:N,1:N) - hilb(N)
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Section 2.2

P 2.3. If

B
[

1
0

]
=




3
−2
−1


 and B

[ −1
1

]
=




4
7
2


 ,

determine

B
[

2
−1

]

P 2.4. Let G be a m× 2 matrix such that

G
[ −1

1

]
= u and G

[
2
1

]
= v

Express

G
[

3
3

]

in terms of u and v.

P 2.5. The transformation A : R3 7→ R3 is such that

A




1
0
0


 =




4
−1

2


 , A




0
1
0


 =



−2

3
−1


 , A




0
0
1


 =




1
0
3




Write out the matrix A and compute Ax, where

x =
[

2 5 −1
]T

(ii) The transformation B : R3 7→ R2 is such that

B




1
0
0


 =

[
2

−4

]
, B




1
1
0


 =

[
3

−2

]
, B




1
1
1


 =

[ −2
1

]

Determine the matrix B.
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P 2.6. Compute by hand the matrix product AB in the following cases:

A =




2 −1
3 −2
1 5


 , B =

[ −2 −3 3
4 0 7

]
;

A =




2 0 0
−2 4 0

3 −5 1


 , B =




2 −2 3
0 4 −5
0 0 1




P 2.7. If

A =




a b c
d e f
g h i




find vectors u and v such that

uTAv = b

P 2.8. (MATLAB) Generate a 60× 60 matrix A as follows:

c = zeros(1,60);
c(1) = -1; c(2) = 1;
r=c;
A = toeplitz(c,r);

(i) Write a command that displays the top left 6× 6 block of A.
(ii) Generate four sinusoidal vectors x1, x2, x3 and x4 as follows:

n = 1:60;
x1 = cos(0*n)’;
x2 = cos(pi*n/6)’;
x3 = cos(pi*n/3)’;
x4 = cos(pi*n/2)’;

and compute the products

y1=A*x1 ; y2=A*x2 ; y3=A*x3 ; y4=A*x4;

(iii) Use the SUBPLOT feature to display bar graphs of all eight vectors
(against n) on the same figure window.
(iv) One of the eight vectors consists mostly of zero values. Explain math-
ematically why this is so.
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Section 2.3

P 2.9. Consider the matrices

A =




a b c
d e f
g h i


 and B =




i g h
f d e
c a b




Express B as P(r)AP(c), where P(r) and P(c) are permutation matrices.

P 2.10. Let

x =




a
b
c
d




If P and Q are 4× 4 matrices such that

Px =




c
a
b
d


 and Qx =




a
c
d
b




determine the product PQ.

P 2.11. Matrices A and B are generated in MATLAB using the commands

A = [1:3; 4:6; 7:9] ;
B = [9:-1:7; 6:-1:4; 3:-1:1] ;

Find matrices P and Q such that B = PAQ.

P 2.12. (i) Find a (n× n) matrix P such that if

x =
[

x1 x2 x3 . . . xn

]T
,

then
Px =

[
xn xn−1 xn−2 . . . x1

]T
.

(ii) Without performing any calculations, determine the rth power Pr for
any integer r.
(iii) Let the vector x be given by

x[k] = cos(ωk + φ) , (1 ≤ k ≤ n)

Under what conditions on ω, φ and n is the relationship Px = x true?
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P 2.13. Express each of the matrices

A =




a b c d
2a 2b 2c 2d
−a −b −c −d
−2a −2b −2c −2d


 and B =




1 t t2 t3

t−1 1 t t2

t−2 t−1 1 t
t−3 t−2 t−1 1




as a product of a row vector and a column vector.

Sections 2.4–2.5

P 2.14. Consider the matrix

A =
[

cos θ − sin θ
sin θ cos θ

]

which represents a counterclockwise rotation by an angle θ.
(i) Without performing any matrix operations, derive A−1.
(ii) Verify that AA−1 = I by computing the product on the left-hand side
of the equation.

Section 2.6

P 2.15. Solve the simultaneous equations

(i) x1 +
x2

2
+

x3

3
= 14

x1

2
+

x2

3
+

x3

4
= 1

x1

3
+

x2

4
+

x3

5
= −2

(ii) 3x1 − 5x2 − 5x3 = −37
5x1 − 5x2 − 2x3 = −17
2x1 + 3x2 + 4x3 = 32

using Gaussian elimination.
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Section 2.7

P 2.16. (i) Determine the LU and LDV factorizations of

A =




4 8 4 0
1 5 4 −3
1 4 7 2
1 3 0 −2




(ii) Solve Ax = b, where b = [28 13 23 4]T , by means of the two triangular
systems

Ly = b and Ux = y

P 2.17. Repeat P 2.16 for

A =




1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 6 −1


 , b =




4
1

−3
4




Section 2.8

P 2.18. (i) Use row pivoting to solve the simultaneous equations Ax = b,
where

A =




1 2 4 1
2 8 6 6
3 10 8 8
4 12 10 6


 , b =




21
52
79
82




(ii) Determine the permuted LU factorization LU = PA.

P 2.19. Consider the simultaneous equations Ax = b, where

A =
[

0.002 3.420
2.897 3.412

]
, b =

[
3.422
6.309

]

The exact solution is x1 = 1, x2 = 1. Solve using finite-precision Gaussian
elimination (a) without row pivoting; (b) with row pivoting. Round to four
significant digits after each computation.
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Section 2.9

P 2.20. Use Gaussian elimination to determine the inverses of

A =




3 2 1
−1 5 2

2 3 1


 and B =




1 2 4 1
2 8 6 6
3 10 8 8
4 12 10 6




P 2.21. Consider the following MATLAB script:

A = [1 2 -4; -1 -1 5; 2 7 -3];
I = [1 0 0; 0 1 0; 0 0 1];
X = A\I

Using Gaussian elimination, determine (by hand) the answer X.

P 2.22. Consider the simultaneous equations Ax = b, where

A =




3.000 −4.000 2.000
−1.000 3.000 −2.000

1.001 1.999 −2.001


 , b =




1.000
1.000
3.000




Assuming that the entries of A are precise, examine how the solution x is
affected by rounding the entries of b to four significant digits. To that end,
let each entry of b vary by ±.0005. For each of the 23 = 8 extremal values,
compute the solution x using the \ (backslash) operator in MATLAB, and
determine the maximum distance from the original solution (i.e., compute
norm(x-A\b)).

P 2.23. The n× n Hilbert matrix A, whose entries are given by

aij =
1

i + j − 1
,

is a classic example of an ill-conditioned matrix. This problem illustrates
the effect of perturbing each entry of A by a small random amount.
(i) Use the MATLAB function HILB to display the 5 × 5 Hilbert matrix.
The command format rat will display it in rational form. Also, use the
function INVHILB to display its inverse, which has integer entries.
(ii) Enter
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format long
n = 5;
A = hilb(n);
b = ones(n,1)
c = b + 0.001*rand(n,1)

Compare the values

max(abs(b-c))

and

max(abs((A\c)./(A\b)-1))

Repeat for n=10. What do you observe?

Section 2.10

P 2.24. Consider the four-dimensional vectors a = [ −1 7 2 4 ]T and
b = [ 3 0 −1 −5 ]T .
(i) Compute ‖a‖, ‖b‖ and ‖b− a‖.
(ii) Compute the angle θ between a and b (where 0 ≤ θ ≤ π).
(iii) Let f be the projection of b on a, and g be the projection of a on b.
Express f and g as λa and µb, respectively (λ and µ are scalars).
(iv) Verify that b− f ⊥ a and a− g ⊥ b.

P 2.25. Consider the three-dimensional vectors v(1) = [ −1 1 1 ]T , v(2) =
[ 2 −1 3 ]T , and s = [ 1 2 3 ]T .

(i) Determine the projection ŝ of s on the plane defined by v(1) and v(2).
(ii) Show that the projection of ŝ on v(1) is the same as the projection of s
on v(1). (Is this result expected from three-dimensional geometry?)

P 2.26. Let a(1), a(2), a(3) and a(4) be the columns of the matrix

A =




1 1/2 1/4 1/8
0 1 1/2 1/4
0 0 1 1/2
0 0 0 1




Determine the least squares approximation

p = c1a(1) + c2a(2) + c3a(3)
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of a(4) based on a(1), a(2) and a(3). Also determine the relative (root mean
square) error

‖p− a(4)‖
‖a(4)‖

Section 2.11

P 2.27. Consider the data set

t 0.10 0.15 0.22 0.34 0.44 0.51 0.62 0.75 0.89 1.00
s 0.055 0.358 0.637 1.073 1.492 1.677 2.181 2.299 2.862 3.184

Find the least squares approximation to the data set shown above in terms
of

(i) a straight line f1(t) = a1t + a0;

(ii) a quadratic f2(t) = b2t
2 + b1t + b0.

Plot two graphs, each showing the discrete data set and the approximating
function.

P 2.28. Consider the data set

t −2 −1 0 1 2
s −0.2 −0.2 0.8 1.6 3.1

Let f(t) = c1t
2 + c2t + c3 be the parabola that yields the least squares fit to

the above data set, and let c = [c1 c2 c3]T .

(i) Determine a matrix A and a vector b such that Ac = b.

(ii) Is it possible to deduce the value of c2 independently of the other vari-
ables c1 and c3 (i.e., without having to solve the entire system of equations)?
If so, what is the value of c2?

P 2.29. Five measurements xi taken at times ti are shown below.

ti 0.1 0.2 0.3 0.4 0.5
xi 2.88 3.48 4.29 5.00 6.25

It is believed that the data follow an exponential law of the form

x(t) = aebt
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or equivalently,
ln x(t) = ln a + bt

Determine the values of a and b in the least squares approximation of the
vector [si] = [lnxi] by the vector [ln a + bti] (where i = 1, . . . , 5).

P 2.30. Five measurements xi taken at times ti are shown below.

ti 10 20 30 40 50
xi 14.0 20.9 26.7 32.2 36.8

It is believed that the data obey a power law of the form

x(t) = atr

or equivalently,
lnx(t) = ln a + r ln t

Determine the values of a and r in the least squares approximation of the
vector [si] = [lnxi] by the vector [ln a + r ln ti] (where i = 1, . . . , 5).

P 2.31. The transient response of a passive circuit has the form

y(t) = a1e
−1.5t + a2e

−1.2t (t ≥ 0)

where t is in seconds. The constants a1 and a2 provide information about
the initial state (at t = 0) of the circuit.
The data vector s in s1.txt contains noisy measurements of y(t) taken every
200 milliseconds starting at t = 0. Find the values a1 and a2 which provide
the least squares approximation ŝ to the data s. Plot s and ŝ on the same
graph.

P 2.32. The data vector s can be found in s2.txt. It consists of noisy samples
of the sinusoid

x(t) = a1 cos(200πt) + a2 sin(200πt) + b1 cos(250πt) + b2 sin(250πt) + c

taken every 100 microseconds (starting at t = 0). Find the values of a1, a2,
b1, b2 and c which provide the least squares approximation ŝ to the data s.
Plot s and ŝ on the same graph.
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Section 2.12

P 2.33. Let v(1), v(2) and v(3) be the columns of the matrix

V =




2 −1 3
4 1 −1

−1 2 2




(i) Show that v(1), v(2) and v(3) (and thus also V itself) are orthogonal.
Display VTV.

(ii) Without performing Gaussian elimination, solve

Vc = s

for s = [ 7 2 −5 ]T .

(iii) Determine the projection ŝ of s on the plane defined by v(1) and v(2).
What is the relationship between the error vector ŝ − s and the projection
of s onto v(3)?

(iv) Scale the columns of V so as to obtain an orthonormal matrix.

P 2.34. Consider the matrix

V =




1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1




(i) Compute the inner product matrix VTV.

(ii) If
x =

[
0 1 −2 3

]T

determine a vector c such that Vc = x.

P 2.35. Consider the 4× 3 matrix

V =




1 1/2 1/4
0 1 1/3
0 0 1
0 0 0
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(i) The 3 × 3 inner product matrix VTV has an obvious normalized LU
factorization of the form

VTV = LDU

where the diagonal entries of L and U are unity and U = LT . What are L,
D and U in that factorization?
(ii) Show how the orthonormal matrix

W =




1 0 0
0 1 0
0 0 1
0 0 0




can be formed by taking linear combinations of the columns of V.

P 2.36. Consider the symmetric matrix

A =




1 −3 2
−3 7 −4

2 −4 5




(i) Using Gaussian elimination, find matrices U and D such that

A = UTDU

where U is an upper triangular matrix whose main diagonal consists of 1’s
only; and D is a diagonal matrix.
(ii) Does there exist a m × 3 matrix V (where m is arbitrary) such that
VTV = A?

P 2.37. Consider the matrix

V =




1 4 −1
−2 1 5

1 −3 3
0 1 1




Find a 3× 3 nonsingular matrix B such that

W = VB−1

is an orthogonal matrix (i.e., its columns are orthogonal and have nonzero
norm).



140

P 2.38. Consider the 5× 3 matrix

V =
[

v(1) v(2) v(3)
]

=




2 3 2
1 4 2
1 1 −1
1 3 4
1 2 −1




(i) Express the inner product matrix VTV in the form LDLT .
(ii) Using U = LT , obtain a 5× 3 matrix W such that R(W) = R(V) and
the columns of W are orthogonal.
(iii) Determine the projection of s = [ −6 −1 3 −1 8 ]T on R(V)
(which is the same as R(W)).

P 2.39. Consider a n× 3 real-valued matrix

V =
[

v(1) v(2) v(3)
]

which is such that

VTV =




16 −8 −12
−8 8 8
−12 8 11




(i) Determine matrices D (diagonal with positive entries) and U (upper
triangular with unit diagonal entries) such that

VTV = UTDU

(ii) Determine coefficients cij that result in orthogonal vectors w(1), w(2)

and w(3), where:

w(1) = v(1)

w(2) = c12v(1) + v(2)

w(3) = c13v(1) + c23v(2) + v(3)

P 2.40. (MATLAB) Consider the discrete-time signals v1, v2, v3 and v4
defined by

t = ((0:0.01:1)*(pi/4))’;
v1 = sin(t);
v2 = sin(2*t);
v3 = sin(3*t);
v4 = sin(4*t);
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(i) Plot all four signals on the same graph.
(ii) Use the function CHOL to obtain four orthogonal signals w1, w2, w3 and
w4 which are linearly equivalent to the above signals. Verify that the signals
obtained are indeed orthogonal.
(iii) Plot w1, w2, w3 and w4 on the same graph.

P 2.41. (i) Use MATLAB to verify that the six sinusoidal vectors in R6

defined below are orthogonal:

n = (0:5).’;
r1 = cos(0*n);
r2 = cos(pi*n/3);
r3 = sin(pi*n/3);
r4 = cos(2*pi*n/3);
r5 = sin(2*pi*n/3);
r6 = cos(pi*n);

(ii) Verify that the vector s = [ 0 −3 1 0 −1 3 ]T can be represented
as a linear combination of r3 and r5, i.e., in terms of sines only.
(iii) Without performing any additional computations, express

x = [ 3 0 4 3 2 6 ]T

as a linear combination of the six given sinusoidal vectors.

P 2.42. Fourier sinusoids are not the only class of orthogonal reference vectors
used in signal approximation/representation. In wavelet analysis, reference
vectors reflect the frequency content of the signal which is being analyzed,
as well as its “localized” behavior at different times. This is accomplished
by taking as reference vectors scaled and shifted versions of a basic finite-
duration pulse (or wavelet).
As a simple example, consider the problem of approximating a (m = 256)-
dimensional signal s using n = 64 reference vectors derived from the basic
Haar wavelet, which is a succession of two square pulses of opposite ampli-
tudes. The 64 columns of the matrix V are constructed as follows:

• The first column is an all-ones vector, and provides resolution of order
r = 0.

• The second column is a full-length Haar wavelet: 128 +1’s followed by
128 −1’s. This column provides resolution of order r = 1.
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• The third column is a half-length Haar wavelet: a pulse of 64 +1’s
followed by 64 −1’s, followed by 128 zeros. In the fourth column, the
pulse is shifted to the right by 128 positions so that it does not overlap
the pulse in the third column. These two columns together provide
resolution of order r = 2.

• We continue in this fashion to obtain resolutions of order up to r = 6.
Resolution of order r is provided by columns 2r−1 + 1 through 2r of
V. Each of these columns contains a scaled and shifted Haar wavelet
of duration 29−r. The number of columns at that resolution is the
maximum possible under the constraint that pulses across columns do
not overlap in time (row index).

The matrix V is generated in MATLAB using the following script (also
found in haar1.txt):

p = 8; % vector size = m = 2^p
rmax = 6; % max. resolution; also, n = 2^rmax
a = ones(2^p,1);
V = a; % first column (r=0) is all-ones
for r = 1:rmax
v = [a(1:2^(p-r)); -a(1:2^(p-r)); zeros(2^p-2^(p-r+1),1)];
for k = 0:2^(r-1)-1
V = [V v(1+mod(-k*2^(p-r+1):-k*2^(p-r+1)+2^p-1, 2^p),:)];

end
end

(i) Compute VTV and hence verify that the columns of V are orthogonal.
You can view V using a ribbon plot, where each column (i.e., reference
vector) is plotted as a separate ribbon:

ribbon(V)
% Maximize the graph window for a better view

view(15,45)
pause
view(45,45)

(ii) Plot the following two signals:

s1 = [exp((0:255)/256)]’;
s2 = [exp((0:115)/256) -0.5+exp((116:255)/256)].’;
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(iii) Using the command

y = A*((A’*A)\(A’*s));

where A and s are chosen appropriately, determine and plot the least-squares
approximations of s1 and s2 based on the entire matrix V. Repeat, using
columns 33–64 only, which provide the highest resolution (r = 6).
(Note that projecting s1 on the highest-resolution columns results in a vec-
tor of small values compared to the amplitude of s1; this is because s1 looks
rather smooth at high resolution. On the other hand, s2 has a sharp discon-
tinuity which is captured in the highest-resolution projection. The order of
the resolution can be increased to r = 8, in which case the matrix V has 256
columns and can provide a complete representation of any 256-point signal.
At the highest resolution, each column of V consists of 254 zeros, one +1
and one −1.)

Section 2.13

P 2.43. Consider the equation Az = b, where

A =
[ −1 + j −2− 3j

1 + j 3

]
, b =

[
4

2− j

]

and z ∈ C2×1.
(i) Find a real-valued 4× 4 matrix F and a real-valued 4× 1 vector c such
that the above equation is equivalent to

F




x1

y1

x2

y2


 = c

where z1 = x1 + jy1, z2 = x2 + jy2.
(ii) Use MATLAB to verify that A\b and F\c are indeed equal.
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3.1 Complex Sinusoids as Reference Vectors

3.1.1 Introduction

We have seen how a discrete-time signal consisting of finitely many samples
can be represented as a vector, and how a linear transformation of that
vector can be described by a matrix. In what follows, we will consider
signal vectors x of length N , i.e., containing N samples or points. The time
index n will range from n = 0 to n = N − 1. Thus

x =
[

x[0] x[1] . . . x[N − 1]
]T

Note the shift relative to our earlier indexing scheme: n = 0, . . . , N − 1
instead of n = 1, . . . , N .

0       1       2       3       4       5        6                      N−3   N−2  N−1
. ....

.
... .

n

x[n]

Figure 3.1: An N -point signal vector x.

The sample values in x provide an immediate representation of the signal
in terms of unit pulses at times n = 0, . . . , N − 1:

x = x[0]e(0) + x[1]e(1) + · · ·+ x[N − 1]e(N−1)

The most important feature of this representation is localization in time:
each entry x[n] of the vector x gives us the exact value of the signal at time
n.

In signal analysis, we seek to interpret the information present in a signal.
In particular, we are interested in how signal values at different times depend
on each other. In general, this sort of information cannot be obtained by
inspection of the vector x. For example, if the samples in x follow a pattern
closely described by a linear, exponential or sinusoidal function of time, that
pattern cannot be easily discerned by looking at individual numbers in x.
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And while a trained eye could detect such a simple pattern by looking at
a plot of x, it could miss a more complicated pattern such as a sum of five
sinusoids of different frequencies.

Fourier analysis is the most common approach to signal analysis, and is
based on representing or approximating a signal by a linear combination of
sinusoids. The importance of sinusoids is due to (among other factors):

• their immunity to distortion when propagating through a linear medium,
or when processed by a linear filter;

• our perception of real-world signals, e.g., our ability to detect and
separate different frequencies in audio signals, as well as our ability to
group harmonics into a single note.

In Fourier analysis, we represent x by a vector X of the same length,
where each entry in X provides the (complex) amplitude of a complex si-
nusoid. The two representations are equivalent. In contrast to the vector
x itself, whose values provide localization in time, the vector X provides
localization in frequency.

3.1.2 Fourier Sinusoids

A standard complex sinusoid x of length N and frequency ω is given by

x[n] = ejωn , n = 0, . . . , N − 1

The designation “standard” means that the complex-valued amplitude is
unity—equivalently, the real-valued amplitude is unity and the phase shift
is zero. Note that regardless of the value of ω,

x[0] = 1

Recall from Subsection 1.5.3 that frequencies ω1 and ω2 related by

ω2 = ω1 + 2kπ (k ∈ Z)

yield the same values for x and are thus equivalent. This enables us to limit
the effective frequency range to a single interval of angles of length 2π. In
what follows, we will usually assume that

0 ≤ ω < 2π

If we extend the discrete time axis to Z (i.e., n = −∞ to n = ∞), then

x′[n] = ejωn , n ∈ Z
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defines a complex sinusoid having infinite duration. The sinusoid x′[·] will
repeat itself every N samples provided

(∀n) ejω(n+N) = ejωn

which reduces to
ejωN = 1

and thus
ω = k · 2π

N

for some integer k. (This expression was also obtained in Subsection 1.5.4.)
Since the effective range of ω is (0, 2π], it follows that k can be limited to
the integers 0, . . . , N − 1. Thus there are exactly N distinct frequencies ω
for which x′[n] = ejωn is periodic with (fundamental) period equal to N or
a submultiple of N . These frequencies are given by

ω = 0,
2π

N
,
4π

N
, . . . ,

(N − 1)2π

N

Definition 3.1.1. The Fourier frequencies for an N -point vector are given
by

ω = k · 2π

N

where k = 0, . . . , N−1. The corresponding Fourier sinusoids v(0),v(1), . . . ,v(N−1)

are the N -point vectors given by

v(k)[n] = ej(2π/N)kn , n = 0, . . . , N − 1 ¤

We note the following:

• All Fourier frequencies are multiples of 2π/N .

• ω = 0 (which results in a constant signal of value +1) is always a
Fourier frequency, corresponding to k = 0 in the above definition.

• ω = π (which results in a signal whose value alternates between +1
and −1) is a Fourier frequency only when N is even.

• If ω ∈ (0, π) is a Fourier frequency, so is 2π − ω ∈ (π, 2π). Put
differently, if ω is the kth Fourier frequency, then 2π−ω is the (N−k)th

Fourier frequency. The corresponding Fourier sinusoids are complex
conjugates of each other:

ej(2π−ω)n = e−jωn = (ejωn)∗
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1π/412π/7

Figure 3.2: Fourier frequencies for N = 7 (left) and N = 8 (right),
represented by asterisks on the unit circle.

The Fourier frequencies ω for N = 7 (odd) and N = 8 (even) are illus-
trated in Figure 3.2.

For the remainder of this chapter, Fourier sinusoids of length N will be
used as reference vectors for signals in RN×1, and more generally, CN×1.
The notation v(k) for the kth Fourier sinusoid is consistent with our earlier
notation for reference vectors. In particular, we can arrange the Fourier
sinusoids as columns of a N ×N matrix V:

V =
[

v(0) v(1) . . . v(N−1)
]

For V, the row index n = 0, . . . , N − 1 represents time, while the column
index k = 0, . . . , N−1 represents frequency. The (n, k)th entry of V is given
by

Vnk = v(k)[n] = ej(2π/N)kn = cos
(

2πkn

N

)
+ j sin

(
2πkn

N

)

Note in particular that Vnk = Vkn, i.e., V is always symmetric.
The Fourier frequencies and matrices V for N = 1, 2, 3 and 4 are shown

in Figure 3.3. Note that the n = 0th row and k = 0th column equal unity
for all N . The kth column is generated by moving counterclockwise on the
unit circle in increments of ω = k(2π/N), starting from z = 1.

3.1.3 Orthogonality of Fourier Sinusoids

Fourier sinusoids of the same length N are orthogonal. As a result, they
are well-suited as reference vectors. (Recall that the the least squares ap-
proximation of a signal by a set of reference vectors is the vector sum of the
projections of the signal on each reference vector.)

Proof of the orthogonality of Fourier sinusoids involves the summation
of geometric series, which we review below.
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2π/3

[
1

] [
1 1
1 −1

]



1 1 1
1 −1

2 + j
√

3
2 −1

2 − j
√

3
2

1 −1
2 − j

√
3

2 −1
2 + j

√
3

2







1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j




Figure 3.3: Fourier sinusoids for N = 1, 2, 3 and 4. The entries of
each matrix are marked on the corresponding unit circle.

Fact. If z is complex, then

Gn(z) def= 1 + z + z2 + · · ·+ zn =
{

(1− zn+1)/(1− z), z 6= 1;
n + 1, z = 1.

The limit of Gn(z) as n →∞ exists if and only |z| < 1, and is given by

G∞(z) =
1

1− z

The above results are from elementary calculus, and are easily obtained
by noting that:

• If z = 1, then all terms in the geometric series are equal to 1.

• Gn(z)− zGn(z) = 1− zn+1.

• If |z| > 1, then |z|n+1 = |zn+1| diverges to infinity.

• If |z| = 1 and z 6= 1, then zn+1 constantly rotates on the unit circle
(hence it does not converge).

• If |z| < 1, then |z|n+1 converges to zero.

To establish the orthogonality of the N -point Fourier sinusoids v(k) and
v(`) having frequencies ω = k(2π/N) and ω = `(2π/N), respectively, we
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need to compute the inner product of v(k) and v(`):

〈v(k),v(`)〉 =
N−1∑

n=0

(
ej(2π/N)kn

)∗
ej(2π/N)`n

=
N−1∑

n=0

ej(2π/N)(`−k)n

=
N−1∑

n=0

zn

= GN−1(z)

where
z = ej(2π/N)(`−k)

If k = `, then z = 1 and

〈v(k),v(k)〉 = ‖v(k)‖2 = N

(Note that each entry of v(k) is on the unit circle, hence its squared magni-
tude equals unity.) Of course, this is also consistent with GN−1(1) = N .

If 0 ≤ k 6= ` ≤ N − 1, then ` − k cannot be a multiple of N , and thus
z 6= 1. Using the formula for GN−1(z), we have

〈v(k),v(`)〉 =
1− zN

1− z

But
zN = ej(2π/N)(`−k)N = ej2π(`−k) = 1

and hence
〈v(k),v(`)〉 = 0

as needed. We have thus obtained the following result.

