ENEE 222: 12/03 Class

Material: Lecture videos 24.1, 24.2
1 The finite-duration sequence $x[\cdot]$ shown below is the input to a linear time-invariant filter with impulse response $h[\cdot]$.

Which of the following equations describes the filter output?
A. $y[n]=2 \delta[n+1]+\delta[n-1]$
B. $y[n]=2 \delta[n-1]+\delta[n+1]$
C. $y[n]=2 h[n+1]+h[n-1]$
D. $y[n]=2 h[n-1]+h[n+1]$

2 If the impulse response of a FIR filter is given by

$$
h[n]=3 \delta[n]-\delta[n-2]+\delta[n-3]-3 \delta[n-5],
$$

which of the following is the filter's coefficient vector?
A. $\quad \mathbf{b}=\left[\begin{array}{llll}3 & -1 & 1 & -3\end{array}\right]^{T}$
B. $\quad \mathbf{b}=\left[\begin{array}{llll}-3 & 1 & -1 & 3\end{array}\right]^{T}$
C. $\quad \mathbf{b}=\left[\begin{array}{llllll}3 & 0 & -1 & 1 & 0 & -3\end{array}\right]^{T}$
D. $\quad \mathbf{b}=\left[\begin{array}{llllll}-3 & 0 & 1 & -1 & 0 & 3\end{array}\right]^{T}$

3 You are given the following input-output pair for a linear-time invariant system:

$$
x[n]=\left\{\begin{array}{cc}
0, & n<0 \\
(-1)^{n}, & n \geq 0
\end{array} \quad \Longrightarrow \quad y[n]=\delta[n]+\delta[n-1],\right.
$$

as depicted below.

The system's impulse response is given (for all n) by
A. $\quad h[n]=(-1)^{n}$
B. $h[n]=\delta[n]+\delta[n-1]$
C. $\quad h[n]=\delta[n]+2 \delta[n-1]+\delta[n-2]$
D. $\quad h[n]=\delta[n]-\delta[n-2]$

4 Let \mathbf{h} be the impulse response of a FIR filter, and \mathbf{x} denote the filter input sequence. In which (one or more) of the following cases is it true that

$$
\mathbf{h} * \mathbf{x}=\lambda \mathbf{x},
$$

where λ is a scaling constant?
A. \mathbf{h} is arbitrary; $x[n]=3^{n}$ for all n
B. \mathbf{h} is arbitrary; $x[n]=\cos (\pi n / 6)$ for all n
C. \mathbf{h} is arbitrary; $x[\cdot]=\delta[\cdot]$
D. $h[\cdot]=\delta[\cdot-5] ; \mathbf{x}$ is periodic with period $L=5$

5 Let $x[n]=0$ for $n<0$; and $x[n]=a^{n}$ for $n \geq 0$.

If $x[\cdot]$ is the input to a FIR filter of order $M=5$, whose system function is given by $H(z)$, what is the smallest time index n_{0} such that $y[n]=H(a) a^{n}$ for all $n \geq n_{0}$?
A. 0
B. 4
C. 5
D. 6

6 A linear time-invariant system has frequency response $H\left(e^{j \omega}\right)$ as depicted below.

Which (one or more) of the following statements regarding the system input $x[\cdot]$ and output $y[\cdot]$ are true?
A. If $x[\cdot]=\delta[\cdot]$, then $y[\cdot]$ has finite duration.
B. If, for all $n, x[n]=\cos \left(\omega_{0} n\right)$, where $0 \leq \omega_{0} \leq \pi / 3$, then

$$
(\forall n) \quad y[n]=A\left(1-\frac{3 \omega_{0}}{\pi}\right) \cos \left(\omega_{0}\left(n-\frac{3}{2}\right)\right)
$$

C. If, for all $n, x[n]=\cos \left(\omega_{0} n\right)$, where $\pi / 3<\omega_{0} \leq \pi$, then $y[n]=0$ (for all n also).
D. If $x[\cdot]$ is periodic with period $L=5$, then $y[\cdot]$ is constant in time.