Fact. The N -point complex Fourier sinusoids comprising the columns of the
matrix

V =
[

v(0) v(1) . . . v(N−1)
]

are orthogonal, each having squared norm equal to N .

In terms of the inner product matrix VHV, we have

VHV = NI
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Since V is a square matrix, the above relationship tells us that it is also
nonsingular and has inverse

V−1 =
1
N

VH

It follows that the N complex Fourier sinusoids v(0),v(1), . . . ,v(N−1) are also
linearly independent.

In the context of signal approximation and representation, the above
facts imply the following:

• The least-squares approximation of any real or complex-valued signal
s based on any subset of the above N complex Fourier sinusoids is
given by the sum of the projections of s onto each of the sinusoids;
where the projection of s onto v(k) is given by the standard expression

〈v(k), s〉
N

v(k)

• The least-squares approximation of s based on all N complex Fourier
sinusoids is an exact representation of s, and is given by

s = Vc ⇔ c = V−1s =
1
N

VHs

Example 3.1.1. Let N = 3, and consider the signals

s = [2 −1 −1]T and x = [2 −1 0]T

The Fourier exponentials are given by the columns of

V =




1 1 1
1 −1

2 + j
√

3
2 −1

2 − j
√

3
2

1 −1
2 − j

√
3

2 −1
2 + j

√
3

2




We have
s = Vc and x = Vd

where

c0 =
1
3
〈v(0), s〉 = 0

c1 =
1
3
〈v(1), s〉 = 1

c2 =
1
3
〈v(2), s〉 = 1
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and

d0 =
1
3
〈v(0),x〉 =

1
3

d1 =
1
3
〈v(1),x〉 =

5
6

+ j

√
3

6

d2 =
1
3
〈v(2),x〉 =

5
6
− j

√
3

6
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3.2 The Discrete Fourier Transform and its In-
verse

3.2.1 Definitions

We begin our in-depth discussion of the representation of a N -point signal
vector s by the Fourier sinusoids in V with a simple change of notation: we
replace the coefficient vector c in the equations

s = Vc ⇔ c =
1
N

VHs

by S/N , i.e., we define S = Nc. We thus obtain

s =
1
N

VS ⇔ S = VHs

Recall that the matrix V is symmetric:

Vnk = ej(2π/N)kn = Vkn

Thus
VH = (VT )∗ = V∗

and
(VH)nk = e−j(2π/N)kn

Definition 3.2.1. The discrete Fourier transform (DFT) of the N -point
vector s is the N -point vector S defined by

S = VHs

or equivalently,

S[k] =
N−1∑

n=0

s[n]e−j(2π/N)kn , k = 0, . . . , N − 1

S will also be referred to as the (complex) spectrum of s.

For the remainder of this chapter, the upper-case boldface symbols S,
X and Y will be reserved for the discrete Fourier transforms of the signal
vectors s, x and y, respectively.

The equations in the definition of the DFT are also known as the analysis
equations. They yield the coefficients needed in order to express the signal
s as a sum of Fourier sinusoids. Since these sinusoids are the components of
s, computation of the coefficients S[0], . . . , S[N − 1] amounts to analyzing
the signal into N distinct frequencies.
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Definition 3.2.2. The inverse discrete Fourier transform (IDFT) of the
N -point vector X is the N -point vector x defined by

x =
1
N

VX

or equivalently,

x[n] =
1
N

N−1∑

k=0

X[k]ej(2π/N)kn , n = 0, . . . , N − 1 ¤

The equations in the definition of the IDFT are known as the synthesis
equations, since they produce a signal vector x by summing together com-
plex sinusoids with (complex) amplitudes given by the entries of (1/N)X.
Clearly,

• if X is the DFT of x, then x is the IDFT of X; and

• the analysis and synthesis equations are equivalent.

A signal x and its DFT X form a DFT pair, denoted by

x DFT←→ X or simply x ←→ X

Throughout our discussion, the lower-case symbol x will denote a signal
in the time domain, i.e., evolving in time n. The DFT (or spectrum) X
will be regarded as a signal in the frequency domain, since its values are
indexed by the frequency parameter k (corresponding to a radian frequency
ω = k(2π/N)).

The two signals x and X have the same physical dimensions and units.
Either signal can be assigned arbitrary values in CN×1; such assignment
automatically determines the value of the other signal (through the synthesis
or analysis equations). Thus any signal in the time domain is also perfectly
valid as a signal in the frequency domain (i.e., as the spectrum of a different
time domain signal), and vice versa. Even though time and frequency have
a distinctly different physical meaning, the two entities are treated very
similarly in the discrete Fourier transform and its inverse. This similarity
is quite evident in the analysis and synthesis equations, which differ only in
terms of a complex conjugate and a scaling factor.
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3.2.2 Symmetry Properties of the DFT and IDFT Matrices

Recall that the N ×N matrix

V =
[

v(0) v(1) . . . v(N−1)
]

is given by
Vnk = ej(2π/N)kn

where the row index n = 0, . . . , N − 1 corresponds to time and the column
index k = 0, . . . , N−1 corresponds to frequency. V will be referred to as the
IDFT matrix for a N -point vector, since it appears (without conjugation)
in the synthesis equation. Whenever the value of N is not clear from the
context, we will use VN instead of V.

Letting

v = vN
def= ej(2π/N) = cos

(
2π

N

)
+ j sin

(
2π

N

)

we obtain the simple expression

Vnk = vkn

and can thus write

V =




1 1 1 . . . 1
1 v v2 . . . vN−1

1 v2 v4 . . . v2(N−1)

...
...

...
. . .

...
1 vN−1 v2(N−1) . . . v(N−1)2




As noted earlier, the entries of V are symmetric about the main diagonal
since Vnk = vkn = vnk. For other structural properties of V, we turn to the
k = 1st column

v(1) =
[

1 v v2 . . . vN−1
]T

and note that the elements of that column represent equally spaced points
on the unit circle. This is illustrated in Figure 3.4.

Note that
vN = ej(2π/N)N = ej2π = 1

and thus for any integer r,
vn+rN = vn

Every integer power of v thus equals one of 1, v, . . . , vN−1, which means that
all columns of V can be formed using entries taken from the k = 1st column
v(1).
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N=7, v=exp(j2π/7)

v7=1

v
v2

v3

v4

v6

v5

N=8, v=exp(jπ/4)

v8=1

v
v2

v3

v4=−1

v5

v6

v7

Figure 3.4: The entries of the first Fourier sinusoid marked on the
unit circle for N = 7 (left) and N = 8 (right).

Example 3.2.1. For N = 6, the entries of V = V6 can be expressed in
terms of 1, v, v2, v3, v4 and v5, where v = ejπ/3. Note that v3 = ejπ = −1.
We have

V =




1 1 1 1 1 1
1 ejπ/3 ej2π/3 −1 ej4π/3 ej5π/3

1 ej2π/3 ej4π/3 1 ej2π/3 ej4π/3

1 −1 1 −1 1 −1
1 ej4π/3 ej2π/3 1 ej4π/3 ej2π/3

1 ej5π/3 ej4π/3 −1 ej2π/3 ejπ/3




or equivalently, (since ej(2π−θ) = e−jθ):

V =




1 1 1 1 1 1
1 ejπ/3 ej2π/3 −1 e−j2π/3 e−jπ/3

1 ej2π/3 e−j2π/3 1 ej2π/3 e−2jπ/3

1 −1 1 −1 1 −1
1 e−j2π/3 ej2π/3 1 e−j2π/3 ej2π/3

1 e−jπ/3 e−j2π/3 −1 ej2π/3 ejπ/3




¤

The symmetric nature of V = V6 is evident in Example 3.2.1. We note
that in the general case (arbitrary N), the nth and (N − n)th entries of v(k)

are complex conjugates of each other:

vk(N−n) = v−kn = (vkn)∗

This means that the elements of the k = 1st column exhibit a form of
conjugate symmetry. The center of symmetry is the row index N/2, which
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is at equal distance from n and N − n:

n =
N

2
−

(
N

2
− n

)
and N − n =

N

2
+

(
N

2
− n

)

The value N/2 is an actual row index if N is even, and is midway between
two row indices if N is odd. We note also that the n = 0th entry is not part
of a conjugate symmetric pair, since the highest row index is n = N −1, not
n = N .

Clearly, the same conjugate symmetry arises in the columns of V, with
center of symmetry given by the column index k = N/2. This follows easily
from the symmetry of V about its diagonal, i.e., from V = VT .

We finally note that since

v(N−k)(N−n) = vN2−kN−nN+kn = vkn

we also have radial symmetry (without conjugation) about the point (n, k) =
(N/2, N/2):

VN−n,N−k = Vnk

In particular, radial symmetry implies that entries n = 1, . . . , N − 1 in the
(N −k)th column can be obtained by reversing the order of the same entries
in the kth column.

The symmetry properties of V are summarized in Figure 3.5.

Definition 3.2.3. The DFT matrix W = WN for a N -point vector is
defined by

W = VH = V∗

Specifically, (k, n)th entry of W is given by

Wkn = wkn

where
w = wN

def= v−1
N = e−j2π/N ¤

W is known as the DFT matrix because it appears without conjugation
in the analysis equation:

X = VHx = Wx

Note that in the case of W, the frequency index k is the row index, while the
time index n is the column index. This is also consistent with the indexing
scheme used in the sum form of the analysis equation:

X[k] =
N−1∑

n=0

x[n]e−j(2π/N)kn
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1   1   1     . . .      1       . . .       1
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1
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  0   1   2     . . .     N/2    . . .     N-1

0
1
2
.
.
.

N/2
.
.
.

N-1

=

= *=
*=

Figure 3.5: Symmetry properties of the IDFT matrix V. Equal
values are denoted by “=” and conjugate values by “∗ =”.

We note the following:

• The introduction of W allows us to write the equation

VHV = VVH = NI

in a variety of equivalent forms, using

VH = V∗ = W and V = WH = W∗

• Since W is just the complex conjugate of V, it has the same symmetry
properties as V.

3.2.3 Signal Structure and the Discrete Fourier Transform

The structure of a signal determines the structure of its spectrum. In order
to understand and apply Fourier analysis, one needs to know how certain
key features of a signal in the time domain are reflected in its spectrum in
the frequency domain.

A fundamental property of the discrete Fourier transform is its linearity,
which is due to the matrix-vector form of the DFT and IDFT transforma-
tions.
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DFT 1. (Linearity) If x ←→ X and y ←→ Y, then for any real or complex
scalars α and β,

s = αx + βy ←→ S = αX + βY

This can be proved using either the analysis or the synthesis equation.
Using the former,

S = Ws

= W(αx + βy)
= αWx + βWy

= αX + βY

as needed.
Another fundamental property of the Fourier transform is the duality

of the DFT and IDFT transformations. Duality stems from the fact that
the two transformations are obtained using matrices W = V∗ and (1/N)V
which differ only by a scaling factor and a complex conjugate. As a result, if
x ←→ X is a DFT pair, then the time-domain signal y = X has a spectrum
Y whose structure is very similar to that of the original time-domain signal
x. The precise statement of the duality property will be given in Section
3.4.

Before continuing with our systematic development of DFT properties,
we consider four simple signals and compute their spectra.

Example 3.2.2. Let x be the 0th unit vector e(0), namely a single unit
pulse at time n = 0:

x = e(0) =
[

1 0 0 . . . 0
]T

The DFT X is given by
X = We(0)

Right-multiplying W by a unit vector amounts to column selection. In this
case, the 0th column of W is selected:

X =
[

1 1 1 . . . 1
]T = 1

i.e., X is the all-ones vector. The same result is obtained using the analysis
equation in its sum form:

X[k] =
N−1∑

n=0

x[n]wkn = 1 · w0 = 1

for all k = 0, . . . , N − 1.
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0       1       2                  .  .  .                 N-1

1

x

0       1       2                  .  .  .                 N-1

X

1

Example 3.2.2

Example 3.2.3. We now delay the unit pulse by taking x = e(m), or equiv-
alently,

x[n] =
{

1, n = m;
0, n 6= m,

where 0 ≤ m ≤ N − 1. The DFT becomes

X = We(m)

i.e., X is the mth column of W, which is the same as the complex conjugate
of v(m) (the mth column of V). Thus X is a Fourier exponential of frequency
(N −m)(2π/N), or equivalently, −m(2π/N):

X[k] = wkm = v−km = e−j(2π/N)km

Of course, the same result is obtained using the analysis equation in its sum
form:

X[k] =
N−1∑

n=0

x[n]wkn = 1 · wkm

Note that in this example, the spectrum is complex-valued. It is purely
real-valued (for all k) if and only if m = 0 (i.e., there is no delay) or m = N/2.
The latter value of m is an actual time index only when the number of
samples is even, in which case the resulting spectrum is given by X[k] =
(−1)k.

Example 3.2.4. Building upon Example 3.2.3, we add a second pulse of
unit height at time n = N − m (where m 6= 0). The two pulses are now
symmetric to each other relative to the time instant n = N/2. Denoting the
new signal by s, we have

s = e(m) + e(N−m)

and thus by linearity of the DFT we obtain

S = We(m) + We(N−m)
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This is the sum of the DFT’s obtained in Example 3.2.3 for delays m and
N −m. In particular, we have

S[k] = e−j(2π/N)km + e−j(2π/N)k(N−m)

= e−j(2π/N)km + ej(2π/N)km

= 2 cos
(

2πmk

N

)

The spectrum is now purely real-valued. The figure illustrates the case
N = 8 and m = 3.

0       1       2       3                5       6       7

s

0                                                           7

S

1

4=N/2

2

2

2 2

2

2

Example 3.2.4 (with N = 8 and m = 3)

Example 3.2.5. Finally, we introduce unit pulses at every time instant,
resulting in the constant signal y = 1. The analysis equation gives

Y = W1

i.e., Y is the (componentwise) sum of all columns of W. The sum form of
the equation gives

Y [k] =
N−1∑

n=0

1 · wkn

which is the same as the geometric sum GN−1(wk). It is also the inner
product 〈v(k),v(0)〉, which equals zero if k 6= 0 and N if k = 0. The resulting
spectrum is

Y = Ne(0)

For a simpler way of deriving Y, note that

y = 1 = v(0)
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0       1       2                  .  .  .                 N-1

Y
N

1

y

0       1       2                  .  .  .                 N-1

Example 3.2.5

i.e., y consists of a single Fourier sinusoid of frequency zero (corresponding
to k = 0) and unit amplitude. This means that in the synthesis equation

y =
1
N

VY ,

the DFT vector Y selects the k = 0th column of V and multiplies it by N .
Hence Y = Ne(0).

The graphs for Examples 3.2.2 and 3.2.5 are similar: essentially, time
and frequency domains are interchanged with one of the signals undergoing
scaling by N . This similarity is a consequence of the duality property of the
DFT, which will be discussed formally in Section 3.4.
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3.3 Structural Properties of the DFT: Part I

3.3.1 The Spectrum of a Real-Valued Signal

As we saw in the previous section, any complex-valued vector can be viewed
as either

• a time-domain signal; or

• a frequency-domain signal, i.e., the DFT (or spectrum) of a time-
domain signal.

Of course, all time-domain signals encountered in practice are real-valued;
the generalization to complex-valued signals is necessary in order to include
complex sinusoids (and, as we shall see later, complex exponentials) in our
analysis. A natural question to ask is whether the spectrum X of a real-
valued signal x has special properties that distinguish it from the spectrum
of an arbitrary complex-valued signal in the time domain. The answer is
affirmative, and is summarized below.

DFT 2. (DFT of a Real-Valued Signal) If x is a real-valued N -point signal,
then X satisfies

X[0] = X∗[0]

and
X[k] = X∗[N − k]

for k = 1, . . . , N − 1.

To prove this property, we note first that

X[0] =
N−1∑

n=0

x[n]w0·n =
N−1∑

n=0

x[n]

which is real-valued since x has real-valued entries. For k = 1, . . . , N − 1,
we have

X[k] =
N−1∑

n=0

x[n]wkn

and

X[N − k] =
N−1∑

n=0

x[n]w(N−k)n =
N−1∑

n=0

x[n]w−kn
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Taking complex conjugates across the second equation, we obtain

X∗[N − k] =

(
N−1∑

n=0

x[n]w−kn

)∗

=
N−1∑

n=0

(
x[n]w−kn

)∗

=
N−1∑

n=0

x∗[n]wkn

Since x is real valued, we have x∗[·] = x[·] and therefore

X[k] = X∗[N − k]

as needed.
DFT 2 tells us that the DFT (or spectrum) of a real-valued signal exhibits

the same kind of conjugate symmetry as was seen in the rows and columns
of W and V. This symmetry will be explored further in this chapter.

Expressing X[k] in polar form, i.e.,

X[k] = |X[k]| · ej∠X[k]

we obtain two new frequency-domain vectors indexed by k = 0, . . . , N − 1.
These are:

• The amplitude spectrum, given by |X[·]|. If x is real-valued, then
DFT 2 implies that

|X[k]| = |X∗[N − k]|, k = 1, . . . , N − 1

i.e., the amplitude spectrum is symmetric in k with center of symmetry
at k = N/2.

• The phase spectrum, given by the angle ∠X[·] quoted in the interval
[−π, π]. If x is real-valued, then DFT 2 implies that

∠X[0] = 0 or ± π

and
∠X[k] = −∠X[N − k], k = 1, . . . , N − 1

i.e., the phase spectrum is antisymmetric in k.
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Example 3.3.1. In Example 3.1.1, we considered the vector

x =
[

2 −1 0
]T

and evaluated its DFT as

X =
[

1 5
2 + j

√
3

2
5
2 − j

√
3

2

]T

(note the scaling X = 3c). There is only one pair of conjugate symmetric
entries here:

X[1] = X∗[2]

The amplitude spectrum is given by

[
1 2.6458 2.6458

]T

while the phase spectrum is given by

[
0 0.3335 −0.3335

]T ¤

It is always possible to express a real-valued signal vector x as a lin-
ear combination of real-valued sinusoids at the Fourier frequencies. Indeed,
the conjugate symmetry of the spectrum X allows us to combine complex
conjugate terms

X[k]ej(2π/N)kn

and
X[N − k]e−j(2π/N)(N−k)n = X∗[k]e−j(2π/N)kn

into a single real-valued sinusoid:

2<e
{

X[k]ej(2π/N)kn
}

= 2|X[k]| cos
(

2πkn

N
+ ∠X[k]

)

(Note that such pairs occur for values of k other than 0 or N/2.) The result-
ing real-valued form of the synthesis equation involves Fourier frequencies
in the range [0, π] only:

x[n] =
1
N

X[0] +
1
N

X[N/2](−1)n +
2
N
·

∑

0<k<N/2

|X[k]| cos
(

2πkn

N
+ ∠X[k]

)

The second term (corresponding to frequency ω = π) is present only when
N/2 is an integer, i.e., when N is even.
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Example 3.3.1. (Continued.) The representation of

x =
[

2 −1 0
]T

using real sinusoids involves a constant term (corresponding to k = 0) to-
gether with sinusoid of frequency 2π/3 (corresponding to k = 1 and k = 2).
Substituting the values of X[k] computed earlier into the last equation, we
obtain

x[n] = 0.3333 + 1.7639 cos
(

2πn

3
+ 0.3335

)

for n = 0, 1, 2.

3.3.2 Signal Permutations

Certain important properties of the DFT involve signal transformations in
both time and frequency domains. These transformations are simple per-
mutations of the elements of a vector and, as such, can be described by
permutation matrices. Recall from Section 2.3 that the columns of a N ×N
permutation matrix are the unit vectors e(0), . . . , e(N−1) listed in arbitrary
order.

We introduce three permutations which are particularly important in
our study of the DFT.

Circular (or Cyclic) Shift P : This permutation is defined by the relation-
ship

P (x[0], x[1], . . . , x[N − 2], x[N − 1]) = (x[N − 1], x[0], . . . , x[N − 3], x[N − 2])

and can be illustrated by placing the N entries of x on a “time wheel”, in
the same way as the Fourier frequencies appear on the unit circle; namely
counterclockwise, starting at angle zero. A circular shift amounts to rotating
the wheel counterclockwise by one notch (i.e., by an angle of 2π/N), so that
x[N − 1] appears at angle zero. The rotation is illustrated in Figure 3.6 for
N = 7.

If x is a column vector, a circular shift on x produces the vector Px,
where P is a permutation matrix given by

P =




0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0
... 1 0
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x[5]

x[6]

n=0

Figure 3.6: Vector x (left) and its circular shift Px (right).

Note that removal of the first row and last column of P yields a (N − 1)×
(N − 1) identity matrix.

A circular shift is also known as a rotation. The term periodic is also used
instead of circular, and delay is used instead of shift. Clearly, Pm represents
a circular shift by m positions. For m = N , the time wheel undergoes one
full rotation, i.e.,

x = PNx or PN = I

Index Reversal Q: Also known as linear index reversal to distinguish it from
the circular reversal discussed below, it is defined by

Q(x[0], x[1], . . . , x[N − 2], x[N − 1]) = (x[N − 1], x[N − 2], . . . , x[1], x[0])

and described in terms of the permutation matrix

Q =




0 0 . . . 0 1
0 0 . . . 1 0
...

... ↙ ...
...

0 1
... 0 0

1 0
... 0 0




Note that Q is an identity matrix flipped left-to-right.

Circular Index Reversal R: Also known as periodic index reversal, this trans-
formation differs from its linear counterpart in that reversal takes place
among entries x[1], . . . , x[N − 1] only, with x[0] kept in the same position:

R(x[0], x[1], . . . , x[N − 2], x[N − 1]) = (x[0], x[N − 1], . . . , x[2], x[1])
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This can be illustrated using again a time wheel with the entries of x ar-
ranged in the usual fashion. A circular index reversal amounts to turning
the wheel upside down. The 0th always remains in the same position, as
does the (N/2)th entry when N is even (as depicted in Figure 3.7 for the
case N = 8).

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

n=0

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

n=0

Figure 3.7: Vector x (left) and its circular time-reverse Rx (right).

The permutation matrix R for circular reversal is given by

R =




1 0 . . . 0 0
0 0 . . . 0 1
0 0 . . . 1 0
...

... ↙ ...
...

0 1
... 0 0




Note that
R = PQ

i.e., circular reversal of a column vector can be implemented by linear re-
versal followed by circular shift.

Recall from Section 2.3 that a permutation matrix Π satisfies

ΠTΠ = I ⇔ Π−1 = ΠT

and is thus orthonormal. Since Q and R are symmetric, it follows that

Q−1 = Q and R−1 = R

(Note, on the other hand, that P is not symmetric.)
We note one final property of any permutation matrix Π:
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Fact. Π acting on a column vector and Π−1 = ΠT acting on a row vector
both produce the same permutation of indices.

This is established by noting that

(Πx)T = xTΠT = xTΠ−1 ¤

The following example illustrates some of the signal transformations dis-
cussed so far.

Example 3.3.2. Let

x =
[

1 −2 5 3 4 −1
]T

Also, let
v(3) =

[
1 −1 1 −1 1 −1

]T

be the third Fourier sinusoid for N = 6, corresponding to ω = π. The
following signals can be expressed compactly in terms of x, v(3) and the
permutation matrices P and R:

• x(1) =
[

4 −1 1 −2 5 3
]T

• x(2) =
[

1 −1 4 3 5 −2
]T

• x(3) =
[

2 −3 9 6 9 −3
]T

• x(4) =
[

0 −1 1 0 −1 1
]T

• x(5) =
[

1 2 5 −3 4 1
]T

• x(6) =
[

0 4 0 −6 0 2
]T

Indeed, we have:

• x(1) = P2x

• x(2) = Rx

• x(3) = x + Rx.

• x(4) = x−Rx

• For every k, x(5)[k] = x[k]v(3)[k]

• For every k, x(6)[k] = x[k]
(
v(3)[k]− 1

)
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3.4 Structural Properties of the DFT: Part II

3.4.1 Permutations of DFT and IDFT Matrices

In Subsection 3.2.2, we observed certain symmetries in the entries of V and
W. The key symmetry properties are:

• Symmetry about the main diagonal, i.e., V = VT and W = WT ;

• Conjugate symmetry with respect to row index N/2:

VN−n,k = V ∗
nk and WN−k,n = W ∗

k,n

(and similarly with respect to column index N/2).

The conjugate symmetry property can be also expressed using the cir-
cular reversal matrix R. Applied to either V or W as a row permutation,
R leaves the m = 0th row in the same position, while interchanging rows m
and N −m for 0 < m < N/2. Since these two rows are complex conjugates
of each other, and the zeroth row is real-valued, the resulting matrix is the
complex conjugate of the original one. Of course, the same is true about
column permutations using R, since both V and W are symmetric. We
thus have

RV = VR = V∗ = W

and
RW = WR = W∗ = V

The effect of circular shift on the rows and columns of V and W can
be explained better by introducing a diagonal matrix F whose diagonal
elements are the entries of the k = 1st Fourier sinusoid:

F def=




1 0 0 . . . 0
0 v 0 . . . 0
0 0 v2 . . . 0
...

...
...

. . .
...

0 0 0 . . . vN−1




Since the kth power of F is obtained by raising each diagonal element to
that power, it follows that

v(k) = Fk1
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where, as before, 1 is the all-ones column vector (same as v(0)). Thus all N
Fourier sinusoids can be expressed using powers of F:

V =
[

1 F1 F21 . . . FN−11
]

A circular shift on the columns of V is obtained by right-multiplying it by
PT = P−1 (not by P—see the last fact in Subsection 3.3.2). The result is

VP−1 =
[

FN−11 1 F1 . . . FN−21
]

=
[

F−11 1 F1 . . . FN−21
]

and thus
VP−1 = F−1V

This can be easily generalized to any power m of P:

VPm = FmV

Taking transposes of both sides yields

P−mV = VFm

Taking complex conjugates across the last two equations, and noting that

V∗ = W and F∗ = F−1

we obtain
WPm = F−mW

and
P−mW = WF−m

In conclusion, a circular shift on the rows or columns of V (or W) is equiv-
alent to right- or left-multiplication by a diagonal matrix whose diagonal is
given by a suitable Fourier sinusoid.

3.4.2 Summary of Identities

We have defined the following N × N matrices with the aid of v = ej2π/N

and w = v−1 = v∗:

V : IDFT matrix, defined by Vnk = vkn

W : DFT matrix, defined by Wkn = wkn

F : diagonal matrix defined by Fnn = vn

P : circular shift matrix
R : circular reversal matrix
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We have shown that

P−1 = PT (3.1)
R−1 = RT = R (3.2)
RV = VR = V∗ = W (3.3)
RW = WR = W∗ = V (3.4)
VPm = FmV (3.5)
PmV = VF−m (3.6)
WPm = F−mW (3.7)
PmW = WFm (3.8)

The identities listed above will be used to derive structural properties of the
DFT.

3.4.3 Main Structural Properties of the DFT

In what follows, we will consider the DFT pair

x ←→ X

where, again, the time-domain signal appears on the left, and the frequency-
domain signal on the right, of the arrow. The two signals are related via the
analysis and synthesis equations:

X = Wx (3.9)

x =
1
N

VX =
1
N

W∗X (3.10)

We will investigate how certain systematic operations on the time-domain
signal x affect its spectrum X, and vice versa.

DFT 3. (Complex Conjugation) Complex conjugation in the time domain
is equivalent to complex conjugation together with circular time reversal in
the frequency domain:

y = x∗ ←→ Y = RX∗ (3.11)

Proof. We have

Y = Wy

= Wx∗

= RW∗x∗

= RX∗
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where the third equality follows from (3.4).

Remark. Using DFT 3, we can easily deduce DFT 2. Indeed, if x is real-
valued, then

x = x∗

and taking DFT’s of both sides, we obtain

X = RX∗

which is precisely the statement of DFT 2. This relationship expresses a
type of conjugate symmetry with respect to circular reversal, which will be
henceforth referred to as circular conjugate symmetry.

DFT 4. (Circular Time Reversal) Circular reversal of the entries of x is
equivalent to circular reversal of the entries of X:

y = Rx ←→ Y = RX (3.12)

Proof. We have

Y = Wy

= WRx

= RWx

= RX

where the third equality follows from (3.4).

Remark. If we (circularly) time-reverse a real-valued signal x, then the
resulting signal y = Rx has DFT

Y = RX = X∗

where the second equality is due to the circular conjugate symmetry of the
DFT of a real-valued signal (i.e., DFT 2). In particular, the amplitude and
phase spectra of the two signals x and y = Rx are related by

|Y [k]| = |X[k]|
∠Y [k] = −∠X[k]

for all values of k. The first equation tells us that the two signals contain
exactly the same amounts (in terms of amplitudes) of each Fourier frequency.
The second equation implies that the relative positions (in time) of these
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sinusoids will be very different in the two signals. This difference can have
a drastic effect on the perceived signal; for example, music played backward
bears little resemblance to the original sound. Thus in general, the phase
spectrum can be as important as the amplitude spectrum and cannot be
ignored in applications such as audio signal compression.

DFT 5. (Circular Time Delay) Circular time shift of the entries of x by
m positions is equivalent to multiplication of the entries of X by the corre-
sponding entries of the (N −m)th Fourier sinusoid:

y = Pmx ←→ Y = F−mX (3.13)

i.e.,
Y [k] = vk(N−m)X[k] = v−kmX[k] = wkmX[k]

for k = 0, . . . , N − 1.

Proof. We have

Y = WPmx

= F−mWx

= F−mX

where the second equality is due to (3.7).

DFT 6. (Multiplication by a Fourier Sinusoid) Entry-by-entry multiplica-
tion of x by the mth Fourier sinusoid is equivalent to a circular shift of the
entries of X by m frequency indices:

y = Fmx ←→ Y = PmX (3.14)

Proof. We have

Y = WFmx

= PmWx

= PmX

where the second equality is due to (3.8).

Remark. Multiplication of a signal by a sinusoid is also known as ampli-
tude modulation (abbreviated as AM ). In real-world communication sys-
tems, amplitude modulation enables a baseband signal, i.e., one consisting
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of (relatively) low frequencies, to be transmitted over a frequency band cen-
tered at a much higher carrier frequency. A sinusoid (known as the carrier)
of that frequency is multiplied by the baseband signal (e.g., an audio signal),
resulting in the AM signal. The spectrum of the baseband signal and that
of the AM signal are basically related by a shift (in frequency), similarly
to what DFT 6 implies. For that reason, DFT 6 is also referred to as the
modulation property.

The similarity between DFT 5 and DFT 6 cannot be overlooked: iden-
tical signal operations in two different domains result in very similar op-
erations in the opposite domains (the only difference being a complex con-
jugate). This similarity is a recurrent theme in Fourier analysis, and is
particularly prominent in the case of the DFT: basically, the analysis and
synthesis equations are identical with the exception of a scaling factor and
a complex conjugate. As a result, computation of any DFT pair yields an-
other DFT pair as a by-product. This is known as the duality property of
the DFT, and is stated below.

DFT 7. (Duality) If x ←→ X, then

y = X ←→ Y = NRx (3.15)

Proof. We have

Y = Wy

= WX

= RVX

= NRx

where the third and fourth equalities are due to (3.3) and (3.10) (the syn-
thesis equation), respectively.

Remark. We saw an instance of the duality property in Examples 3.2.2 and
3.2.5, where we showed that

e(0) ←→ 1

and
1 ←→ Ne(0)

The second DFT pair can be obtained from the first one, and vice versa,
by application of DFT 7. In this particular case, both signals are circularly
symmetric, and thus circular reversal has no effect:

Re(0) = e(0) and R1 = 1
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3.5 Structural Properties of the DFT: Examples

3.5.1 Miscellaneous Signal Transformations

Example 3.5.1. Consider the 4-point real-valued signal

x =
[

1 2 3 4
]T

We will first compute the DFT X of x. Using X, we will then derive the
DFT’s of the following signals:

• x(1) =
[

1 4 3 2
]T

• x(2) =
[

4 1 2 3
]T

• x(3) =
[

3 4 1 2
]T

• x(4) =
[

1 −2 3 −4
]T

• x(5) =
[

5 −1 + j −1 −1− j
]T

• x(6) =
[

5 −1 −1 −1
]T

The Fourier frequencies in this case are 0, π/2, π and 3π/2. We have

X = Wx =




1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j







1
2
3
4


 =




10
−2 + 2j
−2

−2− 2j




Note that X exhibits the conjugate symmetry common to the spectra of all
real-valued signals (DFT 2).

Signals x(1) through x(6) are derived from either x or X. Their spectra
can be computed using known structural properties of the DFT.

• x(1) =
[

1 4 3 2
]T is the circular time-reverse of x, i.e., x(1) =

Rx. By DFT 4,

X(1) = RX =
[

10 −2− 2j −2 −2 + 2j
]T

• x(2) =
[

4 1 2 3
]T is the circular delay of x by one time unit, i.e.,

x(2) = Px. By DFT 5, the kth entry of X is multiplied by wk = (−j)k,
for each value of k:

X(2) = F−1X =
[

10 2 + 2j 2 2− 2j
]T
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• x(3) =
[

3 4 1 2
]T is the circular delay of x by two time units,

i.e., x(3) = P2x. Again by DFT 5, the kth entry of X is multiplied by
w2k = (−1)k, for each value of k:

X(3) = F−2X =
[

10 2− 2j −2 2 + 2j
]T

• x(4) =
[

1 −2 3 −4
]T is obtained by multiplying the entries of

x by those of the Fourier sinusoid (−1)n = v2n, i.e., x(4) = F2x. By
DFT 6, the spectrum is shifted by m = 2 frequency indices, or, in
terms of actual frequencies, by π radians. The resulting spectrum is

X(4) = P2X =
[ −2 −2− 2j 10 −2 + 2j

]T

• x(5) =
[

5 −1 + j −1 −1− j
]T equals X/2. By DFT 7 (duality),

we have that

X(6) = 4R(x/2) =
[

2 8 6 4
]T

• x(6) =
[

5 −1 −1 −1
]T equals the real part of x(5), i.e.,

x(6) =
x(5) +

(
x(5)

)∗
2

By DFT 3, complex conjugation in the time domain is equivalent to
complex conjugation together with circular reversal in the frequency
domain. Thus

X(6) =
1
2

[
2 8 6 4

]T +
1
2

[
2 4 6 8

]T =
[

2 6 6 6
]T ¤

3.5.2 Exploring Symmetries

The spectrum of a real-valued signal is always circularly conjugate-symmetric;
this was established in DFT 2 and was illustrated in Examples 3.3.1 and
3.5.1. It turns out that this property also holds with the time and frequency
domains interchanged, i.e., a signal which exhibits circular conjugate sym-
metry in the time domain has a real-valued spectrum. This can be seen by
taking DFT’s on both sides of the identity

x = Rx∗
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and then applying DFT 4 to obtain

X = RRX∗ = X∗

This means that X is real-valued.
It follows that if a signal x happens to be both real-valued and circularly

symmetric, then its spectrum X will have the same properties. (Conjugate
symmetry and symmetry are equivalent notions for a real-valued signal,
which always equals its complex conjugate.)

We summarize the above observations as follows.

Fact. If a signal is real-valued in either domain (time or frequency), then it
exhibits circular conjugate symmetry in the other domain. A signal exhibit-
ing both properties in one domain also exhibits both properties in the other
domain. The terms symmetry and conjugate symmetry are equivalent
for real-valued signals.

The following example illustrates operations on circularly symmetric,
real-valued signals that preserve both properties.

Example 3.5.2. Consider the 16-point signal x whose spectrum X is given
by

X =
[

4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3
]T

X is shown in Figure E.3.5.2 (i). Clearly, X is both real-valued and circularly
symmetric. By the foregoing discussion, the time-domain signal x has the
same properties (and can be computed quite easily by issuing the command
x = ifft(X) in MATLAB).

 0     1     2     3     4                            8                          12   13   14   15

4

3

2

1 1

2

3

X

Figure E.3.5.2 (i)

We are interested in determining whether the two fundamental time-
domain operations:

• circular delay by m time units
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• multiplication by the mth Fourier sinusoid

preserve either or both properties of x, (i.e., real values and circular sym-
metry).

A circular time delay of m units in x clearly preserves the real values in
x, and thus also preserves the circular symmetry in X. To see how circular
symmetry of x is affected by this operation, we consider the spectrum X,
which undergoes multiplication by the mth Fourier sinusoid: each X[k] is
multiplied by e−j(π/8)km. Unless m = 0 (no delay) or m = 8, the result-
ing spectrum will contain complex values, which means that the (delayed)
time-domain signal will no longer be circularly symmetric. Thus the only
nontrivial value of m that preserves circular symmetry is m = 8. The de-
layed signal is given by

x(1) = P8x

and its spectrum equals

X(1)[k] = e−jπkX[k] = (−1)kX[k], k = 0, . . . , 15

The spectrum X(1) is plotted in Figure E.3.5.2 (ii).

 0                          4                            8                          12
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2

−3

−1

X
(1)

Figure E.3.5.2 (ii)

We note also that summing together two versions of x that have been
delayed by complementary amounts, i.e., m and −m (or 16−m) time units,
will also preserve the circular symmetry in x regardless of the value of m.
This is because

e−j(π/8)km + ej(π/8)km = 2 cos
(

πkm

8

)
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and therefore

x(2) = Pmx + P−mx ←→ X(2)[k] = 2 cos
(

πkm

8

)
X[k]

Since the spectrum X(2) is real-valued, x(2) is circularly symmetric. Figure
E.3.5.2 (iii) illustrates X(2) for the case m = 4. The graph was generated
by multiplying each entry of X by the corresponding entry of

[
2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0

]T

−4

 0                          4                            8                          12

8 X
(2)

−4

Figure E.3.5.2 (iii)

Multiplication of x by a complex Fourier sinusoid of frequency mπ/8 will
result in certain entries of x taking complex values, unless m = 0 or m = 8.
Correspondingly, the spectrum will undergo circular shift by m frequency
indices, and circular symmetry will be preserved only in the cases m = 0
and m = 8. Thus the only nontrivial value of m that preserves real values
in x is m = 8, for which

x(3)[n] = ejπnx[n] = (−1)nx[n], n = 0, . . . , 15

and
X(3) = P8X

The spectrum X(3) is plotted in Figure E.3.5.2 (iv).
We also note that since the Fourier sinusoids are circularly conjugate-

symmetric, the element-wise product of x and v(m) will also be circularly
conjugate-symmetric, whether it is real or complex.

Finally, we see that if we multiply x by the sum of two complex Fourier
sinusoids which are conjugates of each other, i.e., have frequency indices m
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Figure E.3.5.2 (iv)

and 16−m (or simply −m), the resulting signal will be real-valued, since

e−j(π/8)mn + ej(π/8)mn = 2 cos
(πmn

8

)

(same identity as encountered earlier). Also,

x(4)[n] = 2 cos
(πmn

8

)
x[n] ←→ X(4) = PmX + P−mX

X
(4)
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Figure E.3.5.2 (v)

Figure E.3.5.2 (v) illustrates X(4) in the case m = 4. Note the circular
symmetry in X(4), as well as the relationship between X(4) and the original
spectrum X. In this case, each entry of x (in the time domain) is multiplied
by the corresponding entry of

[
2 0 −2 0 2 0 −2 0 2 0 −2 0 2 0 −2 0

]T ¤
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3.6 Multiplication and Circular Convolution

The structural properties of the discrete Fourier transform considered thus
far involved operations on a single signal vector of fixed length. In this
section, we examine two specific ways of combining together two (or more)
arbitrary signals in the time domain, and study the spectra of the resulting
signals.

3.6.1 Duality of Multiplication and Circular Convolution

We have seen (in DFT 1) that DFT is a linear transformation, i.e., the
DFT of a linear combination of two signals is the linear combination of their
DFT’s:

αx + βy ←→ αX + βY

There are other important ways in which two signal vectors x and y can be
combined in both time and frequency domains. We will examine two such
operations.

Definition 3.6.1. The (element-wise) product of N -point vectors x and y
is the vector s defined by

s[n] = x[n]y[n] , n = 0, . . . , N − 1 ¤

A special case of the product was encountered earlier, where y = v(m)

(the mth Fourier sinusoid).
Let us examine the DFT S of the product signal s, which is given by the

analysis equation:

S[k] =
N−1∑

n=0

x[n]y[n]wkn , k = 0, . . . , N − 1

(We note that in this case, we do not have a compact expression for the
entire vector S as a product of the vectors x, y and the matrix W.) Noting
that wkn is the (n, n)th entry of the diagonal matrix F−k, we can write

S[k] =
[

x[0] x[1] . . . x[N − 1]
]



1 0 . . . 0
0 wk . . . 0
...

...
. . .

...
0 0 . . . wk(N−1)







y[0]
y[1]
...

y[N − 1]




i.e.,
S[k] = xTF−ky
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We seek an expression for S[k] in terms of the spectra X and Y. To that
end, we use the matrix forms of the analysis and synthesis equations, as well
as the known identities

V = VT , VF−k = PkV and V = RW

We obtain

S[k] =
(

1
N

VX
)T

F−ky

=
1
N

XTVF−ky

=
1
N

XTPkVy

=
1
N

XTPkRWy

=
1
N

XTPkRY

The operation involving X, Y and the permutation matrices R (circular
reversal) and P (circular shift) in the last expression is known as the circular
convolution of the vectors X and Y. It is defined for any two vectors of the
same length.

Definition 3.6.2. The circular convolution of the N -point vectors a and b
is the N -point vector denoted by

a ~ b

and given by

(a ~ b)[n] = aTPnRb , n = 0, . . . , N − 1 ¤

We can now write our result as follows.

DFT 8. (Multiplication of Two Signals) If x ←→ X and y ←→ Y, then

x[n]y[n] ←→ 1
N

X ~ Y ¤

Fact. Since x[n]y[n] = y[n]x[n], we also have X~Y = Y~X, i.e., circular
convolution is symmetric in its two arguments.
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Multiplication in the time domain has many applications in communi-
cations (e.g., amplitude modulation, signal spreading) and signal processing
(e.g., windowing in spectral analysis and filter design). By DFT 8, multipli-
cation in the time domain is equivalent to (scaled) circular convolution in
the frequency domain.

As it turns out, convolution is equally (if not more) important as a
time-domain operation, since it can be used to compute the response of
a linear system to an arbitrary input vector; this feature will be explored
further in the following chapter. In the meantime, we note that DFT 8 has
a dual property: circular convolution in the time domain corresponds to
multiplication in the frequency domain.

DFT 9. (Circular Convolution of Two Signals) If x ←→ X and y ←→ Y,
then

x ~ y ←→ X[k]Y [k]

Proof. We follow an argument parallel to the proof of DFT 8. We consider
the product signal S[k] = X[k]Y [k] (now in the frequency domain), and
use the synthesis equation (which differs from the analysis equation by a
complex conjugate and the factor N) to express the time-domain signal s as

s[n] =
1
N

XTFnY

We need to show that s[n] is the nth entry of x ~ y. Indeed,

s[n] =
(

1
N

Wx
)T

FnY

=
1
N

xTWFnY

=
1
N

xTPnWY

=
1
N

xTPnR(VY)

= xTPnRy

= (x ~ y)[n]

as needed. Alternatively, this result can be proved using DFT 7 (duality)
on the pairs x ←→ X, y ←→ Y and x[n]y[n] ←→ N−1(X ~ Y).
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3.6.2 Computation of Circular Convolution

The computation of the circular convolution x ~ y for two N -point vectors
x and y can be summarized as follows:

• Circularly reverse y to obtain Ry.

• For each n = 0, . . . , N − 1, shift Ry circularly by n indices to obtain
PnRy.

• Compute (x~y)[n] as xTPnRy, i.e., as the (unconjugated) dot prod-
uct of x and PnRy.

By symmetry of circular convolution, x and y can be interchanged in
the above computation.

Example 3.6.1. Consider the four-point vectors

x =
[

a b c d
]T and y =

[
0 −1 0 1

]T

and let
s = x ~ y

The vectors x, y and PnRy for n = 0, 1, 2, 3 are depicted using four-point
time wheels.

a

b

c

d

0 0

1

-1

0 0

1

-1 0

0

1-1

0

0

1 -1 0 0

1

-1

x y

Ry = P Ry
0

P Ry
3

P Ry
2

P Ry
1

Example 3.6.1

We have

P0Ry =
[

0 1 0 −1
]T
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P1Ry =
[ −1 0 1 0

]T

P2Ry =
[

0 −1 0 1
]T

P3Ry =
[

1 0 −1 0
]T

and thus

s[0] = xTP0Ry = b− d

s[1] = xTP1Ry = c− a

s[2] = xTP2Ry = d− b

s[3] = xTP3Ry = a− c

Therefore
s =

[
b− d c− a d− b a− c

]T ¤

Example 3.6.2. We verify DFT 9 for

x =
[

2 −3 5 −3
]T and y =

[
0 −1 0 1

]T

The signal y is the same as in Example 3.6.1, thus

s = x ~ y =
[

0 3 0 −3
]T

The DFT’s are easily computed as:

X =
[

1 −3 13 −3
]T

Y =
[

0 2j 0 −2j
]T

S =
[

0 −6j 0 6j
]T

Indeed,
S[k] = X[k]Y [k]

for all values of k.
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3.7 Periodic and Zero-Padded Extensions of a Sig-
nal

3.7.1 Definitions

We now shift our focus to signals derived from a basic signal vector s by
extending its length. In what follows, we will assume that s has length L,
and will derive two distinct types of signals of variable length N ≥ L based
on s.

Definition 3.7.1. The N -point periodic extension of s is the signal x defined
by

x[n] =
{

s[n], 0 ≤ n ≤ L− 1;
x[n− L], L ≤ n ≤ N − 1.

¤

Definition 3.7.2. The N -point zero-padded extension of s is the signal y
defined by

y[n] =
{

s[n], 0 ≤ n ≤ L− 1;
0, L ≤ n ≤ N − 1.

¤

y

x

s

0             9

0             10             20             30    35

0              10                                      35

Figure 3.8: The 10-point signal s, its 36-point periodic extension
x and its 36-point zero-padded extension y.

The two types of extensions are illustrated in Figure 3.8, where L = 10
and N = 36. Note that the signals x and y are fundamentally different. In
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the case of x, the same activity is observed every L time units; y, on the
other hand, exhibits no activity after time n = L− 1.

Since the extensions x and y are formed by either replicating the basic
signal s or appending zeros to it, both DFT’s X and Y are computed using
elements of the vector s. However, the relationships between X, Y and S
are not at all apparent. This is because the Fourier frequencies for X and Y
depend on N , and so do the associated Fourier sinusoids. Since the elements
of X and Y are inner products involving such Fourier sinusoids, there are
no identifiable correspondences or similarities between X, Y and S in the
general case (i.e., where N is arbitrary). One important exception is the
special case where N is an integer multiple of L.

Fact. If N = ML, where M is an integer, then the set of Fourier frequencies
for an L-point signal is formed by taking every M th Fourier frequency for
an N -point signal, starting with the zeroth frequency (ω = 0).

This fact is easily established by noting that the kth Fourier frequency
for an L-point signal is given by

k

(
2π

L

)
= kM

(
2π

ML

)
= kM

(
2π

N

)

and thus equals the kM th frequency for an N -point signal.
Figure 3.9 illustrates this fact in the case where L = 4, M = 3 and

N = 12.

3.7.2 Periodic Extension to an Integer Number of Periods

Assuming that N = ML, we have the following relationship between X and
S.

Fact. If N = ML, then the DFT of the N -point periodic extension x of an
L-point signal s is given by

X[r] =
{

MS[r/M ], if r/M = integer;
0, otherwise.

Proof. The assumption N = ML implies that x contains an exact number
of copies of s. We know that

s =
1
L

VLS
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Figure 3.9: Fourier frequencies for a 4-point signal (◦) and the
remaining Fourier frequencies for a 12-point signal (×).

where VL is the matrix of Fourier sinusoids for an L-point signal. By repli-
cating the above equation M times, we obtain




s
s
...
s


 =

1
L




VL

VL
...

VL


S (3.16)

The N × 1 vector on the left-hand side of the equation is simply x. The kth

column of the N × L matrix on the right-hand side is the N -point periodic
extension of

ej(2π/L)kn , n = 0, . . . L− 1

which is the kth Fourier sinusoid for an L-point signal. Since for every integer
p,

ej(2π/L)kn = ej(2π/L)k(n+pL)

it follows that the kth column of the N × L matrix is simply given by

ej(2π/L)kn = ej(2π/N)kMn , n = 0, . . . N − 1

But this is just the (kM)th Fourier sinusoid for an N -point signal, i.e., the
(kM)th column of the matrix VN . Thus (3.16) implies that x is a linear
combination of no more than L Fourier sinusoids. Not surprisingly, these
sinusoids have the same frequencies as the Fourier components of s.
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We have therefore established that X[r] = 0 if r is not a multiple of M .
To determine the value of X[kM ] for k = 0, . . . , L − 1, we compare (3.16)
with the synthesis equation

x =
1
N

VNX

and obtain the identity

1
L




VL

VL
...

VL


S =

1
N

VNX

This can only be true if X[kM ] = (N/L)S[k] = MS[k] for k = 0, . . . ,
L− 1.

Example 3.7.1. If

s =
[

a b c d
]T

has DFT
S =

[
A B C D

]T
,

then
x =

[
a b c d a b c d a b c d

]T

has DFT

X =
[

3A 0 0 3B 0 0 3C 0 0 3D 0 0
]T ¤

In summary, the DFT allows us to express an L-point time-domain signal
s as a linear combination of L sinusoids at frequencies which are multiples
of 2π/L. The same L sinusoids, with the same coefficients, could be used to
represent the N -point periodic extension x of s. This representation would
not, in general, be consistent with the one provided by Fourier analysis (i.e.,
the DFT) of x; this is because the Fourier frequencies for s may not form a
subset of the Fourier frequencies for x. In the special case where x consists of
an integer number of copies of s, then all the original frequencies for s will be
Fourier frequencies for x, and x can be represented as a linear combination
of L Fourier sinusoids only; none of the remaining N − L Fourier sinusoids
will appear in x.
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3.7.3 Zero-Padding to a Multiple of the Signal Length

We now turn to the zero-padded extension y of s in the case where N = ML.
We have the following relationship between the spectra Y and S.

Fact. If N = ML, then the DFT of an L-point signal s can be obtained
from the DFT of its N -point zero-padded extension y by sampling:

S[k] = Y [kM ] , k = 0, . . . , L− 1

Proof. As we noted earlier, the frequency ω = k(2π/L) is both the kth

Fourier frequency for s and the (kM)th Fourier frequency for y; the corre-
sponding DFT values are S[k] and Y [kM ], respectively. We have

Y [kM ] =
N−1∑

n=0

y[n]e−j(2π/N)kMn

=
L−1∑

n=0

s[n]e−j(2π/L)kn

= S[k]

where the first equality follows from the definition of y (i.e., the fact that y[n]
coincides with s[n] for the first L time indices and equals zero thereafter).

Example 3.7.2. If

y =
[

a b c d 0 0 0 0 0 0 0 0
]T

has DFT

Y =
[

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

]T

then
s =

[
a b c d

]T

has DFT
S =

[
Y0 Y3 Y6 Y9

]T ¤

The DFT of a finite-length signal vector can thus be obtained by sam-
pling the DFT of its zero-padded extension, provided the number of ap-
pended zeros is an integer multiple of the (original) signal length.
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3.8 Detection of Sinusoids Using the Discrete Fourier
Transform

3.8.1 Introduction

An important application of signal analysis is the identification of different
components present in a signal. For example, given a musical recording, we
may be interested in identifying all instruments being played at a particular
time instant. If the recording contains vocals, we may also want to count
and, if possible, identify the different voices that are being heard. With
minimal training, the human ear can perform most of the above mentioned
tasks quite reliably. With additional training, the human ear can provide
more detailed information about the content of the signal: it can identify
specific notes (i.e., frequencies), and can detect whether an instrument is
out of tune.

Of course, the human auditory system cannot yield quantitative mea-
sures of signal parameters, nor can it process anything other than acoustic
signals in the audible frequency band (from approximately 20 Hz to 20
kHz). (Analogous statements can be made about the human eye, which is
particularly adept at identifying visual patterns.) Signal processing, which
is the quantitative analysis of signals, allows us to identify and separate es-
sential components of a signal based on its numerical samples (rather than
its perceptual attributes). In many cases, these tasks can be carried out
automatically, i.e., with little or no human intervention.

Sinusoids comprise a particularly important class of signals, since they
arise in a diverse class of physical systems which exhibit linear properties.
Such systems were introduced in Chapter 2 and will be the focus of our
discussion in Chapter 4. In many applications, it is desirable to identify
and isolate certain sinusoidal components present in a signal. For example,
in restoring a musical recording that has been corrupted by static noise or
deterioration of the recording medium, one would be interested in identifying
the note being played during a noisy segment of the piece. A note consists of
sinusoids at multiples of a certain fundamental frequency; identifying those
sinusoids would be an essential step towards removing the noise from the
signal. Sinusoids could also represent unwanted components of a signal, e.g.,
interference from a power supply at 50 Hz.

The discrete Fourier transform is well-suited for the detection of sinusoids
in a discrete-time signal, since it provides a decomposition of the signal into
sinusoidal components. For an N -point signal, these components are at the
so-called Fourier frequencies, which are the integer multiples of 2π/N .
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First, let us consider a vector consisting of N uniform samples of a real-
valued sinusoid of frequency Ω0 rad/sec, obtained at a rate of fs samples
per second. If ω0 = Ω0/fs happens to be a Fourier frequency for sample size
N , then the N -point DFT will will contain exactly two nonzero entries at
frequencies ω0 and 2π−ω0, the remaining entries being zero. The frequency
ω0 (hence also Ω0) can be determined by inspection of the DFT, provided
that no aliasing has occurred. Also, the amplitude and phase of the sinusoid
can be easily obtained from the corresponding entries of the DFT vector,
and the continuous-time signal can be reconstructed perfectly.

Example 3.8.1. The continuous-time sinusoid

x(t) = 5 cos(600πt + 3π/4) , t ∈ R

is sampled at a rate of 1,000 samples/sec to yield the discrete-time sinusoid

x[n] = 5 cos(0.6πn + 3π/4) , n ∈ N

If s = x[0 : N − 1] (using MATLAB notation for indices), then ω0 = 0.6π
(i.e., the frequency of x[·]) is a Fourier frequency for s provided

k
2π

N
= 0.6π

or equivalently,

N =
10k

3

for some integer k. For example, if N = 20, then ω0 is the k = 6th Fourier
frequency for s. The resulting amplitude and phase spectra are shown in
the figure.

In general, the frequency ω0 will not be an exact Fourier frequency.
In that case, the DFT will analyze the sinusoidal signal into N complex
sinusoidal components at frequencies unrelated to ω0, and as a result, it will
not exhibit the features seen in the graphs of Example 3.8.1. The question
is whether we can still use a DFT-based method to estimate the frequency
ω0. The answer is affirmative.

3.8.2 The DFT of a Complex Sinusoid

Let s be the L-point complex sinusoid given by

s[n] = ejω0n , n = 0, . . . , L− 1



194

|S[k]|

 0                               6                   10                  14                        19

50 50

S[k]
3π/4

−3π/4

Example 3.8.1

where ω0 is a fixed frequency. Let v represent a complex sinusoid of variable
frequency ω:

v[n] = ejωn , n = 0, . . . , L− 1

The inner product 〈v, s〉 is a function of ω. Its value at ω = 2kπ/L (where
k is integer) can be computed as the the kth entry in the DFT of s:

〈v, s〉 =
L−1∑

n=0

v∗[n]s[n] =
L−1∑

n=0

s[n]e−j(2π/L)kn = S[k]

Similarly, the inner product 〈v, s〉 at ω = 2kπ/N , where N > L, can be
computed via the DFT of s zero-padded to total length N . As N increases,
the spacing 2π/N between consecutive Fourier frequencies decreases to zero,
and the resulting DFT provides a very dense sampling of 〈v, s〉 over the entire
frequency range [0, 2π).

Let us evaluate 〈v, s〉 at frequency ω. (This was done in Subsection 3.1.3
for the special case where both ω and ω0 are Fourier frequencies, in order
to establish the orthogonality of the complex sinusoids.)

For ω = ω0, we have v = s and thus

〈v, s〉 = ‖s‖2 = L

For ω 6= ω0, we have

〈v, s〉 =
L−1∑

n=0

v∗[n]s[n]
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=
L−1∑

n=0

e−jωnejω0n

=
L−1∑

n=0

ej(ω0−ω)n

=
1− ejL(ω0−ω)

1− ej(ω0−ω)

where the last equality is the familiar expression for the geometric sum.
(Note that the denominator cannot be equal to zero, since ω 6= ω0 and both
frequencies are assumed to be in [0, 2π).) The inner product is therefore
complex. It can be written as the product of a real term and a complex
term of unit magnitude by first applying the identity 1− z2 = z(z−1− z) to
both numerator and denominator:

1− ejL(ω0−ω)

1− ej(ω0−ω)
=

ejL(ω0−ω)/2

ej(ω0−ω)/2
· e−jL(ω0−ω)/2 − ejL(ω0−ω)/2

e−j(ω0−ω)/2 − ej(ω0−ω)/2

and then recalling that ejθ − e−jθ = 2j sin θ. The resulting expression is

〈v, s〉 = e−j(L−1)(ω−ω0)/2 · sin(L(ω − ω0)/2)
sin((ω − ω0)/2)

= e−j(L−1)(ω−ω0)/2 · DL(ω − ω0) (3.17)

where the function DL(·) is defined by

DL(θ) =
sin(Lθ/2)
sin(θ/2)

Since
∣∣e−j(L−1)(ω−ω0)/2

∣∣ = 1, we have that

|〈v, s〉| = |DL(ω − ω0)| =
∣∣∣∣
sin(L(ω − ω0)/2)
sin((ω − ω0)/2)

∣∣∣∣ (3.18)

Evaluated at ω = 2kπ/L, the above expression gives the kth entry in
the amplitude spectrum of s, i.e., |S[k]|. Evaluated at ω = 2kπ/N (where
N > L), it yields the kth entry in the amplitude spectrum of the N -point
zero-padded extension of s.

The absolute value of the function DL(θ) is shown in Figure 3.10 for
L = 6 and L = 9, in each case for θ varying over (−2π, 2π) (which includes
the range of values of ω − ω0 in (3.17)).

We make the following key observations about the function DL(θ):
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Figure 3.10: The function |DL(θ)| for L = 6 (left) and L = 9
(right).

• At θ = 0, both the numerator and the denominator in the definition
of DL(θ) equal 0. DL(0) is then defined as the limit of DL(θ) as θ
approaches zero, which equals L. This also gives the correct result for
the inner product when ω = ω0.

• DL(θ) is periodic with period 2π.

• DL(θ) = 0 for all values of θ which are integer multiples of 2π/L,
except those which are also integer multiples of 2π (DL(2πk) = L).

• In each period, the graph of DL(θ) contains one main lobe of width
4π/L and height L; and L − 2 side lobes of width 2π/L and varying
height. The first side lobe is the tallest one (in absolute value), its
height being approximately 2/3π that of the main one.

We conclude this lengthy discussion with the following observation.

Fact. Let ω0 be a fixed frequency in [0, 2π) and ω be a variable frequency in
the same interval. Then the magnitude of the inner product 〈v, s〉, where

s[n] = ejω0n and v[n] = ejωn , n = 0, . . . , L− 1

achieves its unique maximum (as ω varies) when ω = ω0. Thus if the
frequency ω0 of a given complex sinusoid s is not known, it can be estimated
with arbitrary accuracy by locating the maximum value of |〈v, s〉|, computed
for a sufficiently dense set of frequencies ω in [0, 2π).
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This fact follows from (3.18):

|〈v, s〉| = |DL(ω − ω0)|
For fixed ω0, the difference θ = ω − ω0 lies in the interval [2π − ω0, −ω0).
This is a subinterval of (−2π, 2π) which includes the origin. The maximum
value of |DL(θ)| over that interval will be achieved at θ = 0, as illustrated
in Figure 3.10. Thus the maximum value of |〈v, s〉| = |DL(ω − ω0)| occurs
at ω = ω0, and equals L.

3.8.3 Detection of a Real-Valued Sinusoid

As we showed in the previous subsection, the frequency of a L-point complex-
valued sinusoid

s[n] = ejω0n , n = 0, . . . , L− 1

can be determined by zero-padding the signal to obtain a reasonably dense
set of Fourier frequencies in [0, 2π), then locating the maximum of the am-
plitude spectrum.

A real-valued sinusoid is the sum of two complex-valued sinusoids at
conjugate frequencies:

A cos(ω0n + φ) =
A

2
ej(ω0n+φ) +

A

2
e−j(ω0n+φ)

We assume that ω0 lies in [0, π], which is the effective frequency range for
real sinusoids. In most practical situations, the observed signal vector will
have other components, as well. We thus model it as

x[n] = A cos(ω0n + φ) + r[n] , n = 0, . . . , L− 1

where the remaining components of x are collectively represented by r. We
then have

x =
A

2
ejφs +

A

2
e−jφs∗ + r

We argue that a satisfactory estimate of frequency ω0 can be obtained
from x using the method developed earlier for the complex exponential s.
Again, let

v[n] = ejωn , n = 0, . . . , L− 1

be the variable-frequency sinusoid used in the computation of the DFT, and
consider the inner product

〈v,x〉 =
A

2
ejφ〈v, s〉+

A

2
e−jφ〈v, s∗〉+ 〈v, r〉
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which yields the DFT of x and its zero-padded extensions by appropriate
choice of ω.

We have already studied the behavior of the first two terms on the right-
hand side. In particular, we know that

|〈v, s〉| = |DL(ω − ω0)| =
∣∣∣∣
sin(L(ω − ω0)/2)
sin((ω − ω0)/2)

∣∣∣∣

and

|〈v, s∗〉| = |DL(ω + ω0)| =
∣∣∣∣
sin(L(ω + ω0)/2)
sin((ω + ω0)/2)

∣∣∣∣
As long as ω0 is not too close to 0 or π, the side lobes of |〈v, s∗〉| will not
interfere significantly with the main lobe of |〈v, s〉|, and the location of the
maximum of

|〈v, s〉+ 〈v, s∗〉|
over the range [0, π] will be negligibly different from ω0.

If, similarly, |〈v, r〉| does not vary significantly near ω0, where “signifi-
cant” is understood relatively to the height and curvature of the main lobe
of (A/2)|〈v, s〉|, then the maximum of |〈v,x〉| over the range [0, π] will occur
very close to the unknown frequency ω0.

Example 3.8.2. Consider the 16-point signal

x[n] = 5.12 cos(2π(0.3221)n + 1.39) + r[n]

Here r[n] is white Gaussian noise with mean zero and standard deviation 0.85
(roughly a sixth of the amplitude of the sinusoid). In the current notation,
we have A = 5.12, ω0 = 2π(0.3221) and φ = 1.39.

The figure shows plots of (A/2)|〈v, s〉|, (A/2)|〈v, s∗〉|, |〈v, r〉| and |〈v,x〉|,
all computed using 256-point DFT’s, against cyclic frequency f = ω/2π
(cycles/sample). Note that |〈v, r〉| and |〈v,x〉| are symmetric about ω = π
(or f = 1/2), since x and r are real-valued vectors. Both |〈v, s〉| and |〈v,x〉|
achieve their maximum over the range 0 ≤ ω ≤ π at ω = 2π(0.3202), which
corresponds to frequency index k = 82 in the 256-point DFT. Additional
zero-padding would give an estimate closer to the true value 2π(0.3221).

Conclusion. If a signal vector x has a single strong sinusoidal component,
then the frequency of that component can be estimated reasonably accu-
rately from the position of the maximum in the left half of the amplitude
spectrum, where the DFT is computed after padding the signal with suffi-
ciently many zeros.
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Example 3.8.2

3.8.4 Final Remarks

The methodology discussed above can be extended to a signal containing
two or more strong sinusoidal components. Simply put, as long as these
components are well-separated on the frequency axis, their (unknown) fre-
quencies can be estimated well by locating maxima on the left half of the
amplitude spectrum. Good separation in frequency typically means that the
main lobes corresponding to different components are sufficiently far apart.
Since the main lobe width is 4π/L, the only way to obtain sharper peaks is
to increase L, i.e., take more samples of the signal. Increasing the number
of points N in the DFT does not solve the problem, since lobe width does
not depend on N .

Finally, we should note that it is possible to improve the detection and
frequency estimation technique outlined above (in the case where multiple
sinusoids may be present) by scaling the values of the data vector x using
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certain standard time-domain functions (known as windows) before com-
puting the DFT. As a result of this preprocessing, the height ratio between
the main lobe and the side lobes is increased by orders of magnitude, at the
expense of only a moderate increase in main lobe width. Such techniques
provide better resolution for sinusoids that are close in frequency.
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Problems

Section 3.1

P 3.1. Let

α =
1
2

and β =
√

3
2

(i) Determine a complex number z such that the vector

v =
[

1 α + jβ −α + jβ −1 −α− jβ α− jβ
]T

equals [
1 z z2 z3 z4 z5

]T

(ii) If
s =

[
3 2 −1 0 −1 2

]T

determine the least-squares approximation ŝ of s in the form of a linear
combination of 1 (i.e., the all-ones vector), v and v∗. Clearly show the
numerical values of the elements of ŝ.

P 3.2. Let v(0), v(1) and v(7) denote the complex Fourier sinusoids of length
N = 8 at frequencies ω = 0, ω = π/4 and ω = 7π/4, respectively.
Determine the least-squares approximation ŝ of

s =
[

4 3 2 1 0 1 2 3
]

based on v(0), v(1) and v(7). Compute the squared approximation error
‖ŝ− s‖2.

P 3.3. Consider the eight-point vector

x =
[

2
√

2− 1 1 −2
√

2− 1 5 −2
√

2− 1 1 2
√

2− 1 −3
]T

(i) Show that x contains only three Fourier frequencies, i.e., it is the linear
combination of exactly three Fourier sinusoids v(k). Determine the coeffi-
cients of these sinusoids in the expression for x.
(ii) Find an equivalent expression for x in terms of real-valued sinusoids of
the form cos(ωn + φ), where 0 ≤ ω ≤ π.
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P 3.4. The columns of the matrix

V =




1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j




are the complex Fourier sinusoids of length N = 4.
Express the vector

s =
[

1 4 −2 5
]T

as a linear combination of the above sinusoids. In other words, find a vector
c = [c0 c1 c2 c3]T such that s = Vc.

Section 3.2

P 3.5. Let u = ej(2π/9) and z = ej(π/5).
(i) Write out the entries of the DFT matrix W9 (corresponding to a nine-
point signal) using the real number 1 and complex numbers um, where m is
a nonzero integer between −4 and 4.
(ii) Write out the entries of the IDFT matrix V10 (corresponding to a ten-
point signal) using real numbers 1, −1 and complex numbers zm, where m
is a nonzero integer between −4 and 4.

P 3.6. (i) Sketch the six-point vectors x and y defined by

x[n] =
{

1, n = 2, 4
0, otherwise;

y[n] = cos(2πn/3)

(ii) Prove that

y =
v(2) + v(4)

2

where v(k) is the kth Fourier sinusoid for N = 6.
(iii) Compute the DFT’s X and Y.
Observe the similarities between x and Y, as well as between y and X.
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Section 3.3

P 3.7. A five-point real-valued signal x has DFT given by

X =
[

4 1 + j 3− j z1 z2

]T

(i) Compute x[0] + x[1] + x[2] + x[3] + x[4] using one entry of X only.
(ii) Determine the values of z1 and z2.
(iii) Compute the amplitude and phase spectra of x, displaying each as a
vector.
(iv) Express x[n] as a linear combination of three real-valued sinusoids.

P 3.8. Consider the real-valued signal x given by

x[n] = 3(−1)n + 7 cos
(πn

4
+ 1.2

)
+ 2 cos

(πn

2
− 0.8

)
, n = 0, . . . , 7

(i) Which Fourier frequencies (for an eight-point sample) are present in the
signal x?
(ii) Determine the amplitude spectrum of x, displaying your answer in the
form [

A0 A1 A2 A3 A4 A5 A6 A7

]T

(iii) Determine the phase spectrum of x, displaying your answer in the form
[

φ0 φ1 φ2 φ3 φ4 φ5 φ6 φ7

]T

P 3.9. Consider the N -point time-domain signal x given by

x[n] = rn, n = 0, . . . , N − 1

where r is a real number other than −1 or +1.
(i) Using the formula for the geometric sum, show that the DFT X of x is
given by

X[k] =
1− rN

1− rwk
, k = 0, . . . , N − 1

where, as usual, w = e−j(2π/N).
(ii) Using the formula |z|2 = zz∗, show that the square amplitude spectrum
is given by

|X[k]|2 =
(1− rN )2

1 + r2 − 2r cos(2kπ/N)
, k = 0, . . . , N − 1
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(iii) For the case r = 0.7 and N = 16, use MATLAB to produce a (discrete)
plot of the square amplitude spectrum in the equation above. Compare your
answer to

N=16; r = 0.7;
n=(0:N-1)’;
x = r.^n;
A = abs(fft(x));
bar(n,A.^2)

Section 3.4

P 3.10. Let
x =

[
2 1 −1 −2 −3 3

]T

Display (as vectors) and sketch the following signals:

• x(1) = Px

• x(2) = P5x

• x(3) = Px + P5x

• x(4) = x + Rx (Note the symmetry.)

• x(5) = x−Rx (Note the symmetry.)

• x(6) = F3x

• x(7) = (I− F3)x

P 3.11. The time-domain signal

x =
[

a b c d e f
]T

has DFT
X =

[
A B C D E F

]T

Using the given parameters, and defining

λ =
1
2

and µ =
√

3
2
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for convenience, write out the components of the DFT vector X(r) for each
of the following time-domain signals x(r).

x(1) =
[

a −b c −d e −f
]T

x(2) =
[

a 0 c 0 e 0
]T

x(3) =
[

a f e d c b
]T

x(4) =
[

d e f a b c
]T

x(5) =
[

b a f e d c
]T

x(6) =
[

f + b a + c b + d c + e d + f e + a
]T

x(7) =
[

0 µb µc 0 −µe −µf
]T

x(8) =
[

A B C D E F
]T

P 3.12. A real-valued eight-point signal vector

x =
[

x0 x1 x2 x3 x4 x5 x6 x7

]T

has DFT X given by

X =
[

4 5− j −1 + 3j −2 −7 S5 S6 S7

]T

Without inverting X, compute the numerical values in the DFT Y of

y =
[

2x0 x1 + x7 x2 + x6 x3 + x5 2x4 x5 + x3 x6 + x2 x7 + x1

]T

P 3.13. An eight-point signal x has DFT

X =
[

0 0 0 −1 2 −1 0 0
]T

Without inverting X, compute the DFT Y of y, which is given by the
equation

y[n] = x[n] · cos
(πn

4

)
, n = 0, . . . , 7
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Section 3.5

P 3.14. Consider the signal x shown in the figure (on the left). Its spectrum
is given by

X =
[

A B C D E F G H
]T

(i) The DFT vector shown above contains duplicate values. What are those
values?
(ii) Express the DFT Y of the signal y (shown on the right) in terms of the
entries of X.

x y

4

3

2

1
0

1

2

3

4

3 3

2 2

1 1
0

Problem P 3.14

P 3.15. Consider the twelve-point vectors x, y and s shown in the figure. If
the DFT X is given by

X =
[

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

]T

express the DFT’s Y and S in terms of the entries of X.
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x

1

Problem P 3.15

P 3.16. Run the MATLAB script

n = (0:63)’;
X =[ones(11,1); zeros(43,1); ones(10,1)];
bar(X), axis tight
max(imag(ifft(X))) % See (i) below
x = real(ifft(X));
bar(x)
cs = cos(3*pi*n/4); % See (ii) below
y = x.*cs;
bar(y);
max(imag(fft(y))) % See (iii) below
Y = real(fft(y));
bar(Y) % See (iv) below

(i) Why is this value so small?
(ii) Is this a Fourier sinusoid for this problem?
(iii) Why is this value so small?
(iv) Derive the answer for Y analytically, i.e., based on known properties of
the DFT.
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P 3.17. The energy spectrum of the signal vector x is defined as the square
of the amplitude spectrum, namely |X[k]|2 (for k = 0, . . . , N − 1).
Show that the total energy of the signal vector x equals the sum of the
entries in the energy spectrum divided by N , i.e.,

N−1∑

n=0

|x[n]|2 =
1
N

N−1∑

k=0

|X[k]|2

This relationship, known as Parseval’s identity, can be also written as

‖x‖2 =
1
N
‖X‖2

(and is easier to prove in this form). In geometric terms, this result is
consistent with the fact that the length of a vector can be computed (via
the Pythagorean theorem) using the projections of that vector on any or-
thornormal set of reference vectors.

Section 3.6

P 3.18. Determine the circular convolution s = x ~ y, where

x =
[

1 2 3 4
]T and y =

[
a b c d

]T

Also, express s as My, where M is a 4× 4 matrix of numerical values.

P 3.19. Consider two time-domain vectors x and y whose DFT’s are given by

X =
[

1 −2 3 −4
]T and Y =

[
A B C D

]T

Without explicitly computing x or y, determine the DFT of their element-
wise product

s[n] = x[n]y[n], n = 0, 1, 2, 3

P 3.20. The time-domain signals x and y have DFT’s

X =
[

1 0 1 −1
]T

and
Y =

[
3 5 8 −4

]T

(i) Is either x or y real-valued?
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(ii) Does either x or y have circular conjugate symmetry?

(iii) Without inverting X or Y, determine the DFT of the signal s(1) defined
by

s(1)[n] = x[n]y[n] , n = 0, 1, 2, 3

(iv) Without inverting X or Y, determine the DFT of the signal s(2) defined
by

s(2) = x ~ y

P 3.21. The time-domain signals

x =
[

2 0 1 3
]T

and
y =

[
1 −1 2 −4

]T

have DFT’s X and Y given by

X =
[

X0 X1 X2 X3

]T

and
Y =

[
Y0 Y1 Y2 Y3

]T

Determine the time-domain signal s whose DFT is given by

S =
[

X0Y2 X1Y3 X2Y0 X3Y1

]T

P 3.22. The circular cross-correlation of two N -point vectors x and y is the
N -point vector s defined by

s[n] = 〈Pny, x〉 = xTPny∗ , n = 0, . . . , N − 1

(i) Show that s also equals x ~ Ry∗.

(ii) Using (i) above, show that the DFT S of s is given by

S[k] = X[k]Y ∗[k], k = 0, . . . , N − 1

(iii) Show that in the special case where x = y, S is just the energy spectrum
of x, i.e.,

S[k] = |X[k]|2, k = 0, . . . , N − 1

What symmetry properties does s have in this case?
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(iv) Compute s and S for

x = y =
[

1 + j 2 1− j 0
]T

Section 3.7

P 3.23. The signal

x =
[

a b c d 0 0 0 0
]T

has DFT X given by

X =
[

A B C D E F G H
]T

Express the following DFT’s in terms of the entries of X:
(i) The DFT Y of

y =
[

0 0 0 0 a b c d
]T

(ii) The DFT S of

s =
[

a b c d a b c d
]T

P 3.24. The DFT of the signal

x =
[

1 −1 1 −1 0 0 0 0
]T

is given by

X =
[

X0 X1 X2 X3 X4 X5 X6 X7

]T

(i) What are the values of X0, X2, X4 and X6?
(ii) Display the time-domain signal y whose DFT is given by

Y =
[

X0 0 0 X2 0 0 X4 0 0 X6 0 0
]T

P 3.25. (i) The signal x has spectrum (DFT)

X = [A 0 0 B 0 0 C 0 0 D 0 0]T

What special properties does x have?
(ii) The signal y has spectrum

Y = [A B C D A B C D A B C D]T

What special properties does y have?
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P 3.26. The twelve-point signal

x =
[

a b c 0 0 0 0 0 0 0 0 0
]T

has DFT X given by

X =
[

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

]T

Express the following DFT’s in terms of the entries of X:
(i) The DFT Y of

y =
[

a b c 0 0 0
]T

(ii) The DFT S of

s =
[

a b c a b c a b c a b c
]T

P 3.27. In MATLAB notation, consider the 4-point vector

s = [a b c d].’

and its zero-padded extension

x = [s ; zeros(12,1)]

Let X denote the DFT of x. Express the DFT’s of the following vectors
using the entries of X:

x1 = s
x2 = [ s ; s ]
x3 = [ s ; s ; s ; s ; s ] % length=20
x4 = [ s ; z4 ]
x5 = [ z4 ; s ]
x6 = [ s ; z4 ; s ; z4 ]
x7 = [ s ; s ; z4 ; z4 ]

where z4 = zeros(4,1).

P 3.28. Consider a real-valued vector s of length L, and define a vector x of
length 2L + 1 by

x =




a
s

Qs




where Q is the linear reversal matrix and a ∈ R.



212

Let y be the vector obtained by padding s with L + 1 zeros. Show that the
DFT X of x has the following expression in terms of the DFT Y of y and
the complex number w = e−j2π/(2L+1):

X[k] = a + 2 · <e
{

wkY [k]
}

, k = 0, . . . , 2L

Section 3.8

P 3.29. A continuous-time signal consists of two sinusoids at frequencies f1

and f2 (Hz). The signal is sampled at a rate of 500 samples/sec (assumed to
be greater than the Nyquist rate), and 32 consecutive samples are recorded.
The figure shows the graph of magnitude of the 32-point DFT (i.e., without
zero-padding) as a function of the frequency index k.

 0            4             8           12           16           20          24           28       31 

126
84

126
84

Problem P 3.29

(i) What are the frequencies f1 and f2 (in Hz)?

(ii) Is it possible to write an equation for the continuous-time signal based
on the information given? If so, write that equation. If not so, explain why.

P 3.30. A continuous-time signal is given by

x(t) = A1 cos(2πf1t + φ1) + A2 cos(2πf2t + φ2) + z(t)

where z(t) is noise. The signal x(t) is sampled every 1.25 ms for a total of
80 samples. The figure shows the graph of the DFT of the 80-point signal
as a function of the frequency index k = 0, . . . , 79.
Based on the given graph, what are your estimates of f1 and f2?

(You may assume that no aliasing has occurred, i.e., the sampling rate of
800 samples/sec is no less than twice each of f1 and f2.)
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Problem P 3.30

P 3.31. A continuous-time signal is a sum of two sinusoids at frequencies 164
Hz and 182 Hz. 200 samples of the signal are obtained at the rate of 640
samples/sec, and the DFT of the samples is computed.

(i) What frequencies ω1 = 2πf1 and ω2 = 2πf2 are present in the discrete-
time signal obtained by sampling at the above rate?
(ii) Of the 200 Fourier frequencies in the DFT, which two are closest to
ω1 = 2πf1 and ω2 = 2πf2?
(iii) If the 200 samples are padded with M zeros and the (M + 200)-point
DFT is computed, what would be the least value of M for which both ω1

and ω2 are Fourier frequencies?

P 3.32. A musical note is a pure sinusoid of a specific frequency known as
fundamental frequency. Played on an instrument, notes are “colored” by
the introduction of harmonics, namely sinusoids having frequencies which
are exact multiples of the fundamental.
An instrument playing a 330 Hz note is recorded digitally over a time interval
of duration 50 ms at a sampling rate of 46,200 samples/sec, yielding 2,310
samples. It is assumed that the sampling rate exceeds the Nyquist rate; this
means that there are no harmonics at frequencies k(330) Hz for k ≥ 70.
(i) Does the fundamental frequency of 330 Hz correspond to a Fourier fre-
quency for the 2,310-point sample vector? (Note that if it is a Fourier fre-
quency, its harmonics will be Fourier frequencies also.) If it is not a Fourier
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frequency, what is the largest value of N less than or equal to 2,310 that
would make it a Fourier frequency?
(ii) (MATLAB) The vector s3 contains the 2,310 samples of the note, where
each sample is distorted by a small amount of noise. Take the first N entries
of that vector, where N was the answer to part (i), and compute their DFT.
Determine the total number of harmonics (positive frequencies only, and
excluding the fundamental) which are within 40 dB of the fundamental i.e.,
the ratio of their amplitude to that of the fundamental is no less than 1%.

P 3.33. The 64-point vector s4 was generated in MATLAB using

n = (0:63).’;
s4 = A*cos(2*pi*f1*n+q) + z;

The parameters A, f1 (between 0 and 1/2) and q were previously specified.
The vector z, which represents noise, was also generated earlier.
(i) Compute the DFT of s4 extended by zero-padding to N = 1000 points:

X = fft(s4,1000)

Obtain an estimate of f1 by locating the maximum value of abs(X). Plot
abs(X) against cyclic frequency f . (Note: f is related to the Fourier fre-
quency index k by f = k/N .)
(ii) Obtain an estimate of the phase q using the estimate f1 and the follow-
ing script:

p = [];
for r = 2*pi*(0:0.002:1)

s = cos(2*pi*f1*n+r);
p = [p; s4’*s];

end

(The maximum of the inner product s4’*s occurs for a value of r close
to the true value of the phase shift q.) Finally, obtain an estimate of the
amplitude A.

P 3.34. The 128-point vector s5 consists of three sinusoids of cyclic frequencies
f1, f2 and f3 (where 0 ≤ f1 < f2 < f3 ≤ 1/2) plus a small amount of noise.
Plot s5 against time. Use zero-padding to N = 2048 points and follow the
same technique as in part (i) of Problem 3.33 to obtain estimates of f1, f2

and f3.
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4.1 The Discrete-Time Fourier Transform

4.1.1 From Vectors to Sequences

We will now discuss how the DFT tools developed in the previous chapter
can be adapted for the analysis of discrete-time signals of infinite length,
also known as sequences. The index set (i.e., time axis) for such a sequence
x will consist of all integers:

x = {x[n], n ∈ Z}
As in MATLAB, we will use the notation

x[n1 : n2] =
[

x[n1] . . . x[n2]
]T

to denote a segment of the sequence x corresponding to time indices n1

through n2. The length of the segment is finite provided both n1 and n2 are
finite.

In order to express x as a linear combination of sinusoids of infinite
length, it is important to understand how the DFT of a signal vector s
behaves as the length N of s approaches infinity. To that end, we note the
following:

• The analysis equation

S[k] =
N−1∑

n=0

s[n]e−j(2π/N)kn

involves a sum over time indices 0 through N−1. This clearly becomes
an infinite sum in the limit as N → ∞. A similar expression for the
infinite sequence x would have to include both positive and negative
time indices, which would range from n = −∞ to n = +∞.

• The synthesis equation

s[n] =
1
N

N−1∑

k=0

S[k]ej(2π/N)kn

is a sum over frequency indices k = 0 through k = N − 1. The cor-
responding radian frequencies are ω = 0 through ω = 2π − (2π/N)
in increments of 2π/N . As N →∞, the spacing between consecutive
frequencies shrinks to zero, and thus every frequency ω in [0, 2π) be-
comes a Fourier frequency. The continuous-index version of a sum is
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an integral; thus as N → ∞, one expects the synthesis equation to
involve an integral over all frequencies in [0, 2π), i.e.,

N−1∑

k=0

→
∫ ω=2π

ω=0
dω

In brief, both the analysis and synthesis equations are expected to take on
different forms as N →∞.

4.1.2 Development of the Discrete-Time Fourier Transform

To develop the exact form of the analysis and synthesis equations for the
sequence x, consider the segment

x(L) = x[−L : L] =
[

x[−L] . . . x[L]
]T

which has length N = 2L+1. The infinite sequence x is obtained by letting
L →∞, as shown in Figure 4.1.

x

0-L   L

x(L)

Figure 4.1: The DTFT of a sequence x is obtained from the DFT
of the vector x(L) by letting L →∞.

The standard DFT of x(L) provides us with the coefficients needed for
representing x(L) as a linear combination of N sinusoidal vectors v(k) of
length N , each having a different Fourier frequency k(2π/N). The topmost
element in each v(k) (which would correspond to time n = −L in this case)
equals ej0 = 1. For the task at hand, a more suitable choice for the kth

Fourier sinusoid is

ṽ(k) =
[
ej(2π/N)kn

]n=L

n=−L
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whose middle entry (corresponding to time n = 0) equals 1. This circular
shift has no effect on the orthogonality of the Fourier sinusoids, nor does it
alter their norm. Thus, as in Subsection 3.1.3,

〈ṽ(k), ṽ(`)〉 =
{

N, k = `;
0, k 6= `

The resulting modified analysis and synthesis equations are

X(L)[k] =
L∑

n=−L

x[n]e−j(2π/N)kn , k = 0, . . . , 2L (4.1)

and

x[n] =
1
N

N−1∑

k=0

X(L)[k]ej(2π/N)kn , n = −L, . . . , L (4.2)

where, again, N = 2L + 1. (Incidentally, we note that the frequency index
k can also range from −L to L, in which case the Fourier frequencies are
taken in (−π, π).)

As we noted earlier, the set of Fourier frequencies k(2π/N) becomes the
entire interval [0, 2π) as N → ∞. This prompts us to rewrite the sum in
(4.1) as a function of ω instead of k, and to also take the limit as L → ∞
(i.e., N →∞). The resulting expression

∞∑
n=−∞

x[n]e−jωn

is a power series in ejω. Since ejω is periodic with period 2π, so is the
resulting sum.

Definition 4.1.1. The discrete-time Fourier transform (DTFT) of the se-
quence x = {x[n], n ∈ Z} is defined by

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

provided the infinite sum converges.

This definition serves as the analysis equation in the case of an infinite-
length sequence, and provides us with a continuous set of coefficients X(ejω)
for frequencies in [0, 2π). It remains to derive a synthesis equation, i.e.,
to show how the sequence x can be reconstructed by linearly combining
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sinusoids ejω with the above coefficients. As suggested earlier, this linear
combination takes the form of an integral, which is constructed as follows.

For large values of L, we can write an approximation for the sum in
(4.2) by replacing each coefficient X(L)[k] by the value of X(ejω) at the
same frequency:

x[n] ≈ 1
N

N−1∑

k=0

X
(
ej(2π/N)k

)
· ej(2π/N)kn

Multiplying and dividing the right-hand side by 2π results in

x[n] ≈ 1
2π

N−1∑

k=0

X
(
ej(2π/N)k

)
· ej(2π/N)kn ·

(
2π

N

)

The sum consists of N equally spaced samples of the function X(ejω)ejωn

over the interval [0, 2π), each multiplied by the spacing 2π/N (in frequency).
As N → ∞, the sum converges to the integral of the function over the
same interval. The approximation (≈) also becomes exact in the limit, and
therefore

x[n] =
1
2π

∫ 2π

0
X(ejω)ejωn dω , n ∈ Z

In summary, we have obtained the DTFT pair

x[n] DTFT←→ X(ejω)

defined by the equivalent equations:

• Analysis:

X(ejω) =
∞∑

n=−∞
x[n]e−jωn (4.3)

• Synthesis:

x[n] =
1
2π

∫ 2π

0
X(ejω)ejωn dω , n ∈ Z (4.4)

The synthesis equation is an example of a linear combination of a contin-
uously indexed set of signals (the continuous index being frequency ω in this
case). Each signal has its own coefficient (as was the case with the DFT),
and the signals are combined at each time instant n by integrating over the
range of the continuous index.
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4.2 Computation of the Discrete-Time Fourier Trans-
form

4.2.1 Signals of Finite Duration

From a computational viewpoint, there are essential differences between the
DFT of a finite-length vector and the DTFT of a sequence of infinite length.
The DFT is a finite vector of complex values obtained using a finite number
of floating-point operations. The DTFT, on the other hand, is an infinite
sum computed over a continuum of frequencies, which

• is rarely expressible in a simple closed form; and

• involves, as a rule, an infinite number of floating-point operations at
each frequency.

An obvious exception to the second statement is the class of signal se-
quences which contain only finitely many nonzero values.

Definition 4.2.1. The signal sequence x has finite duration if there exist
finite time indices n1 and n2 such that

n < n1 or n > n2 ⇒ x[n] = 0

It has infinite duration otherwise.

The DTFT of a finite-duration sequence is computed by summing to-
gether finitely many terms. We begin by considering three simple examples
of such sequences and their DTFT’s.

Example 4.2.1. The unit impulse sequence (also known as unit sample
sequence) is defined by

x[n] = δ[n] =
{

1, n = 0;
0, n 6= 0

Its DTFT is given by

X(ejω) = 1 · e−jω·0 = 1

Using the synthesis equation 4.4, we see that the unit impulse combines all
sinusoids in the frequency range [0, 2π) with equal coefficients:

δ[n] =
1
2π

∫ 2π

0
ejωn dω ¤
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1

x[n] = δ[n]

                                0                            n

1

 0                    ω          2π

X(e    )jω

Example 4.2.1

Example 4.2.2. The delayed impulse

x[n] = δ[n−m] =
{

1, n = m;
0, otherwise

is shown in the figure.

1

x[n] = δ[n-m]

                                0        m                n

Example 4.2.2

Its DTFT is given by

X(ejω) = e−jωm = cosωm− j sinωm

and is complex valued except for m = 0.

Example 4.2.3. The symmetric impulse pair

x[n] = δ[n + m] + δ[n−m]

has DTFT is given by

X(ejω) = e−jω(−m) + e−jωm = 2 cosmω

This is a real sinusoid in ω having period 2π/m. It is plotted in the case
m = 2.
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1
x[n] = δ[n+m] + δ[n−m] 

                    -m       0          m                n 

2

                 π         ω    2π

1

−2

0

X(e    )jω

Example 4.2.3

In Example 4.2.3, the time-domain signal was real-valued and symmetric
about n = 0:

x[n] = x[−n]

The DTFT X(ejω) was also real-valued and symmetric about ω = π. A
similar relationship between signals in the time and frequency domains was
encountered earlier in our discussion of the DFT. There is, in fact, a direct
correspondence between the structural properties of the two transforms,
and one set of properties can be derived from the other using standard
substitution rules. In the case of the DTFT, symmetry in the time domain
is about n = 0 (which is the middle index of the modified DFT X(L)[k]
introduced in Subsection 4.1.2). Also, time-index reversal (involved in the
definition of symmetry) is understood in linear terms, i.e., n −→ −n; circular
time reversal is impossible on an infinite time axis. The same is true for time
delays of sequences, i.e., they are linear instead of circular.

We know that delaying a vector in time results in multiplying its spec-
trum by a complex sinusoid. As it turns out, the same is true for sequences:

Fact. (Time Delay Property of the DTFT) If y[n] = x[n−m], then Y (ejω) =
e−jωmX(ejω).

Proof. We use the analysis equation (4.4) with a change of summation index
(n′ = n−m):

Y (ejω) =
∞∑

n=−∞
y[n]e−jωn

=
∞∑

n=−∞
x[n−m]e−jωn
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=
∞∑

n′=−∞
x[n′]e−jω(n′+m)

= e−jωm ·
∞∑

n′=−∞
x[n′]e−jωn′

= e−jωmX(ejω)

4.2.2 The DFT as a Sampled DTFT

We now turn to an important connection between the DTFT of a finite-
duration signal x and the DFT of a finite segment which contains all the
nonzero values in x. Let x be given by

x[n] =
{

s[n], 0 ≤ n ≤ L− 1;
0, otherwise

s x

 0             L-1                                  0             L-1  

Figure 4.2: Vector s and its two-sided infinite zero-padded exten-
sion x.

We see that x is obtained from the L-point vector s by padding s with
infinitely many zeros on both sides (as shown in Figure 4.2). The DFT S of
s is given by

S[k] =
L−1∑

n=0

s[n]e−j(2π/L)kn =
L−1∑

n=0

x[n]e−j(2π/L)kn = X(ej(2π/L)k)

i.e., it is obtained by sampling the DTFT X(ejω) of x at the Fourier frequen-
cies for an L-point sample. Similarly, the DFT of the N -point zero-padded
extension of s is obtained by sampling X(ejω) at the Fourier frequencies for
an N -point sample. As N increases, the set of Fourier frequencies becomes
denser (since the spacing equals 2π/N), and the DFT of the zero-padded
vector provides uniformly spaced samples of X(ejω) at a higher resolution.
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If the vector s appears in the sequence x with a delay of m time units, i.e.,

x[n] =
{

s[n−m], m ≤ n ≤ m + L− 1;
0, otherwise,

then by the time delay property established earlier, the DFT S is obtained by
sampling ejωmX(ejω) at frequencies ω = k(2π/L). Also, a dense plot of the
DTFT X(ejω) can be obtained from the DFT of a zero-padded extension
of s by multiplying each entry (of the DFT vector) by the corresponding
sample of e−jωm.

Example 4.2.4. Each of the finite-duration sequences x, y and u is a two-
sided zero-padded extension of an eight-point vector s delayed by a different
amount. Specifically, let

x[0 : 7] = y[3 : 10] = u[−5 : 2] = s

as illustrated in the figure.

s

0

0

0

x

y

u

Example 4.2.4

Suppose we are interested in computing the DTFT’s X(ejω), Y (ejω)
and U(ejω) with frequency resolution of 0.01 cycle/sample, i.e., for ω equal
to multiples of 2π/100. For that purpose, it suffices to compute 100-point
DFT’s. Using the standard MATLAB syntax fft(s,N) for the DFT of the
N -point zero-padded extension of s, we have:

k = (0:99).’ ; % s also assumed column vector
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v = exp(j*2*pi*k/100) ;
X = fft(s,100) ;
Y = X.*(v.^(-3)) ;
U = X.*(v.^5) ;

(Alternatively, each of Y and U is the DFT of a circular shift on the zero-
padded extension of s.)

4.2.3 Signals of Infinite Duration

An infinite-duration signal sequence x has the property that x[n] 6= 0 for
infinitely many values of n. As a result, the analysis equation

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

involves an infinite sum of complex-valued terms. The expression is mean-
ingful only when the sum converges absolutely ; in other words, when the
magnitudes of the summands add up to a finite value:

∞∑
n=−∞

|x[n]| · |e−jωn| =
∞∑

n=−∞
|x[n]| < ∞ (4.5)

Two important types of infinite-duration signals which violate the above
condition are:

• sinusoids (real or complex) of any frequency; and

• periodic signals.

Fortunately, the analysis equation is not needed in order to derive the spec-
trum of either type of signal.

A real or complex sinusoid of requires no further frequency analysis, since
every ω in [0, 2π) is a valid Fourier frequency for the purpose of representing
a sequence. Thus, for example,

x[n] = A cos(ω0n + φ) =
A

2
ejφejω0n +

A

2
e−jφe−jω0n

is a sum of two complex sinusoids at frequencies ω0 and 2π − ω0. We say
that x[n] has a discrete spectrum with components, or lines, at these two
frequencies. To plot a discrete spectrum against frequency, we use a vertical
line for each sinusoidal component, e.g., as shown in Figure 4.3.
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0            ω          π       2π−ω       2π

X(e    )jω

(A/2)e   
-jφjφ

(A/2)e   

00

Figure 4.3: The spectrum of the real-valued sinusoid x[n] =
A cos(ω0n + φ) is shown for ω ∈ [0, 2π). Note that (A/2)ejφ and
(A/2)e−jφ are real-valued only when φ = 0 or φ = π.

Remark. Even though the sum in the analysis equation fails to converge
to a valid function X(ejω), it is still possible to express a discrete spectrum
mathematically using a special type of function (of ω), so that the integral
in the synthesis equation provides the correct time-domain signal. This
representation is beyond the scope of the present discussion.

Periodic sequences can be also represented in terms of sinusoids without
recourse to the analysis equation. This is because a sequence x of period L
is the infinite two-sided periodic extension of the L-point vector

s = x[0 : L− 1] .

This is illustrated in Figure 4.4.

s x

... ...
 0             L-1                              -L                 0                L               2L

Figure 4.4: An infinite periodic sequence as the two-sided periodic
extension of its first period.

From our discussion in Subsection 3.7.2, we know that if S is the (L-
point) DFT of s, then the synthesis equation

s[n] =
1
L

L−1∑

k=0

S[k]ej(2π/L)kn , n = 0, . . . , L− 1
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also returns x[n] for values of n outside the range 0 : L− 1. Thus

x[n] =
1
L

L−1∑

k=0

S[k]ej(2π/L)kn , n ∈ Z

and we have established the following.

Fact. A periodic sequence x of period L is the sum of L sinusoidal compo-
nents at frequencies which are multiples of 2π/L. The coefficients of these
sinusoids are given by the DFT of x[0 : L− 1] scaled by 1/L. The spectrum
X(ejω) also consists of L lines at the above-mentioned frequencies.

The spectrum of a periodic sequence is illustrated in Figure 4.5.

0                                 ω               2π
2π/L

X(e    )jω

Figure 4.5: The spectrum of a periodic signal of period L, shown
for ω ∈ [0, 2π).

We conclude our discussion with an example of an infinite-duration signal
which satisfies the convergence condition (4.5).

Example 4.2.5. Let x be a decaying exponential in positive time:

x[n] =
{

an, n ≥ 0;
0, n < 0

where |a| < 1. This signal is shown (for 0 < a < 1) together with the cases
a = 1 and a > 1, both of which violate the convergence condition (4.5).

For |a| < 1, we have

X(ejω) =
∞∑

n=0

ane−jωn

=
∞∑

n=0

(ae−jω)n

=
1

1− ae−jω
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−3−2−1 0 1 2 3 4 5 6
−1

0

1

2

3

0<a<1

−3−2−1 0 1 2 3 4 5 6
−1

0

1

2

3

a=1

−3−2−1 0 1 2 3 4 5 6
−1

0

1

2

3

a>1

Example 4.2.5

where the last expression is the formula for the infinite geometric sum from
Subsection 3.1.3. The condition |ae−jω| = |a| < 1 guarantees convergence
of the infinite sum.
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4.3 Introduction to Linear Filters

4.3.1 Linearity, Time-Invariance and Causality

In our earlier discussion of the DFT and its applications, we saw how the
main sinusoidal components of a signal manifest themselves in the DFT of
a suitably long segment of that signal. Identifying these components in the
DFT allows us to reconstitute the signal (via an inverse DFT) in a more
selective manner, e.g., by retaining desirable frequencies while eliminating
undesirable ones. This type of signal transformation is known as frequency-
selective filtering and can be applied to any segment of the signal.

Frequency-selective filtering can be performed more directly and effi-
ciently without use of DFT’s, once the frequencies of interest have been
determined. In many applications, these frequencies are known ahead of
time, e.g., radar return signals in a particular frequency band, or interfer-
ence signals from a known source (e.g., a power supply at 50 Hz). In such
cases, it is possible to use a so-called linear filter to generate the filtered
signal in real time—i.e., at the rate at which the original signal is being
sampled or recorded, and with minimal delay. The remainder of this chap-
ter is devoted to basic concepts needed for the analysis of linear filters and
their operation.

A linear filter is a special type of a linear transformation of an input
signal sequence x to an output sequence y. We call y the response of the
filter to the input x. Since the time index for a signal sequence varies
from n = −∞ to n = +∞, we implicitly assume that the linear filter is
active at all times—this is despite the fact that all signals encountered in
practice have finite duration. The term linear system, used earlier for a
linear transformation, is also applicable to a linear filter. Thus a linear filter
H is a linear system whose input and output are related by

y = H(x)

x yLinear Filter
H

Figure 4.6: A linear filter.

Since the objective of filtering is to retain certain sinusoidal components
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while eliminating others, an essential property of the transformation H is
the relationship between the spectra (i.e., DTFT’s) of the sequences x and
y. We begin our discussion of filters by exploring that relationship in a very
simple example.

Consider the transformation H described by the input-output relation-
ship

y[n] = x[n]− x[n− 1] + x[n− 2] , n ∈ Z (4.6)

Recall our earlier definition of a linear transformation:

y(1) = H(x(1))
y(2) = H(x(2))

}
⇒ c1y(1) + c2y(2) = H(c1x(1) + c2x(2))

It is straightforward to show that the transformation H defined by (4.6)
satisfies the above definition of linearity. In addition, H has the following
properties:

• Time-Invariance. In the context of the above example, this means
that the relationship between the output sample y[n] and the input
samples x[n], x[n − 1] and x[n − 2] does not change with the time
index n, i.e., the same coefficients (1, −1 and 1) are used to combine
the three most recent input samples at any time n. Writing (4.6) in
the form

y[·] = x[·]− x[· − 1] + x[· − 2]

better illustrates this feature.

• Causality. This means that the current output y[n] depends only on
present and past values of the input sequence—in this particular case,
x[n], x[n−1] and x[n−2]. This is an essential constraint on all systems
operating in real time, where future values of the input are unavailable.
If, on the other hand, n represents a parameter other than time (e.g.,
a spatial index in an image or a pointer in an array of recorded data),
causality is not a crucial constraint.

The defining properties of a linear filter are linearity and time invariance.
Causality is an option which becomes necessary for filters operating in real
time.

Before proceeding with the analysis of the filter described by (4.6), we
illustrate the operation of the filter in Figure 4.7. The output y[n] is a
linear combination of x[n], x[n − 1] and x[n − 2] with coefficients 1, −1
and 1, respectively. As n increases, the time window containing the three
most recent values of the input slides to the right, while the values of the
coefficients remain the same.
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  1      -1      1

x

y

n

n

Figure 4.7: Illustration of the operation of the filter y[n] = x[n]−
x[n− 1] + x[n− 2].

4.3.2 Sinusoidal Inputs and Frequency Response

In order to understand how the time-domain equation (4.6) determines the
relationship between the spectra of the input and output sequences x and
y, consider a purely sinusoidal input at frequency ω:

x[n] = ejωn , n ∈ Z

The output sequence is then given by

y[n] = ejωn − ejω(n−1) + ejω(n−2)

= (1− e−jω + e−j2ω) · ejωn

= (1− e−jω + e−j2ω) · x[n]

for every value of n. Note that y is obtained by scaling each sample in x
by the same (i.e., independent of time) amount. Since a complex scaling
factor is equivalent to a change of amplitude and a shift in phase, we have
illustrated the following important property of linear filters.
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Fact. When processed by a linear filter, pure sinusoids undergo no distortion
other than a change in amplitude and a shift in phase.

Remark. Nonlinear filters distort pure sinusoids by introducing components
at other frequencies, notably multiples of the input frequency; this effect is
known as harmonic distortion.

The fact stated above can be proved for (almost) any linear filter using a
similar factorization of the output y[n] in terms of the input x[n] = ejωn

and a a frequency-dependent complex scaling factor H(ejω). The function
H(ejω) is known as the frequency response of the filter. In this case,

H(ejω) = 1− e−jω + e−j2ω

We can thus write

x[n] = ejωn, n ∈ Z ⇒ y[n] = H(ejω)ejωn, n ∈ Z (4.7)

We are now in a position to explore the relationship between an arbi-
trary input sequence x and the corresponding output sequence y = H(x)
by shifting our focus to the frequency domain. We may assume that the
sequence x can be expressed as a sum of sinusoidal components, where the
summation is either (i) discrete or (ii) continuous.

In the first case, which includes all periodic sequences, we have

x[n] =
∑

k

Xke
jωkn

where the sum is over a discrete set of frequencies ωk. The coefficients Xk

are, in general, complex-valued. Since the filter is linear, the response y will
be the sum of the responses to each of the sinusoids on the right-hand side.
From (4.7), we know that the response to ejωkn is given by H(ejωk)ejωkn.
We thus obtain

y[n] =
∑

k

H(ejωk)Xke
jωkn

We conclude that the output sequence y also has a discrete spectrum consist-
ing of lines at the same frequencies (i.e., the ωk’s) as for the input sequence
x, but with coefficients scaled by the corresponding value of the frequency
response H(ejωk). In other words,

y[n] =
∑

k

Yke
jωkn
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where
Yk = H(ejωk)Xk

In the second case, we have (by the synthesis equation for the inverse
DTFT) a representation of the filter input as

x[n] =
1
2π

∫ 2π

0
X(ejω)ejωn dω

i.e., x is a linear combination of complex sinusoids whose frequencies range
over the continuous interval [0, 2π). Each of these sinusoids is scaled by the
corresponding value of the frequency response H(ejω) when processed by
the filter, and linearity of the filter implies that

y[n] =
1
2π

∫ 2π

0
H(ejω)X(ejω)ejωn dω

Comparing this expression for y[n] with one provided by the synthesis equa-
tion

y[n] =
1
2π

∫ 2π

0
Y (ejω)ejωn dω

we conclude that Y (ejω) is, in fact, given by H(ejω)X(ejω). This important
result is stated below.

Fact. For a linear filter, the complex spectrum of the output signal is given
by the product of the complex spectrum of the input signal and the filter
frequency response:

Y (ejω) = H(ejω)X(ejω)

If the input spectrum is discrete, then so is the output spectrum, and the
same relationship holds with X(ejω) and Y (ejω) replaced by the coefficients
in the two spectra.

Figure 4.8 illustrates the relationship 4.3.2 between input and output
spectra.

4.3.3 Amplitude and Phase Response

We return to our basic example

y[n] = x[n]− x[n− 1] + x[n− 2] , n ∈ Z

and compute the magnitude and angle of the frequency response

H(ejω) = 1− e−jω + e−j2ω
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X(e    )jω jωY(e    ) = H(e    )X(e    )jω jωH(e    )jω

Figure 4.8: Input-output relationship in the frequency domain.

For the magnitude |H(ejω)| (also known as the amplitude response of
the filter), we have

∣∣H(ejω)
∣∣2 = H∗(ejω)H(ejω)

= (1− e−jω + e−j2ω)(1− ejω + ej2ω)
= 3− 2(ejω + e−jω) + (ej2ω + e−j2ω)
= 3− 4 cos ω + 2 cos 2ω

and thus
|H(ejω)| = (3− 4 cos ω + 2 cos 2ω)1/2

Since cos(nπ+θ) = cos(nπ−θ), we see that |H(ejω)| is symmetric about
ω = π. This is due to the fact that H(ejω) is the DTFT of a real-valued
sequence, namely

δ[n]− δ[n− 1] + δ[n− 2]

and as such, it exhibits the same kind of conjugate symmetry as does the
DFT of a real-valued vector.

Note that in this case, the amplitude response achieves its maximum at
ω = π, and has two zeros at ω = π/3 and ω = 5π/3. This implies that:

• among all possible complex sinusoidal inputs, (−1)n will undergo the
most amplification (or least attenuation);

• sinusoidal inputs such as ej(π/3)n, ej(5π/3)n and cos(πn/3 + φ) will all
be nulled out, i.e., will result in y[n] = 0 for all n.

The symmetry of the filter coefficients also allows us to obtain |H(ejω)|
in a more direct way:

H(ejω) = e−jω(ejω − 1 + e−jω)
= e−jω(2 cosω − 1)
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Since |e−jω| = 1, we obtain

|H(ejω)| = |2 cos ω − 1|

which is equivalent to the earlier expression (as can be shown by using the
identity cos 2ω = 2 cos2 ω − 1).

The angle ∠H(ejω) is known as the phase response of the filter. In this
case, we have

∠H(ejω) = −ω + ∠(2 cosω − 1)

Since 2 cosω−1 is a real number, the second term equals 0 (when the number
is positive) or π (when the number is negative). We thus have

∠H(ejω) =




−ω, 0 ≤ ω < π/3;
−ω + π, π/3 ≤ ω ≤ 5π/3;
−ω, 5π/3 < ω < 2π.

The amplitude and phase responses are plotted in Figure 4.9, against
cyclic frequency ω/2π. Note that the phase response is antisymmetric about
ω = π, i.e., ∠H(ejω) = −∠H(ej(π−ω)), which is also due to the fact that the
filter coefficients are real-valued.

0 0.5 1
0

1

2

3
Amplitude Response

ω/2π
0 0.5 1

−1

−0.5

0

0.5

1
Phase Response (rad/π)

ω/2π

Figure 4.9: Amplitude response (left) and phase response (right)
of the filter y[n] = x[n]−x[n−1]+x[n−2]. Frequencies and phases
are normalized by 2π and π, respectively.
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4.4 Linear Filtering in the Frequency Domain

4.4.1 System Function and its Relationship to Frequency Re-
sponse

In the previous section, we saw that the response of the linear filter H to
the complex sinusoidal input

x[n] = ejωn , n ∈ Z

equals
y[n] = H(ejω)ejωn , n ∈ Z

In other words, the input and output signal sequences differ by a complex
scaling factor which depends on the frequency ω:

y = H(ejω) · x

This factor was called the frequency response of the filter.
This scaling (or proportionality) relationship between the input and out-

put sequences can be generalized to a class of signals known as complex
exponentials:

x[n] = zn , n ∈ Z

where z is any complex number other than z = 0 (which would give zn = ∞
for n < 0). Writing z in the standard polar form

z = rejω

we have
x[n] = rnejωn

Thus a complex sinusoid is a special case of a complex exponential where
r = 1, i.e., z lies on the unit circle. Also,

|x[n]| = rn · ∣∣ejωn
∣∣ = rn

and thus the magnitude of x[n]

• increases geometrically (in n) if |z| > 1;

• decreases geometrically if |z| < 1;

• is constant if |z| = 1,
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Figure 4.10: Three choices of z (left) and the corresponding com-
plex exponentials in magnitude (right).

as illustrated in Figure 4.10.
Consider the filter introduced in Section 4.3, namely

y[n] = x[n]− x[n− 1] + x[n− 2] , n ∈ Z

The response of the filter to x[n] = zn equals

y[n] = zn − zn−1 + zn−2

= (1− z−1 + z−2)zn

= (1− z−1 + z−2) · x[n]

Letting
H(z) = 1− z−1 + z−2

we can restate the above result as follows:

x[n] = zn, n ∈ Z ⇒ y[n] = H(z)zn, n ∈ Z (4.8)

The fact established in Subsection 4.3.2, namely that

x[n] = ejωn, n ∈ Z ⇒ y[n] = H(ejω)ejωn, n ∈ Z

is a special case of (4.8) where z = ejωn.
The function H(z), where z is complex, is known as the system function,

or transfer function, of the filter H. The frequency response of the filter is
obtained from H(z) by taking z on the unit circle, i.e., z = ejω.
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4.4.2 Cascaded Filters

The cascade (also referred to as series or tandem) connection of two filters
H1 and H2 is illustrated in Figure 4.11. At each time instant, the output of
H1 serves as the input to H2.

x = x H y   = yy   = x H
(1) (2)(1) (2)

1 2

H

Figure 4.11: Cascade connection of two filters.

In Chapter 2, we showed that the cascade (A ◦B)(·) of two linear trans-
formations A(·) and B(·) is represented by the matrix product AB (where
A and B are the matrices corresponding to A(·) and B(·), respectively). A
linear filter is a special type of linear transformation which is invariant in
time. The cascade of two such filters is also a linear filter H whose sys-
tem function H(z) bears a particularly simple relationship to the system
functions H1(z) and H2(z) of the constituent filters.

From (4.8), we know that H(z) is the scaling factor between the input
and output sequences x and y when the former (input) is given by x[n] = zn.
In this case, x is also the input to the first filter H1, which results in an
output

y(1)[n] = H1(z)zn

This scaled complex exponential is the input to the second filter H2, and
thus

y[n] = y(2)[n] = H1(z)H2(z)zn

We have established the following.

Fact. The cascade connection H of two filters H1 and H2 has system func-
tion given by

H(z) = H1(z)H2(z)

Similarly, the frequency response of H is given by

H(ejω) = H1(ejω)H2(ejω) ¤

Note that the order in which the two filters are cascaded is immaterial;
the same system function is obtained if H2 is followed by H1.
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Example 4.4.1. Consider a cascade of two identical filters, whose input-
output relationship is given by (4.6). Thus

y(1)[n] = x[n]− x[n− 1] + x[n− 2]
y[n] = y(1)[n]− y(1)[n− 1] + y(1)[n− 2]

In this case, H1(z) = H2(z) = 1− z−1 + z−2, and thus the system function
of the cascade is given by

H(z) = H1(z)H2(z) = 1− 2z−1 + 3z−2 − 2z−3 + z−4

Similarly,

H(ejω) = H1(ejω)H2(ejω)
= 1− 2e−jω + 3e−j2ω − 2e−j3ω + e−j4ω

= e−j2ω(3− 4 cos ω + 2 cos 2ω)
= e−j2ω(1− 2 cos ω)2

4.4.3 The General Finite Impulse Response Filter

We introduced linear filters by considering a particular example where the
filter output at any particular instant is formed by linearly combining the
three most recent values of the input, with coefficients which are constant
in time. There is nothing special about choosing three input samples; we
can draw the same conclusions about the filter given by the equation

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ] , n ∈ Z (4.9)

where the M + 1 most recent values of the input are combined to form the
output at any given time.

Definition 4.4.1. A filter defined by (4.9) is known as a finite impulse
response (FIR) filter of order M .

The qualifier finite in the above definition reflects the fact that a finite
number of input samples are combined to form a particular output sample.
The term impulse response will be defined shortly.

The system function of the FIR filter defined by (4.9) is given by

H(z) = b0 + b1z
−1 + · · ·+ bMz−M
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and the frequency response is obtained by letting z = ejω:

H(ejω) = b0 + b1e
−jω + · · ·+ bMe−jωM

Comparing the above equation for H(ejω) with the definition of the
DTFT, we see that H(ejω) is, in fact, the DTFT of the finite-duration
sequence h defined by

h[n] =
{

bn, 0 ≤ n ≤ M ;
0, otherwise.

The sequence h is known as the impulse response of the filter. As we shall
see soon, it is the response of the filter to a unit impulse, i.e., to the signal
x[n] = δ[n].

The coefficient vector b and the impulse response h for the example of
Section 4.3 is shown in Figure 4.12.

b h

1 1 11

-1 -1

0             2

Figure 4.12: The coefficient vector (left) and the impulse re-
sponse sequence (right) of the FIR filter y[n] = x[n] − x[n − 1] +
x[n− 2].

The relationship between b and the frequency response H(ejω) suggests
a convenient way of computing H(ejω) based on the DFT of b. To evaluate
H(ejω) at N ≥ M +1 evenly spaced frequencies in [0, 2π), all we need to do
is compute the DFT of the (M + 1)-point vector b zero-padded to length
N . Thus for the filter considered in Section 4.3, the frequency response at
N = 256 evenly spaced frequencies can be computed in MATLAB using the
command

H = fft([1;-1;1],256)

The amplitude and phase responses in Figure 4.9 in the previous section are
the graphs of abs(H) and angle(H), respectively.
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4.4.4 Frequency Domain Approach to Computing Filter Re-
sponse

The input-output relationship

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ]

provides us with a direct way of implementing an FIR filter. At every instant
n, a new value of the input x[n] is read into a buffer, an old value (namely
x[n − M − 1]) is shifted out of the same buffer, and the output y[n] is
computed using M + 1 multiplications and M additions.

In applications where a single processor is used to perform many signal
processing tasks in parallel, computational efficiency is a key consideration.
It therefore pays to examine how a simple component such as an FIR filter
(given by the above equation) can be implemented efficiently. In this sub-
section, we provide a partial answer to this question for two special types of
inputs, both of which are readily expressed in terms of complex exponentials
or complex sinusoids. A third class of such input signals will be considered
in the following subsection.

The first type of input we consider is a real-valued sinusoid, i.e.,

x[n] = A cos(ω0n + φ) , n ∈ Z

Using the identity ejθ + e−jθ = 2 cos θ, we can write the signal in terms of
two complex sinusoids as

x[n] =
A

2
ejφejω0n +

A

2
e−jφe−jω0n

(In other words, x has a discrete spectrum with lines at frequencies ω and
2π − ω.) By linearity of the filter, the output is given by

y[n] =
A

2
ejφH(ejω0)ejω0n +

A

2
e−jφH(e−jω0)e−jω0n

At this point, we note that

H(e−jω) = b0 + b1e
jω + · · ·+ bMejωM

=
(
b0 + b1e

−jω + · · ·+ bMe−jωM
)∗

= H∗(ejω)

where, for the last equality, we also used the fact the the filter coefficients
bi are real. We thus have

y[n] =
A

2
ejφH(ejω0)ejω0n +

A

2
e−jφH∗(ejω0)e−jω0n
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The two terms on the right-hand side are complex conjugates of each other,
and thus the identity z + z∗ = 2<e{z} gives

y[n] = <e
{

AH(ejω0)ej(ω0n+φ)
}

An alternative expression can be written using the amplitude and phase
responses

∣∣H(ejω)
∣∣ and ∠H(ejω):

H(ejω) =
∣∣H(ejω)

∣∣ ej∠H(ejω)

and thus

y[n] = <e
{

A
∣∣H(ejω0)

∣∣ ej(ω0n+φ+j∠H(ejω0 ))
}

= A
∣∣H(ejω0)

∣∣ cos
(
ω0n + φ + ∠H(ejω0)

)

Comparing the resulting expression with x[n] = A cos(ω0n + φ), we con-
clude the following.

Fact. The response of a linear filter to a real-valued sinusoid of frequency
ω0 is a sinusoid of the same frequency. The gain (ratio of output to input
amplitude) is given by the filter amplitude response at ω0, while the phase
shift (of the output relative to the input) is given by the phase response at
the same frequency.

Example 4.4.2. Let

x[n] = cos
(

2πn

3
− π

4

)
, n ∈ Z

be the input to the second-order FIR filter

y[n] = x[n]− x[n− 1] + x[n− 2] , n ∈ Z

introduced in Section 4.3. We have

H(ej(2π/3)) = e−j(2π/3)(2 cos(2π/3)− 1)
= −2e−j(2π/3)

= 2ej(π/3)

and thus |H(ej(2π/3))| = 2, ∠H(ej(2π/3)) = π/3. Using the fact established
above, we obtain

y[n] = 2 cos
(

2πn

3
− π

4
+

π

3

)

= 2 cos
(

2πn

3
+

π

12

)
, n ∈ Z ¤
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The foregoing analysis can be also extended to the real exponential

x[n] = Arn , n ∈ Z

and the real oscillating exponential

x[n] = Arn cos(ω0n + φ) , n ∈ Z

where A and r are real-valued. In each case, the output can be computed
in terms of the system function H(z) as follows:

x[n] = Arn =⇒ y[n] = AH(r)rn

x[n] = Arn cos(ω0n + φ) =⇒ y[n] = A
∣∣H(rejω0)

∣∣ rn cos
(
ω0n + φ + ∠H(rejω0)

)

Example 4.4.3. Consider the same filter as in Section 4.3, with two differ-
ent input sequences:

x(1)[n] = 3n

x(2)[n] = 3n cos
(

2πn

3

)

The filter system function is given by

H(z) = 1− z−1 + z−2

and thus

H(3) = 7/9
H(3ej(2π/3)) = 2.614 + j10.472 = 10.793 · ej1.326

It follows that

y(1)[n] =
7
9
· 3n

y(2)[n] = 10.793 · 3n · cos
(

2πn

3
+ 1.326

)

4.4.5 Response to a Periodic Input

The third type of input x for which the filter response y can be readily
computed using a frequency domain-based approach (i.e., based on H(ejω))
is a periodic sequence of period (say) L:

x[n + L] = x[n] , n ∈ Z



244

Before we explain how H(ejω) can be used to compute y, we note that

y[n + L] = b0x[n + L] + b1x[n + L− 1] + · · ·+ bMx[n + L−M ]
= b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ]
= y[n]

and thus the response is also periodic with period L. It therefore suffices to
compute y[0 : L− 1], which will be referred to as the first period of y.

The frequency domain approach to computing y[0 : L − 1] exploits the
fact that the periodic input signal x is the sum of L sinusoids at frequencies
which are multiples of 2π/L. As was discussed in Subsection 4.2.3, if the
first period x[0 : L− 1] of x has DFT X [·], then the equation

x[n] =
1
L

L−1∑

k=0

X [k]ej(2π/L)kn

holds for every n, i.e., it describes the entire sequence x. By linearity of the
filter, the output sequence y is given by

y[n] =
1
L

L−1∑

k=0

H
(
ej(2π/L)k

)
X [k]ej(2π/L)kn

Since y is also periodic with period L, we have (similarly to x)

y[n] =
1
L

L−1∑

k=0

Y[k]ej(2π/L)kn

where Y[·] is the DFT of y[0 : L − 1]. Comparing the two expressions for
y[n], we see that

Y[k] = H
(
ej(2π/L)k

)
X [k]

In other words, the DFT of y[0 : L − 1] is obtained by multiplying each
entry of the DFT of x[0 : L− 1] by the frequency response of the filter at the
corresponding Fourier frequency.

This observation leads to the following algorithm for computing y[0 :
L− 1] given x[0 : L− 1] and the coefficient vector b:

• Compute the DFT of x[0 : L− 1].

• Compute H(ejω) at the same Fourier frequencies, e.g., using the DFT
of b after zero-padding to a multiple of L.
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• Multiply the two vectors element-by-element.

• Invert the DFT of the resulting vector to obtain y[0 : L− 1].

Example 4.4.4. Consider the second-order filter introduced in Section 4.3.
Suppose that the input sequence x is periodic with period L = 7, and such
that

x[0 : 6] =
[

2 5 3 4 −7 −4 −1
]T

The first period of the output sequence is computed in MATLAB as follows:

x = [2 5 3 4 -7 -4 -1].’ ;
b = [1 -1 1].’; % filter coefficient vector
X = fft(x);
H = fft(b,7);
Y = H.*X;
y = ifft(Y)

resulting in
y[0 : 6] =

[ −1 2 0 6 −8 7 −4
]T ¤

In the example above, M + 1 < L, i.e., the coefficient vector was shorter
than the first input period. By zero-padding the coefficient vector b to length
L and taking its DFT, we obtained precisely those values of the frequency
response H(ejω) which were needed in order to compute the product in
(4.4.5). Recalling that element-wise multiplication of two DFT’s of the
same length is equivalent to circular convolution in the time domain, we see
that the first period of the output signal is, in effect, computed by circularly
convolving the first period of the input signal with the zero-padded (to
length L) coefficient vector. This fact can be established independently by
examining the time-domain expression

y[n] =
M∑

k=0

bkx[n− k]

in the special case where x is periodic with period L. For this reason, circular
convolution is also known as periodic convolution.

If the length of the coefficient vector is greater than the input period
L, then the algorithm outlined in Example 4.4.4 needs to be modified—
otherwise the command H = fft(b,L) would lead to truncation of b, re-
sulting in an error. Two possible modifications, assuming that M + 1 is
satisfies

(J − 1)L < M + 1 ≤ JL

for some integer J > 1, are:
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• Zero-pad b to length JL, then extract every J th entry of the resulting
DFT. Or,

• Use the first L periods of x (in conjunction with zero-padding b to
length JL), in which case the answer will consist of the first L periods
of y. This approach is also equivalent to a circular convolution in the
time domain (with vectors of length JL).
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4.5 Frequency-Selective Filters

4.5.1 Main Filter Types

We motivated our discussion of linear filters using the concept of frequency
selection. A frequency-selective filter reconstructs at its output certain desir-
able sinusoidal components present in the input signal, while attenuating or
eliminating others. The range of frequencies which are preserved is known
as the filter passband, while those that are rejected are referred to as the
stopband.

For filters with real-valued coefficients operating in discrete time, it is
customary to specify frequency bands as subintervals of [0, π]. This is be-
cause the filter frequency response H(ejω) has conjugate symmetry about
ω = π:

H(ej(2π−ω)) = H(e−jω) = H∗(ejω) (4.10)

(This is equivalent to symmetry in the amplitude response and antisymmetry
in the phase response.) Thus it suffices to specify H(ejω) over [0, π], which
is also the effective range of frequencies for real-valued sinusoids.

Remark. Any frequency band (i.e., interval) in [0, π] has a symmetric band in
[π, 2π]. Equation (4.10) also implies that H(ejω) has conjugate symmetry
about ω = 0; thus any frequency band in [0, π] has a symmetric band in
[−π, 0], as well. This is illustrated in Figure 4.13.

   −π                        0                          π                        2π     

Figure 4.13: A frequency band in [0, π] (dark) and its symmetric
bands (light), shown on the unit circle (left) and the frequency axis
(right).

The four main types of frequency selective filters are: lowpass, highpass,
bandpass and bandstop. The frequency characteristics (i.e., passband and
stopband) of each type are illustrated in Figure 4.14.
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Lowpass Highpass

Bandpass Bandstop

Figure 4.14: Passbands and stopbands of frequency-selective fil-
ters.

4.5.2 Ideal Filters

An (zero-delay) ideal filter has the following properties:

• the passband and stopband are complements of each other (with re-
spect to [0, π]);

• the frequency response is constant over the passband; and

• the frequency response is zero over the stopband.

We illustrate some general properties of ideal filters by considering the
ideal lowpass filter. The filter frequency response is shown in Figure 4.15,
plotted over a full cycle (−π, π]. The edge of the passband is known as the
cutoff frequency ωc.

H(e    )jω

−π              −ω     0         ω               π c c

A

Figure 4.15: Frequency response of an ideal lowpass filter.



249

The impulse response h of the ideal lowpass filter is given by the inverse
DTFT of its frequency response H(ejω). We thus have

h[n] =
1
2π

∫ 2π

0
H(ejω)ejωndω

=
1
2π

∫ π

−π
H(ejω)ejωndω

=
A

2π

∫ ωc

−ωc

ejωndω

=
A

2π

[
ejωn

jn

]ωc

−ωc

=
A

2π
· ejωcn − e−jωcn

jn

=
A sin(nωc)

πn

The impulse response h is plotted in Figure 4.16 for the case ωc = π/4,
(with A=1). For any cutoff frequency ωc < π, h is a sequence of infinite
duration, extending from n = −∞ to n = +∞. By examining the input-
output relationship

y[n] =
∞∑

k=−∞
h[k]x[n− k] ,

we see that infinitely many future values of the input signal x are needed
in order to compute the output at any time n. This is clearly infeasible
in practice (i.e., the filter is “irrecoverably” noncausal). Practical lowpass
filters have frequency responses that necessarily deviate from the ideal form
shown in Figure 4.15.

Similar conclusions can be drawn for other ideal frequency-selective fil-
ters (highpass, bandpass and bandstop). In short, filters with perfectly flat
response over the passband, zero response over the stopband, and infinitely
steep edges at the cutoff frequencies are not practically realizable.

4.5.3 Amplitude Response of Practical Filters

Figure 4.17 shows the main features of the amplitude response |H(ejω)| of
a lowpass filter used in practice.

• The passband is the interval of frequencies over which the amplitude
response takes high values. These values range from A(1−δ) to A(1+δ)
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Figure 4.16: Impulse response h[n] of an ideal lowpass filter with
cutoff frequency ωc = π/4, plotted for n = −15 to n = 15.

Aε

0

A(1−δ)
A(1+δ)

ω
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ω
s

π

|H(exp(jω))|

Figure 4.17: Amplitude response of a practical lowpass filter.

(as shown in Figure 4.17), and the fluctucation in value is known as
(passband) ripple. The edge (endpoint) of the passband ωp is the
highest frequency for which |H(ejω)| = A(1− δ).
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• The stopband is the interval of frequencies over which the amplitude re-
sponse takes low values; these range from 0 to ε in Figure 4.17. Again,
the fluctuation in the value of |H(ejω)| is referred to as (stopband)
ripple. The ratio

midpoint of amplitude range over passband
maximum of amplitude over stopband

=
A

Aε
=

1
ε

is known as the stopband attenuation. The edge (endpoint) of the
stopband ωs is the lowest frequency for which |H(ejω)| = Aε.

• The transition band is the interval (ωp, ωs) separating the passband
from the stopband.

(Note that an ideal filter has δ = 0, ε = 0, ωp = ωs = ωc, and an empty
transition band.)

The parameters of other filter types (highpass, bandpass and bandstop)
are defined similarly.

4.5.4 Practical FIR Filters

We began our discussion of FIR filters in Section 4.3 by examining the the
second-order filter

y[n] = x[n]− x[n− 1] + x[n− 2] , n ∈ Z

whose frequency response

H(ejω) = e−jω(2 cosω − 1)

crudely approximates that of a bandstop filter. To obtain filters with good
frequency responses, it is necessary to combine more values of the input
signal, i.e., use a higher filter order M . There are several design techniques
for frequency-selective FIR filters, the details of which are beyond the scope
of our discussion. In the case where M is even-valued, the resulting impulse
response sequence

h[n] =
{

bn, 0 ≤ n ≤ M ;
0, otherwise.

resembles the impulse response sequence of an ideal filter over the time
interval n = −M/2 and n = M/2, delayed in time by M/2 units. Odd
values of M are also used in practice.
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The coefficient vectors of FIR filters used for frequency selection typically
have symmetry about n = M/2, i.e.,

bn = bM−n (4.11)

(This feature was also present in the second-order filter introduced in Section
4.3). As a result, their impulse response sequences are also symmetric about
n = M/2:

h[n] = h[M − n]

Figure 4.18 shows the impulse response of a lowpass filter of order M = 17,
which is symmetric about n = 17/2.

−5 0 5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

Figure 4.18: Impulse response of a lowpass filter of order M = 17.

The frequency response of an FIR filter satisfying (4.11) can be always
written in the form

H(ejω) = e−j(Mω/2)F (ω) (4.12)

where F (ω) is a real-valued function expressible as a sum of cosines. We
illustrate this property using two examples.

Example 4.5.1. Consider the FIR filter with coefficient vector

b =
[

1 −2 3 −2 1
]T
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Here M = 4 (even). The filter frequency response is given by

H(ejω) = 1− 2e−jω + 3e−j2ω − 2e−j3ω + e−j4ω

= e−j2ω
(
ej2ω − 2ejω + 3− 2e−jω + e−j2ω

)

= e−j2ω
(
3− 2(ejω + e−jω) + (ej2ω + e−j2ω)

)

= e−j2ω(3− 4 cos ω + 2 cos 2ω)

and thus
F (ω) = 3− 4 cos ω + 2 cos 2ω ¤

Example 4.5.2. In this case, M = 5 (odd). The coefficient vector is given
by

b =
[

1 −1 2 2 −1 1
]T

and the filter frequency response is given by

H(ejω) = 1− e−jω + 2e−j2ω + 2e−j3ω − e−j4ω + e−j5ω

= e−j(5ω/2)(ej(5ω/2) − ej(3ω/2) + 2ej(ω/2)

+2e−j(ω/2) − e−j(3ω/2) + e−j(5ω/2))
= e−j(5ω/2) (4 cos(ω/2)− 2 cos(3ω/2) + 2 cos(5ω/2))

and thus
F (ω) = 4 cos(ω/2)− 2 cos(3ω/2) + 2 cos(5ω/2) ¤

Equation (4.12) allows us to express the amplitude and phase responses
as

∣∣H(ejω)
∣∣ = |F (ω)| and ∠H(ejω) = −Mω

2
+

{
0, F (ω) ≥ 0;
π, F (ω) < 0.

Note that the phase response is a linear function of ω with jumps of π
occurring wherever F (ω) changes sign. Since F (ω) has no zeros over the
passband, no such discontinuities occur there; thus the phase response is
exactly linear. By the time delay property of the DTFT (Subsection 4.2.3),
adding a linear function of frequency to the phase spectrum is equivalent to
a delay in the time domain. Thus all frequency components of interest (i.e.,
those in the passband) are reconstructed at the output with the same delay,
equal to M/2 time units. This is a very appealing property of FIR filters
with symmetric coefficients. The other important class of filters (known
as IIR, or infinite impulse response) exhibits a nonlinear phase response,
resulting in sinusoidal components reappearing at the output with variable
delays. This effect, known as phase distortion, can severely change the shape
of a pulse and can be particularly noticeable in images.
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4.5.5 Filter Transformations

Multiplication of a sequence by a complex sinusoid in the time domain results
in a shift of its DTFT in frequency.

Fact. (Multiplication by a Complex Sinusoid in Time Domain) If y[n] =
ejω0nx[n], then Y (ejω) = X(ej(ω−ω0)).

This follows from the analysis equation:

Y (ejω) =
∞∑

n=−∞
y[n]e−jnω

=
∞∑

n=−∞
x[n]ejω0ne−jnω

=
∞∑

n=−∞
x[n]e−jn(ω−ω0)

= X(ej(ω−ω0))

This property, applied to the impulse response sequence h and the fre-
quency response H(ejω), allows us to make certain straightforward trans-
formations between frequency-selective filters of different types (lowpass,
highpass, bandpass and bandstop). For example:

• Multiplication of h[n] by ejπn = (−1)n results in H(ejω) being shifted
in frequency by π radians—this transforms a lowpass filter into a high-
pass one, and vice versa.

• Multiplication of h[n] by

cos(ω0n) =
ejω0n + e−jω0n

2
produces a new frequency response equal to

H(ej(ω−ω0)) + H(ej(ω+ω0))
2

If the original filter is lowpass with passband and stopband edges at
ω = ωp and ω = ωs, respectively, then the above transformation will
produce a bandpass filter provided ωs < ω0 < π − ωs. The center of
the passband will be at ω = ω0 and its width will be about 2ωp.

These transformations are illustrated in Figure 4.19.
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Figure 4.19: Multiplication of the impulse response by a sinusoid
results in filter type transformation: lowpass (i) to highpass (ii);
and lowpass (i) to bandpass (iii).
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4.6 Time Domain Computation of Filter Response

4.6.1 Impulse Response

The input-output relationship

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ] (4.13)

of a finite impulse response filter allows us to directly compute the response
y of the filter to an arbitrary input sequence x. We have seen that for cer-
tain classes of input signals (notably sinusoids, exponentials and periodic
signals), the output sequence can be computed efficiently using frequency-
domain properties of the filter such as the system function H(z) and the
frequency response H(ejω). The frequency domain-based approach is gener-
ally recommended for input signals whose spectra are discrete, or else have
“nice” closed forms which enable us to invert the equation

Y (ejω) = H(ejω)X(ejω)

with ease. In most practical applications, the signals involved are not as
structured, and it becomes necessary to use the equation (4.13) directly.

In Section 4.3, we described the operation of the FIR filter defined by
(4.13) as follows: At each time n, the time-reverse of the vector b is aligned
with a window of the input signal spanning time indices n−M through n.
The products bkx[n− k] are computed, then added together to produce the
output sample y[n]. The time-reverse of b is then shifted to the right by
one time index, a new window is formed, and the computation is repeated
to yield y[n+1], etc. This procedure is illustrated graphically in Figure 4.20
(i).

In our discussion of the FIR frequency response and system function, we
defined the so-called impulse response of the filter as the sequence h formed
by padding the vector b with infinitely many zeros on both sides. To see
why that sequence was named so, consider an input signal consisting of a
unit impulse at time zero:

x[n] = δ[n]

This signal is plotted in the top graph of Figure 4.20 (ii). If n < 0, then
indices n − M through n are all (strictly) negative, and thus x[n − M ] =
. . . = x[n] = 0. This implies that

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M ] = 0
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bM    ...     b2  b1  b0

n

n

x[n]
x[n-M]

Σ . = y[n]
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0          2
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b1

b3

b4
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(i) (ii)

n

n

Figure 4.20: (i) Filter response at time n formed by linear com-
bination of input signal values in a sliding time window; (ii) Filter
response to a unit impulse.

A zero value for y[n] is also obtained for n > M , in which case indices
n−M through n are all (strictly) positive and the corresponding values of
the input signal are all zero.

For 0 ≤ n ≤ M , the window of input samples which are aligned with
the (time-reversed) vector b includes the only nonzero value of the input,
namely x[0] = 1. Then

y[n] = bnx[0] = bn

as illustrated in the bottom graph of Figure 4.20 (ii).
Thus the response of the filter to a unit impulse is given by

h[n] =
{

bn, 0 ≤ n ≤ M ;
0, otherwise.

(4.14)

Clearly, the designation finite impulse response (FIR) is appropriate for
this filter, since the duration of the impulse response sequence is finite (it
begins at time 0 and ends at time M).
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4.6.2 Convolution and Linearity

The definition of h in (4.14) allows us to rewrite the input-output relation-
ship (4.13) as follows:

y[n] =
M∑

k=0

bkx[n− k]

=
M∑

k=0

h[k]x[n− k]

=
∞∑

k=−∞
h[k]x[n− k] (4.15)

where the conversion to an infinite sum was possible because h[k] = 0 for
k < 0 and k > M . Although only a finite number (i.e., M +1) of summands
are involved here, the infinite sum in (4.15) gives us a general form for
the input-output relationship of a linear filter which would also hold if the
impulse response had infinite duration. (Such filters are beyond the scope
of the present discussion.)

Definition 4.6.1. The (linear) convolution of sequences h and x is the
sequence y denoted by

y = h ∗ x

and defined by

y[n] =
∞∑

k=−∞
h[k]x[n− k] ¤

In the above sum, k is a (dummy) variable of summation. At a given
time n, the output is formed by summing together all products of the form
h[k]x[n−k] (note that the time indices in the two arguments always add up
to n).

The concept of convolution was encountered earlier in its circular form,
which involved two vectors of the same (finite) length. The relationship
between linear and circular convolution will be explored in the next section.
In the meantime, we note that linear convolution is symmetric:

h ∗ x = x ∗ h

or equivalently,
∞∑

k=−∞
h[k]x[n− k] =

∞∑

k=−∞
x[k]h[n− k]
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This can be shown using a change of variable from k to k′ = n−k in (4.15).
As k ranges over all integers (for fixed n), so does k′ (in reverse order), and
thus

∞∑

k=−∞
h[k]x[n− k] =

∞∑

k′=−∞
h[n− k′]x[k′] =

∞∑

k=−∞
x[k]h[n− k]

The last expression for the convolution sum, namely

y[n] =
∞∑

k=−∞
x[k]h[n− k] , (4.16)

can be also obtained directly from the linearity of the filter. We saw earlier
that the response of the FIR filter to the input x[n] = δ[n] is given by h[n],
defined in (4.14) above. By a similar argument, the response to a delayed
impulse

x[n] = δ[n− k] n ∈ Z

is given by h[n] delayed by k time instants, which is the signal h[n− k].
We can express any input x as a linear combination of delayed impulses:

x[n] =
∞∑

k=−∞
x[k]δ[n− k]

By linearity of the filter, the response y to input x will be the linear com-
bination of the responses to each of the delayed impulses in the sum, i.e.,

y[n] =
∞∑

k=−∞
x[k]h[n− k]

This is the same equation as (4.16) above.

4.6.3 Computation of the Convolution Sum

We now illustrate the computation of (4.15) in its simplest and most fre-
quently encountered form, where both signal sequences h and x have finite
duration. We will assume that x[n] = 0 for n < 0 or n ≥ L; and simi-
larly, h[n] = 0 for n < 0 or n ≥ P (thus the order of the FIR filter equals
M = P − 1).

As we noted previously, in order to compute y[n], we need to form the
products h[k]x[n− k] (where k ranges over all time indices), then sum them
together. The easiest way to form x[n− k] is to reverse x in time:

x̃[k] = x[−k] ;
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then delay x̃ by n time instants:

x̃[k − n] = x[n− k]

This procedure is depicted in Figure 4.21, where x[n − k] is plotted (as
a function of k) for different values of n. We note the following:

x[k]

 0           L-1       k                                                   0                   P-1                     k 

h[k]

x[-k]

x[n1-k]

x[n2-k]

x[n3-k]

x[n4-k]

x[n5-k]

n1

n2

n3

n4

n5

Figure 4.21: Illustration of the convolution of two finite-length
sequences h and x.

• For n < 0, the nonzero values of the sequence x[n− k] do not overlap
(in time) with those of h[k]. As a result, h[k]x[n−k] = 0 for all k, and
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y[n] = 0. (This is expected since the impulse response is causal and
the input is zero for negative time indices.)

• Similarly, no overlap occurs when the left edge of x[n− k] follows the
right edge of h[k]. This happens when n− (L− 1) > P − 1, i.e., when
n > P + L− 2.

• For 0 ≤ n ≤ P + L − 2, the nonzero segments of x[n − k] and h[k]
overlap in varying degrees, and the resulting value of y[n] is, in general,
nonzero.

We summarize our conclusions as follows.

Fact. The convolution y = h∗x of two finite-duration sequences h and x is
also a finite-duration sequence. If the nonzero segments of h and x begin at
time n = 0 and have length P and L, respectively, then the nonzero segment
of y also begins at time n = 0 and has length P + L− 1.

Example 4.6.1. Consider the two sequences h and x given by

h[n] = −δ[n] + 3δ[n− 1]− 3δ[n− 2] + δ[n− 3]

and
x[n] = δ[n] + 2δ[n− 1] + 3δ[n− 2]

h[k]

0

-1

3

1

-3

3 k

x[k]

0

1
2

3

2 k

Example 4.6.1

Based on our earlier discussion, the nonzero segment of y = h ∗x begins
at time n = 0 and has length 4 + 3− 1 = 6. Thus we only need to compute
y[n] for n = 0, . . . , 5.
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We follow the technique outlined earlier and illustrated in Figure 4.21.
Instead of plotting, we tabulate (in rows) the values of h[k] along with those
x[n − k] for each time index n of interest (i.e., n = 0 : 5). The products
h[k]x[n− k] are then computed and summed together for every value of n,
and the resulting output value y[n] is entered in the last column.

k −2 −1 0 1 2 3 4 5 y[n]
h[k] −1 3 −3 1
x[−k] 3 2 1 −1
x[1− k] 3 2 1 1
x[2− k] 3 2 1 0
x[3− k] 3 2 1 4
x[4− k] 3 2 1 −7
x[5− k] 3 2 1 3

We thus obtain

y[0 : 5] =
[ −1 1 0 4 −7 3

]T ¤

Remark. Since convolution is symmetric, the same result would have been
obtained in the previous example by interchanging the signals x and h.

4.6.4 Convolution and Polynomial Multiplication

The z-transform of a sequence x is a function of the complex variable z ∈ C
defined by

X(z) =
∞∑

k=−∞
x[k]z−k

provided, of course, that the infinite sum converges. If x has finite duration,
then the sum consists of a finite number of nonzero terms and convergence
is not an issue (except at z = 0). If x[n] = 0 for n < 0 and n ≥ L (as was
the case in the previous section), then

X(z) =
L−1∑

k=0

x[k]z−k

i.e., X(z) is a polynomial of degree L− 1 in the variable z−1 = 1/z.
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Note that the z-transform was encountered earlier in Section 4.4: if h is
a FIR filter response of order M = P − 1, then

H(z) =
P−1∑

k=0

h[k]z−k

is the filter system function, which reduces to the filter frequency response
when z = ejω.

The convolution y = h ∗x mirrors the multiplication of the polynomials
X(z) and H(z). To see this, write

H(z)X(z) =

(
P−1∑

k=0

h[k]z−k

)(
L−1∑

k=0

x[k]z−k

)

=
(
h[0] + h[1]z−1 + · · ·+ h[P − 1]z−(P−1)

)

·
(
x[0] + x[1]z−1 + · · ·+ x[L− 1]z−(L−1)

)

and consider the z−n term (where 0 ≤ n ≤ L + P − 2) in the resulting
product. This term is formed by adding together products of the form

h[k]z−k · x[n− k]z−(n−k) = h[k]x[n− k]z−n

Its coefficient is thus given by the sum

h[0]x[n] + h[1]x[n− 1] + · · ·+ h[n− 1]x[1] + h[n]x[0]

which in turn equals
(h ∗ x)[n] = y[n]

We therefore have

Y (z) =
L+P−2∑

n=0

y[n]z−n = H(z)X(z)

This result can be simply stated as follows.

Fact. The z-transform of the filter response is given by the product of the
filter system function and the z-transform of the input sequence.

A special case of this result is the input-output relationship

Y (ejω) = H(ejω)X(ejω)
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in the frequency domain, which was encountered earlier. We note that

Y (z) = H(z)X(z)

also holds for infinite-duration sequences, provided the infinite sums involved
converge.

Conclusion. Linear convolution of two sequences in the time domain is
equivalent to multiplication (of their DTFT’s or, more generally, their z-
transforms) in the frequency domain. Thus linear convolution of sequences
is analogous to circular convolution of vectors (which also corresponds to
multiplication of DFT’s in the frequency domain).

4.6.5 Impulse Response of Cascaded Filters

Consider two filters with impulse response sequences h(1) and h(2), and
system functions H1(z) and H2(z), respectively. We have seen in Subsection
4.4.2 that the system function H(z) of the cascade of two filters is given by

H(z) = H1(z)H2(z)

Thus we must also have
h = h(1) ∗ h(2)

i.e., the impulse response sequence of the cascade is given by the convolution
of the two impulse response sequences.

The same result can be obtained using a time domain-based argument.
Briefly, if the input to the cascade is a unit impulse, then the first filter
will produce an output equal to h(1). The second filter will act on h(1) to
produce a response equal to h(1) ∗ h(2), which is also the impulse response
of the cascade. This is illustrated graphically in Figure 4.22.

δδ H1
 h  * h

(2)(1)
h 

(1)

H 2

Figure 4.22: Impulse response of a cascade.

Example 4.6.2. Consider two FIR filters with impulse responses

h(1)[n] = δ[n]− 2δ[n− 1]− 2δ[n− 2] + δ[n− 3]
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and
h(2)[n] = δ[n] + δ[n− 1]− 3δ[n− 2] + δ[n− 3] + δ[n− 4]

The impulse response h of the cascade can be computed directly in the time
domain using the formula

h = h(1) ∗ h(2)

and the convolution technique explained in Subsection 4.6.3. Alternatively,
we have

H1(ejω) = 1− 2e−jω − 2e−j2ω + e−j3ω

H2(ejω) = 1 + e−jω − 3e−j2ω + e−j3ω + e−j4ω

and therefore

H(ejω) = H1(ejω)H2(ejω)
= 1− e−jω − 7e−j2ω + 6e−j3ω + 6e−j4ω − 7e−j5ω − e−j6ω + e−j7ω

The impulse response h of the cascade is read off the coefficients of H(ejω):

h[n] = δ[n]− δ[n− 1]− 7δ[n− 2] + 6δ[n− 3]
+ 6δ[n− 4]− 7δ[n− 5]− δ[n− 6] + δ[n− 7]

In particular, the cascade is an FIR filter of order M = 7 with coefficient
vector

b = h[0 : 7] = [ 1 −1 −7 6 6 −7 −1 1 ]T ¤

As a closing remark, we note that the time domain and frequency domain
formulas for cascaded filters developed here and in Subsection 4.4.2 can be
generalized to an arbitrary number of filters connected in cascade.
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4.7 Convolution in Practice

4.7.1 Linear Convolution of Two Vectors

In the previous section, we saw that the convolution of two finite-duration
sequences also results in a sequence of finite duration. This allows us to
extend the concept of (linear) convolution to vectors, by converting them to
sequences of finite duration.

Suppose b and s are vectors of length P and L, respectively. Let

h[n] =
{

b[n], 0 ≤ n ≤ P − 1;
0, otherwise.

and x[n] =
{

s[n], 0 ≤ n ≤ L− 1;
0, otherwise.

be the sequences obtained by padding b and s with infinitely many zeros on
both sides. As we saw earlier,

y = h ∗ x

is a sequence of total duration P + L− 1 time instants:

y[n] =
{

c[n], 0 ≤ n ≤ P + L− 2;
0, otherwise.

The convolution of b and s is defined by

b ∗ s = c = y[0 : P + L− 2]

Example 4.7.1. In Example 4.6.1,

b =
[ −1 3 −3 1

]T

s =
[

1 2 3
]T

and
c = b ∗ s =

[ −1 1 0 4 −7 3
]T ¤

The vectors b and s often (though not always) have nonzero first and
last entries. In such cases, the first and last entries of c = b ∗ s are also
nonzero, since

c[0] = b[0]s[0] and c[P + L− 2] = b[P − 1]s[L− 1]

If any single endpoint (i.e., b[0], s[0], b[P − 1] or s[L − 1]) is replaced by a
zero, then the corresponding endpoint of c (i.e., c[0] or c[P + L − 2]) also
becomes a zero. This leads to the following useful property:
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Fact. If 0i represents an all-zeros vector of length i, then (using the semi-
colon notation as in MATLAB)

[0i ; b] ∗ s = [0i ; b ∗ s]

and
b ∗ [s ; 0i] = [b ∗ s ; 0i] ¤

4.7.2 Linear Convolution versus Circular Convolution

In our discussion of the DFT, we introduced the circular convolution (~) of
two vectors of the same length N , and showed that circular convolution in
the time domain is equivalent to (element-wise) multiplication of DFT’s in
the frequency domain. It turns out that linear convolution of two vectors
can be also implemented by circular convolution, after zero-padding the two
vectors to the appropriate output length (which is known in advance).

Fact. If b = b[0 : P − 1] and s = s[0 : L− 1], then

b ∗ s = [b ; 0L−1] ~ [s ; 0P−1] ¤

This result is demonstrated in the arrays below for the case P = 6 and
L = 9, where the output vector has length P + L − 1 = 14. Note that the
same product terms b[k]s[n− k] will be generated in corresponding rows of
the two arrays. As before, zero entries are omitted.

Linear Convolution:

b0 b1 b2 b3 b4 b5

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c0

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c1

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c2

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c3

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c4

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c5

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c6

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c7

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c8

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c9

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c10

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c11

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c12

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c13
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Circular Convolution:

b0 b1 b2 b3 b4 b5

s0 s8 s7 s6 s5 s4 s3 s2 s1 → c0

s1 s0 s8 s7 s6 s5 s4 s3 s2 → c1

s2 s1 s0 s8 s7 s6 s5 s4 s3 → c2

s3 s2 s1 s0 s8 s7 s6 s5 s4 → c3

s4 s3 s2 s1 s0 s8 s7 s6 s5 → c4

s5 s4 s3 s2 s1 s0 s8 s7 s6 → c5

s6 s5 s4 s3 s2 s1 s0 s8 s7 → c6

s7 s6 s5 s4 s3 s2 s1 s0 s8 → c7

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c8

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c9

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c10

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c11

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c12

s8 s7 s6 s5 s4 s3 s2 s1 s0 → c13

The formal proof of this fact using the time-domain definitions of the
linear and circular convolution is neither difficult nor particularly insightful.
For a more interesting proof, we turn to the frequency domain. If, as before,
h, x and y are the finite-duration sequences obtained by padding b, s and

c = b ∗ s

(respectively) with infinitely many zeros, then

y = h ∗ x

The DTFT’s of the three sequences in the above equation are related by

Y (ejω) = H(ejω)X(ejω) (4.17)

We have

H(ejω) =
P−1∑

n=0

b[n]e−jωn

X(ejω) =
L−1∑

n=0

s[n]e−jωn

Y (ejω) =
P+L−2∑

n=0

c[n]e−jωn
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In Subsection 4.2.2, we saw that sampling the DTFT of a finite-duration
sequence at frequencies

ωk =
2πk

N
, k = 0, . . . , N − 1

yields the DFT of s zero-padded to length N , provided, of course, that N is
greater than or equal to the length of s. Taking N = P + L− 1 (the size of
the longest vector in this case), we have

H(ej(2π/N)k) = kth entry in the DFT of [b ; 0L−1]
X(ej(2π/N)k) = kth entry in the DFT of [s ; 0P−1]
Y (ej(2π/N)k) = kth entry in the DFT of c

From (4.17), we conclude that the DFT of c is given by the element-wise
product of the DFT of [b ; 0L−1] and that of [s ; 0P−1]. From DFT 9, it
follows that the time-domain vectors must satisfy

c = [b ; 0L−1] ~ [s ; 0P−1]

Remark. If b and s are zero-padded to a total length N > P + L− 1, then
circular convolution will result in c being padded with N−(P +L−1) zeros.

The equivalence of linear and circular convolution for finite vectors gives
us an option of performing this operation in the frequency domain, by com-
puting the DFT’s of the two vectors involved (zero-padded to the appro-
priate length), then inverting the element-wise product of the DFT’s. This
approach was illustrated in Section 4.4, where we computed the response
of an FIR filter to a periodic input using (in effect) a circular convolution
implemented via DFT’s. As it turns out, implementation via DFT’s can
be greatly advantageous in practice. This is because the number of float-
ing point operations required to convolve two vectors of length N in the
time domain is of the order of N2; while the DFT and its inverse can be
implemented using fast Fourier transform (FFT) algorithms, for which the
number of such operations is only of the order of N log2 N . For large values
of N , the frequency-domain approach can be much faster.

In MATLAB, the standard command for convolving two vectors b and
s is

c = conv(b,s)

which is implemented entirely in the time domain. An equivalent frequency-
domain implementation using FFT’s is
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N = length(b) + length(s) - 1;
B = fft(b,N);
S = fft(s,N);
C = B.*S;
c = ifft(C)

4.7.3 Circular Buffers for Real-Time FIR Filters

In many practical applications, a linear filter will operate over long periods
of time, processing input signals which are much longer than the filter’s
impulse response. If the filter is part of a system operating in real time
(e.g., a digital speech encoder used during a telephone conversation), the
delay in generating output samples shouldn’t—and needn’t—be too long.
The current output y[n] can be computed as soon as the current input x[n]
becomes available using the input-output relationship

y[n] =
M∑

k=0

bkx[n− k] (4.18)

Clearly, the M previous input values must also be available at any given
time, since computation of y[n] requires knowledge of the vector x[n−M : n].

The subsequent filter output y[n+1] is computed using the vector x[n−
M + 1 : n + 1]. Both x[n − M : n] and x[n − M + 1 : n + 1] contain the
subvector x[n−M + 1 : n], and differ only in one element:

x[n−M : n] =
[

x[n−M ] ; x[n−M + 1 : n]
]

while

x[n−M + 1 : n + 1] =
[

x[n−M + 1 : n] ; x[n + 1]
]

Using signal permutations, x[n−M +1 : n+1] can be generated by applying
a left circular shift on x[n−M : n]:

P−1x[n−M : n] =
[

x[n−M + 1 : n] ; x[n−M ]
]

followed by replacing the last entry x[n−M ] by x[n + 1].
The use of a circular shift in updating the vector of input values suggests

a computationally efficient implementation of an FIR filter in terms of a so-
called circular buffer. The circular buffer is a vector of size M + 1 which at
any particular time n holds Prx[n−M : n], i.e., a circularly shifted version
of x[n − M : n]. A pointer inow gives the position of x[n] in the circular
buffer; it is not difficult to see that if the buffer is indexed by 1 : M + 1,
then r = inow. At time n + 1, the buffer is updated as follows:
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• the pointer inow is incremented circularly by one (position); and

• the input x[n−M +1] at that position is replaced by the current input
x[n + 1].

After the update, the buffer holds Pr+1x[n−M + 1 : n + 1].
Figure 4.23 illustrates the sequential updating of the circular buffer in

the case M = 6, assuming all inputs before n = 0 were identically equal
to zero. The initial position of x[0] (obtained by initialization of inow) is
arbitrary.

x[0]   0   0   0   0   0   0n = 0

x[0]   0   0   0   0   0n = 1 x[1]

x[0]   0   0   0   0n = 2 x[1] x[2]

x[0]n = 6 x[1] x[2] x[3] x[4] x[5] x[6]

x[7]n = 7 x[1] x[2] x[3] x[4] x[5] x[6]

x[7]n = 8 x[8] x[2] x[3] x[4] x[5] x[6]

.

.

.

.

.

.

Figure 4.23: A circular buffer of size P = M + 1 = 7 used for
computing y[0 : 8]. For each value of n, the arrow (same as the
pointer inow) indicates the current input x[n].

The filter output (4.18) at time n is the (unconjugated) inner product
of the coefficient vector b with the contents of the circular buffer read in
reverse circular order starting with the current input sample x[n].

4.7.4 Block Convolution

In applications where longer delays between input and output can be tol-
erated, it may be advantageous to filter the input signal in a block-wise
fashion, i.e., by convolving consecutive blocks (segments) of the input signal
with the filter impulse response. Convolving long vectors using frequency
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domain-based algorithms such as the FFT is generally more efficient than
following the sliding window approach (in the time domain) discussed in the
previous subsection.

To develop a model for the block-wise implementation of convolution,
consider an FIR filter of order M = P −1 > 0 with coefficient vector b. The
filter acts on an input vector s, which has been partitioned into J blocks of
length L:

s = [s(0) ; s(1) ; . . . ; s(J−1)]

The block length L is a design parameter chosen according to factors such
as processing speed and acceptable delay between input and output. Here
we will assume that L ≥ P . Note that we have also taken the length of s
as an exact multiple of L (zero-padding may be used for the last block if
necessary).

By linearity and time-invariance of the filter, the output

c = b ∗ s

is the superposition (i.e., sum) of the responses to each of the input blocks
s(j), where each response is delayed in time by the appropriate index, namely
jL. Since the response to s(j) has a total duration of L+P−1 > L time units,
it follows that the responses overlap in time. Specifically, for 0 < j ≤ J − 1,
the vector c[jL : jL + P − 2] is formed by summing together parts of two
vectors, namely the time-shifted responses to s(j−1) and s(j).

The underlying concept of superposition is illustrated graphically in Fig-
ure 4.24 for the case J = 2.

(1)s (2)s

bP-1   ...    b2  b1  b0

(2)s

L0(1)s

L0

bP-1   ...    b2  b1  b0

bP-1   ...    b2  b1  b0

Figure 4.24: Linearity and time-invariance applied to block con-
volution.

Example 4.7.2. Consider the FIR filter with coefficient vector

b = [ 1 −3 −3 1 ]T
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driven by the finite-duration input sequence x, where

x[0 : 11] = s = [ 1 −2 3 4 4 −2 7 5 1 3 −1 −4 ]T

and x[n] = 0 for n < 0 and n > 11.
Suppose we wish to compute the filter response y to x using block con-

volution with block length L = 6. We express s as

s = [s(1) ; s(2)] = [s(1) ; 06] + [06 ; s(2)]

where
s(1) = [ 1 −2 3 4 4 −2 ]T

and
s(2) = [ 7 5 1 3 −1 −4 ]T

Then

b ∗ [s(1) ; 06] = [b ∗ s(1) ; 06]
= [ 1 −5 6 2 −19 −23 −2 10 −2 0 0 0 0 0 0 ]T

and

b ∗ [06 ; s(2)] = [06 ; b ∗ s(2)]
= [ 0 0 0 0 0 0 7 −16 −35 −8 −8 −9 18 11 −4 ]T

We thus have

b ∗ s = b ∗ [s(1) ; 06] + b ∗ [06 ; s(2)]
= [ 1 −5 6 2 −19 −23 5 −6 −37 −8 −8 −9 18 11 −4 ]T

and the filter response is given by

y[n] =
{

(b ∗ s)[n], 0 ≤ n ≤ 14;
0, otherwise.
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Problems

Sections 4.1–4.2

P 4.1. (i) Sketch the signal sequence

x[n] = δ[n + 2]− δ[n + 1] + 5δ[n]− δ[n− 1] + δ[n− 2]

and write an expression for its discrete-time Fourier transform X(ejω). Show
that X(ejω) can be written as a sum of cosines with real coefficients.

(ii) Generalize the result of part (i) to a symmetric signal sequence of finite
duration (2L + 1 samples): If

x[n] = x[−n] =
{

β|n|, |n| ≤ L

0, |n| > L

express X(ejω) as a sum of L cosines plus a constant.

P 4.2. (i) Sketch the signal sequence

x[n] =
{

1, 0 ≤ n ≤ M
0, otherwise

and express its Fourier transform X(ejω) in the form

ejKωF (ω)

where F (ω) is a real-valued function which is symmetric about ω = 0. (Hint :
Consult Subsection 3.8.2.)
(ii) Let M = 23. How would you define an array x in MATLAB, so that
the command

X = fft(x,500)

computes X(ejω) at 500 equally spaced frequencies ω ranging from 0 to
1.996π, inclusive?

P 4.3. Consider the signal sequence x defined by

x[n] = cos
(

3πn

14
− 1.8

)
+ 2 cos

(
18πn

35
− 0.7

)
+ 6 cos

(
17πn

24
+ 2.0

)

(i) Is the sequence periodic, and if so, what is its period?
(ii) Sketch the amplitude and phase spectra of x (both of which are line
spectra).
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Sections 4.3–4.4

P 4.4. Consider the FIR filter whose input x and output y are related by

y[n] = x[n]− x[n− 1]− x[n− 2] + x[n− 3]

(i) Write out an expression for the system function H(z).
(ii) Express |H(ejω)|2 in terms of cosines only. Plot |H(ejω)| as a function
of ω.
(iii) Determine the output y[n] when the input sequence x is given by each
of the following expressions (where n ∈ Z):

• x[n] = 1

• x[n] = (−1)n

• x[n] = ejπn/4

• x[n] = cos(πn/4 + φ)

• x[n] = 2−n

• x[n] = 2−n cos(πn/4)

(In all cases except the third, your answer should involve real-valued terms
only.)

P 4.5. Consider the FIR filter

y[n] = x[n]− 3x[n− 1] + x[n− 2] + x[n− 3]− 3x[n− 4] + x[n− 5]

(i) Write MATLAB code which includes the function fft, and which com-
putes the amplitude and phase response of the filter at 256 equally spaced
frequencies between 0 and 2π(1− 256−1).
(ii) Express the frequency response of the filter in the form

e−jαωF (ω)

where F (ω) is a real-valued sum of cosines.
(iii) Determine the response y[n] of the filter to the exponential input se-
quence

x[n] =
(

1
2

)n

, n ∈ Z
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P 4.6. The MATLAB code

a = [ 1 -3 5 -3 1 ].’ ;
H = fft(a,500);
A = abs(H);
q = angle(H);

computes the amplitude response A and phase response q of a FIR filter over
500 equally spaced frequencies in the interval [0, 2π).
(i) If x and y are (respectively) the input and output sequences of that
filter, write an expression for y[n] in terms of values of x.
(ii) Determine the output y of the filter when the input x is given by

x[n] =
(

1
3

)n

, n ∈ Z

(iii) Express the frequency response of the filter in the form

e−jαωF (ω)

where F (ω) is a real-valued sum of cosines.

P 4.7. Consider a FIR filter whose input x and output y are related by

y[n] =
8∑

k=0

bkx[n− k] ,

where the coefficient vector b is given by

b = [ 1 2 −2 −1 4 −1 −2 2 1 ]T

Let the input x be an infinite periodic sequence with period L = 7, and such
that

x[0 : 6] = [ 1 −1 0 3 1 −2 0 ]T

Using DFT’s (and MATLAB), determine the first period y[0 : 6] of the
output sequence y.

P 4.8. Consider two FIR filters with coefficient vectors b and c, where

b =
[

3 2 1 2 3
]T

and
c =

[
1 −2 2 −1

]T
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(i) Determine the system function H(z) of the cascade. Is the cascade also
a FIR filter? If so, determine its coefficient vector.

(ii) Express the amplitude response of the cascade as a sum of sines or
cosines (as appropriate) with real-valued coefficients.

P 4.9. Consider the FIR filter with coefficient vector

b =
[

1 1 1 1
]T

Two copies of this filter are connected in series (cascade).

(i) Determine the system function H(z) of the cascade. Is the cascade also
a FIR filter? If so, determine its coefficient vector.

(ii) Determine the response y[n] of the cascade to the sinusoidal input se-
quence

x[n] = cos
(nπ

2

)
, n ∈ Z

Section 4.5

P 4.10. The text file s6.txt contains the coefficient vector of a FIR filter of
order M = 40.

(i) Plot the impulse response of the filter (i.e., the vector in s6.txt) using
the STEM or BAR functions in MATLAB. What kind of symmetry does the
impulse response exhibit?

(ii) Plot |H(ejω)|, i.e., the magnitude of the frequency response of the filter.
What type of filter (lowpass, highpass, bandpass or bandstop) do we have
here? Determine the edges of the passband and stopband.

(iii) If

A1 = maximum value of |H(ejω)| over the passband
A2 = minimum value of |H(ejω)| over the passband
A3 = maximum value of |H(ejω)| over the stopband

compute the ratios A1/A2 and A2/A3 (using your graphs).

(iv) How would you convert this filter to a bandpass filter whose passband is
centered around ω = π/2? What would be resulting width of the passband?
Verify your answers using MATLAB.
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P 4.11. Consider the signal sequence x given by

x[n] = 2 cos(3.0n− 1.7) + cos(1.4n + 0.8) , n ∈ Z

(i) Is x periodic? If so, what is its period?
(ii) If x is the input to the linear filter with frequency response described
by

H(ejω) =
{

2e−j3ω, 2π/3 ≤ ω ≤ 4π/3;
0, all other ω in [0, 2π),

determine the output sequence y.

P 4.12. Consider the signal

x[n] = 3 cos
(πn

15
− π

3

)
+ 5 cos

(πn

4
+

π

2

)

(i) Is the signal periodic, and if so, what is its period?
(ii) If x[n] is the input to a filter with amplitude and phase responses as
shown in figure, determine the resulting output y[n].

H(e    )jω

A

H(e    )jω

−π                                          0   π/6   π/3  π/2  2π/3 5π/6  π −π                                               π/6          π/2         5π/6   π

π/3

−π/3

Problem P 4.12

Section 4.6

P 4.13. Consider the FIR filter with impulse response h given by

h[n] = δ[n]− 2δ[n− 1] + 3δ[n− 3]− 2δ[n− 4]

(i) Without using convolution, determine the response y of the filter to the
input signal x given by

x[n] = δ[n + 1]− δ[n− 1]
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(Hint: Express y in terms of h.)

(ii) Now let the input signal x be given by

x[n] = δ[n] + 2δ[n− 1] + 3δ[n− 2]− δ[n− 3]

Using convolution, determine the output signal y.

(iii) Obtain the answer to (ii) by direct multiplication of the z-transforms
H(z) and X(z).

P 4.14. Consider the signal sequence

x[n] =
{

1, 0 ≤ n ≤ M
0, otherwise

of Problem P 4.2.

(i) Determine the convolution

y = x ∗ x

For what values of n is y[n] nonzero?

(ii) Using the results of Problem P 4.2, write an equation for the DTFT
Y (ejω) of y.

(iii) By how many instants should y be delayed (or advanced) in time so
that the resulting signal is symmetric about n = 0? What is the DTFT of
that signal?

P 4.15. Define x by

x[n] = δ[n]− δ[n− 1] + δ[n− 2]− δ[n− 3]

and let h be the (infinite impulse response) sequence given by

h[n] =
{

αn, n ≥ 0;
0, n < 0.

Compute y = x ∗ h. Sketch your answer in the case α = 2.

P 4.16. Consider the filter with impulse response given by

h[n] =
{

1, 0 ≤ n ≤ 8
0, otherwise
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(i) Determine the response of the filter to the input

x(1)[n] = cos
(nπ

2
+

π

8

)
, n ∈ Z

(ii) Determine the output of the filter to the input

x(2)[n] = δ[n]− δ[n− 1] + δ[n− 2]

P 4.17. Two FIR filters whose impulse response sequences h(1) and h(2) are
given by

h(1)[n] = δ[n] + δ[n− 1] + δ[n− 2] + δ[n− 3] , n ∈ Z

and
h(2)[n] = δ[n]− δ[n− 2] , n ∈ Z

are connected in series (cascade) to form a single filter with impulse response
h.
(i) Determine the corresponding system functions H(1)(z), H(2)(z) and
H(z).
(ii) Determine h (i.e., h[n] for every n ∈ Z).
(iii) Sketch the output y of the cascade when the input x is given by

x[n] = δ[n + 1] , n ∈ Z

Section 4.7

P 4.18. Consider the convolution of b = b[0 : P − 1] and s = s[0 : L − 1],
where b represents a FIR coefficient vector and s represents the filter input.
(i) Construct a (P + L− 1)× L matrix B such that

b ∗ s = Bs

(In effect, every FIR filter can be viewed as a linear transformation of the
input signal sequence. The matrix B describes this transformation in the
case where the input signal has finite duration L. See also Problem P 2.8.)
(ii) Verify that the following MATLAB script generates the required matrix
B from a column vector b:
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c = [b ; zeros(L-1,1)];
r = [b(1) zeros(1,L-1)];
B = toeplitz(c,r);

Compare B*s and conv(b,s) for random choices of s.

P 4.19. A circular buffer for an FIR filter of order M = 16 is initialized at
time n = 0 by placing x[0] in the first (leftmost or topmost) position within
the buffer. Express the contents of the buffer at time n = 139 in the form

[
x[n1 : n2] ; x[n3 : n4]

]

P 4.20. Consider the following incomplete MATLAB code, where P is a known
(previously defined) integer and b is a known column vector or length P.

iupdate = [2:P 1];
ireverse = toeplitz(1:P, [1 P:-1:2]);
xcirc = zeros(P,1);
inow = P;
xvec = [];
yvec = [];
while 1

x = randn(1);
xvec = [xvec ; x];
%
% computation of scalar variable y
%
yvec = [yvec ; y];

end

This code simulates the continuous operation (note the while loop) of a FIR
filter with coefficient vector b, driven by a sequence xvec of Gaussian noise.
The scalar variables x and y denote the current input and output, and the
output sequence is given by yvec. Complete the code using three commands
(in the commented-out section) that contain no additional variables (i.e.,
other than previously defined), numbers or loops. Test your code against
the results obtained using the function CONV.

P 4.21. Consider the FIR filter

y[n] = x[n]− 2x[n− 1]−x[n− 2]+ 4x[n− 3]−x[n− 4]− 2x[n− 5]+x[n− 6]
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The response of the filter to the input

x[0 : 3] =
[

a0 a1 a2 a3

]T

(x[·] = 0 otherwise) is given by

y[0 : 9] =
[

1 −1 0 −7 8 13 −20 −1 11 −4
]T

(y[·] = 0 otherwise); while the response to

x̃[0 : 3] =
[

c0 c1 c2 c3

]T

(x̃[·] = 0 otherwise) is given by

ỹ[0 : 9] =
[

1 −2 −2 10 −8 −10 18 −2 −9 4
]T

(ỹ[·] = 0 otherwise). Determine the response of the filter to

x̂[0 : 7] =
[

a0 a1 a2 a3 2c0 2c1 2c2 2c3

]T

(x̂[·] = 0 otherwise).

P 4.22. Consider the two vectors

b =
[

2 −3 4 −5 −1 −1
]T

and
s =

[
2 −3 0 7 −3 4 1 5

]T

(i) Determine the convolution b ∗ s using the function CONV in MATLAB.
(ii) Repeat using the functions FFT and IFFT instead of CONV.

P 4.23. Consider the following MATLAB code:

a = [ 1 -2 3 -4 ].’ ;
b = [ 1 2 -1 2 1].’ ;
A = fft(a,8);
B = fft(b,8);
C = A.*B;
c = ifft(C);

(i) Without using MATLAB, determine the vector c.
(ii) Let a = x[0 : 3], where x is a sequence of period L = 4. The signal x
is the input to a FIR filter with coefficient vector b, resulting in an output
sequence y. How would you modify the code shown above so that c =
y[0 : 3]?
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P 4.24. Consider the following MATLAB code:

a = [ 2 -1 0 -1 2 ].’ ;
b = [ 3 -2 5 1 -1].’ ;
A = fft(a,9);
B = fft(b,9);
C = A.*B;
c = ifft(C);

(i) Without using MATLAB, determine the vector c.
(ii) Without performing a new convolution, determine the vector e obtained
by the following code:

a = [ 2 -1 0 -1 2 ].’ ;
d = [-3 2 -5 -1 1 3 -2 5 1 -1].’ ;
A = fft(a,14);
D = fft(d,14);
E = A.*D;
e = ifft(E);

P 4.25. The data file s7.txt contains a vector s of length L = 64. Let

b =
[

2 −1 −3 1 3 1 −3 −1 2
]T

(i) Use the CONV function in MATLAB to compute the convolution c = b∗s.
What is the length of c?
(ii) Compute c using three convolutions of output length 25 = 32, followed
by a summation. Your answer should be the same as for part (i).



Epilogue

Our overview of signals took us from analog waveforms to discrete-time
sequences (obtained by sampling) to finite-dimensional vectors. With the
aid of basic tools and concepts from linear algebra—notably linear indepen-
dence, Gaussian elimination, least-squares approximation (projection) and
orthogonality—we developed the representation of an N -dimensional signal
vector in terms of N sinusoidal components known as the discrete Fourier
transform (DFT). The extension of vectors to sequences (by taking N →∞)
brought the continuum of frequency into play and gave rise to the discrete-
time Fourier transform (DTFT). In the second part of this book, we will
develop similar tools for the analysis of analog waveforms and examine the
implications of sampling from a frequency-domain viewpoint.

The traditional exposition of signal analysis begins with the sinusoidal
representation of periodic analog waveforms known as the Fourier series.
This representation is then extended to aperiodic waveforms (by taking a
limit as the signal period tends to infinity), resulting in the so-called Fourier
transform. Sequences and vectors are treated next, and the DTFT and DFT
are developed using some of the ideas and results from Fourier series and
the Fourier transform. Our approach in this book clearly follows a different
order.

While both the Fourier series and the Fourier transform for analog wave-
forms will be developed in the second part of this book, the motivated reader
might be interested in a preview of that development, which, as it turns out,
is quite accessible at this point. It is also possible to provide here a defini-
tive answer to a question raised in Section 1.6, namely on the sufficiency of
Nyquist-rate sampling for the faithful reconstruction of bandlimited analog
waveforms.

284
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The Fourier Series

A continuous-time signal {s(t), t ∈ R} is periodic with period T0 if

s(t + T0) = s(t) , t ∈ R

Associated with the period T0 are two familiar parameters, the cyclic fre-
quency f0 = 1/T0 (Hz) and the angular frequency Ω0 = 2π/T0 (rad/sec).

The continuous-time sinusoids

cosΩ0t, sinΩ0t, and ejΩ0t

encountered in Chapter 1 are all periodic with period T0. It follows that for
any nonzero integer k, the sinusoids

cos kΩ0t, sin kΩ0t, and ejkΩ0t

are periodic with period T0/|k|; and since T0 is an integer multiple of T0/|k|,
they are also periodic with period T0. These sinusoids are also referred to
as harmonics of the basic sinusoid (real or complex) of frequency Ω0.

The key result in Fourier series is that a “well-behaved” periodic signal
s(t) with period T0 can be expressed as a linear combination of the sinusoids
ejkΩ0t, all of which are periodic with period T0. In other words,

s(t) =
∞∑

k=−∞
Ske

jkΩ0t, t ∈ R

The coefficients Sk can be obtained from s(t) by a suitable integral over
a time interval of length equal to one period, i.e., T0. Together with the
corresponding frequencies kΩ0, these coefficients yield a discrete (line) spec-
trum {(kΩ0, Sk), k ∈ Z} for the periodic signal s(t), as shown in Figure
E.1. Note that the frequency Ω is in radians per second (as opposed to per
sample), and that there is no periodicity in the spectrum (as was the case
with discrete-time sequences).

As it turns out, this result can be established by considering the usual
DTFT analysis and synthesis formulas for discrete-time signals. We know
that the spectrum of a time-domain sequence is a periodic function of the
frequency ω (measured in radians per sample), with period 2π. Thus given a
spectrum X(ejω), the time-domain sequence {x[n], n ∈ Z} can be recovered
from X(ejω) using the integral (synthesis equation)

x[n] =
1
2π

∫ 2π

0
X(ejω)ejωn dω ;
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while X(ejω) can be obtained from {x[n], n ∈ Z} using the sum (analysis
equation)

X(ejω) =
∞∑

n=−∞
x[n]e−jωn

The trick here is to associate the continuous frequency parameter ω with
continuous time. To that end, we define

t
def= ω/Ω0

(which has the correct units, namely seconds) and use the periodic frequency-
domain signal X(ejω) to create a periodic time-domain signal s(t):

s(t) def= X(ejΩ0t) = X(ejω)

Since X(ejω) is an arbitrary signal of period 2π (in ω), s(t) is an arbitrary
signal of period 2π/Ω0 = T0 (in t). From the synthesis equation, we see that
s(t) can be associated with a sequence {Sk, k ∈ Z} defined by

Sk
def= x[−k]

and such that

Sk =
1
2π

∫ 2π

0
X(ejω)e−jωk dω

=
Ω0

2π

∫ 2π/Ω0

0
s(t)e−jkΩ0t dt

=
1
T0

∫ T0

0
s(t)e−jkΩ0t dt

From the analysis equation, we then obtain

s(t) = X(ejΩ0t) =
∞∑

k=−∞
x[k]e−jkΩ0t =

∞∑

k=−∞
Ske

jkΩ0t

We have therefore established that the periodic signal s(t) can be expressed
as a Fourier series, i.e., a linear combination of complex sinusoids whose
frequencies are multiples of Ω0. (A Fourier series can be also regarded as
a power series in ejΩ0t.) The kth coefficient Sk is obtained by integrating,
over one period, the product of s(t) and the complex conjugate of the kth

sinusoid.
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In using the DTFT to derive the Fourier series, we exploited the duality
of time and frequency, which is a central theme in Fourier analysis. Duality
was encountered earlier in the discussion of the DFT, where it was shown
that the time and frequency domains had the same dimension (namely vector
size N), and that the DFT and IDFT operations were essentially the same
(with the exception of a scaling factor and a complex conjugate). In the
case of the DTFT, the two domains are quite different: time n is a discrete
parameter taking values in Z, while frequency ω is a continuous parameter
taking values in an interval of length 2π. Also, the time-domain signal
is a sequence, while the frequency-domain signal is continuous-parameter
periodic signal. In effect, the Fourier series is the dual of the DTFT where
the two domains are interchanged: the time-domain signal is a continuous-
parameter periodic signal, while the frequency-domain signal is a discrete
sequence of coefficients (i.e., a line spectrum). Both the Fourier series and
the DTFT use (essentially) the same sum and integral for transitioning
between the two domains (discrete-to-continuous and continuous-to-discrete,
respectively). Figure E.1 is a graphical illustration of the duality of the
Fourier series and the DTFT.

The Fourier Transform

The Fourier transform is a frequency-domain representation for certain classes
of aperiodic continuous-time signals. These signals are typically either ab-
solutely integrable or square-integrable, i.e., satisfy

∫ ∞

−∞
|s(t)|dt < ∞ or

∫ ∞

−∞
|s(t)|2dt < ∞

(or both). Either type of integrability implies that the signal s(t) decays
sufficiently fast in t as t → ∞ or t → −∞; and that if s(t) is locally
unbounded, it cannot approach infinity too fast.

Consider, for example, the three signals defined, for all t ∈ R, by

e−|t|, et and cos t + cosπt

The first signal satisfies both integrability conditions and has a Fourier trans-
form, while the second signal violates both integrability conditions and does
not have a Fourier transform. The third signal (which is aperiodic) violates
both integrability conditions and does not have a Fourier transform in the
conventional sense; yet it has an obvious frequency-domain representation
in terms of a line spectrum (at frequencies Ω = ±1 and Ω = ±π rad/sec).
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      −T0              0                T0      t  0     Ω0               Ω

s(t)

S0

S-1

S2

S1 S3

S-2

S-3

x[n]

n0      1 −2π              0               2π      ω

X(e jω)

Figure E.1: A periodic waveform (top left) and its Fourier series
coefficients (top right); a sample sequence (bottom left) and its
discrete-time Fourier transform (bottom right). If the continuous-
parameter graphs are scaled versions of each other, then the
discrete-parameter graphs are also scaled and time-reversed ver-
sions of each other (duality of the Fourier series and the DTFT).

It is possible to obtain the Fourier transform of an aperiodic signal
{s(t), t ∈ R} by considering the Fourier series of the periodic extension
of the time-truncated signal {s(t), −T/2 < t < T/2} and then taking a
suitable limit as T →∞. Here we will follow a different approach based on
the DTFT of the sampled signal

s∆[n] def= s(n∆) , n ∈ Z

(where ∆ > 0 is the sampling period). The idea behind the proof is as
follows: if s∆[·] has a frequency-domain representation which converges, as
∆ → 0, to a single ”spectrum-like” function, then that function must be
valid as a frequency-domain representation for the continuous-time signal
{s(t), t ∈ R} also, since that signal can be asymptotically obtained in this
fashion, i.e., by reducing the sampling period to zero.

To simplify the analysis, we will let ∆ → 0 by taking

∆ = T, T/2, T/4, . . . , T/2r, . . .
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in turn, where T > 0 is fixed. This ensures that the sampling instants for
different values of ∆ are nested ; in particular, any time t = (m2−r)T , where
r ∈ N and m ∈ Z, is a sampling instant for all sufficiently small ∆. By
varying m and r, we obtain a dense set of points t on the time axis, which
are sufficient for the specification of the entire signal s(·).

If t is such a point, then t/∆ is an integer for sufficiently small ∆, and
thus t is the (t/∆)th sampling instant for the sequence s∆[·]. The synthesis
equation (inverse DTFT) gives

s(t) = s∆[t/∆]

=
1
2π

∫ π

−π
S∆(ejω)ejω(t/∆)dω

=
1
2π

∫ π/∆

−π/∆
{∆S∆(ejΩ∆)} · ejΩtdΩ

where the change of variables Ω = ω/∆ was used for the last integral. Note
that Ω is now measured in radians per second, which is appropriate for a
continuous-time signal.

Viewed as a function of Ω, the expression ∆S∆(ejΩ∆) is periodic with
period 2π/∆. As we will soon see, this expression converges (as ∆ → 0) for
each Ω ∈ R, leading to a new function

S(Ω) def= lim
∆→0

∆S∆(ejΩ∆) , Ω ∈ R

The function S(Ω) cannot be periodic. Assuming that it decays sufficiently
fast as Ω → ∞ and Ω → −∞ (which it does, by virtue of the integrability
conditions on s(·)), the last integral will converge, as ∆ → 0, to

1
2π

∫ ∞

−∞
S(Ω)ejΩtdΩ

Thus also
s(t) =

1
2π

∫ ∞

−∞
S(Ω)ejΩtdΩ

Remark. It is interesting to note that the equivalent expression

s(t) =
1
2π

∫ 2π/∆

0
∆S∆(ejΩ∆)ejΩtdΩ

will, upon replacing ∆S∆(ejΩ∆) by S(Ω) and 2π/∆ by its limiting value ∞,
result in the incorrect integral

1
2π

∫ ∞

0
S(Ω)ejΩtdΩ
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for s(t). This paradox can be resolved by observing that, no matter how
small ∆ is, the integral for s(t) is taken over an entire period of the function
∆S∆(ejΩ∆). As ∆ → 0, the period T/∆ approaches infinity, and the limiting
function S(Ω) is aperiodic—in other words, a period of S(Ω) takes up the
entire real axis. Thus the correct limits for the integral should be −∞ to
∞.

To show that ∆S∆(ejΩ∆) indeed converges, we use the analysis equation:

∆S∆(ejΩ∆) = ∆ ·
∞∑

n=−∞
s∆[n]e−jnΩ∆

=
∞∑

n=−∞
s(n∆) · e−jnΩ∆ ·∆

The last sum consists of equally spaced samples (over the entire time axis) of
the function s(t)e−jΩt, each multiplied by the spacing, or sampling period,
∆. As ∆ → 0, the sum converges to an integral, and thus

S(Ω) = lim
∆→0

∆S∆(ejΩ∆) =
∫ ∞

−∞
s(t)e−jΩtdt

The function S(Ω) is the Fourier transform, or spectrum, of the continuous-
time signal s(t). Here, Ω (in rad/sec) is a continuous frequency parameter
ranging from −∞ to ∞. Similarly, s(t) is the inverse Fourier transform of
S(Ω). Note that in this case, the two domains, time and frequency, have the
same dimension (that of the continuum). This gives rise to interesting dual-
ity properties, which are apparent from the similarities between the analysis
and synthesis equations:

S(Ω) =
∫ ∞

−∞
s(t)e−jΩtdt

s(t) =
1
2π

∫ ∞

0
S(Ω)ejΩtdΩ

Nyquist Sampling

In Section 1.6, we saw that an analog signal made up of a continuum of
sinusoidal components with frequencies in the range [0, fB) (Hz) cannot be
sampled at a rate less than 2fB without loss of information due to alias-
ing. We will show how sampling at a rate greater than, or equal to, 2fB
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(samples/second) allows for perfect reconstruction of the continuous-time
signal.

Let us assume then that the continuous-time signal {s(t), t ∈ R} has
a Fourier transform S(Ω) which vanishes outside the interval (−ΩB, ΩB)
(where ΩB = 2πfB). We thus have

s(t) =
1
2π

∫ ∞

−∞
S(Ω)ejΩtdΩ =

1
2π

∫ ΩB

−ΩB

S(Ω)ejΩtdΩ (E.1)

Sampling at the Nyquist rate yields a sequence of samples at times t = nTs,
where

Ts
def=

1
2fB

=
π

ΩB

From (E.1), we obtain an expression for each of these samples:

s(nTs) =
1
2π

∫ ΩB

−ΩB

S(Ω)ejπ(Ω/ΩB)dΩ (E.2)

-ΩB               0               ΩΒ              Ω

S(Ω)

Figure E.2: Shown in bold is the Fourier transform (spectrum)
S(Ω) of a bandlimited continuous-time signal.

The signal S(Ω) has finite duration in the frequency domain. As such,
it can be periodically extended outside the interval (−ΩB, ΩB) (see Figure
E.2) and the resulting periodic extension can be expressed in terms of a
Fourier series in Ω. Clearly, the Fourier series will return S(Ω) for Ω in
the interval (−ΩB, ΩB). Using the Fourier series formulas developed earlier
(with the period parameter equal to 2ΩB), we have

S(Ω) =
∞∑

n=−∞
Anejnπ(Ω/ΩB) (E.3)
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where

An =
1

2ΩB

∫ ΩB

−ΩB

S(Ω)e−jnπ(Ω/ΩB)dΩ (E.4)

Comparing (E.2) and (E.3), we immediately obtain

A−n =
π

ΩB
s(nTs) = Tss(nTs) (E.5)

Thus the sequence of samples of s(·) obtained at the Nyquist rate 2fB com-
pletely determine the spectrum S(Ω) through its Fourier series expansion
(E.3). Since S(Ω) uniquely determines s(t) (via the analysis equation (E.1)),
it follows that sampling at the Nyquist rate is sufficient for the faithful re-
construction of the bandlimited signal s(t).

As it turns out, we can obtain an explicit formula for s(t) at any time
t in terms of the samples {s(nTs)} by combining (E.1), (E.3) and (E.5) as
follows:

s(t) =
1
2π

∫ ΩB

−ΩB

( ∞∑
n=−∞

A−ne−jnπ(Ω/ΩB)

)
· ejΩtdΩ

=
1

2ΩB
·

∞∑
n=−∞

s(nTS) ·
∫ ΩB

−ΩB

ejΩ(t−nTs)dΩ

The inner integral equals

ejΩB(t−nTs) − e−jΩB(t−nTs)

j(t− nTs)
=

2 sin(ΩB(t− nTs))
t− nTs

and thus the final expression for s(t) is

s(t) =
∞∑

n=−∞
s(nTs) · sin(ΩB(t− nTs))

ΩB(t− nTs)

Clearly, s(t) as a weighted sum of all samples s(nTs) with coefficients pro-
vided by the interpolation function

IΩB
(τ) def=

sin(ΩBτ)
ΩBτ

evaluated for τ = t− nTs. Writing

s(t) =
∞∑

n=−∞
s(nTs) · IΩB

(t− nTs)

we can also see that s(·) is a linear combination of the signals IΩB
(· − nTs),

which are time-delayed versions of IΩB
(·) centered at the sampling instants

nTs.


