ENEE 222: 5/09 Class

Material: Lecture videos 23.2, 24.1, 24.2

1. Let \mathbf{b} and \mathbf{s} be arbitrary vectors of length 6 and 9 , respectively. If $\mathbf{0}_{i}$ denotes a vector of i zeros, which of the following circular convolutions produces the vector

$$
\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{2}\right] ?
$$

A. $\quad\left[\mathbf{b} ; \mathbf{0}_{8}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{5}\right]$
B. $\left[\mathbf{b} ; \mathbf{0}_{9}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{6}\right]$
C. $\quad\left[\mathbf{b} ; \mathbf{0}_{10}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{7}\right]$
D. $\left[\mathbf{b} ; \mathbf{0}_{11}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{8}\right]$
2. Which (one or more) of the following signal sequences can be determined by circularly convolving two vectors of the same (finite) length?
A. The response of a FIR filter to any input sequence of finite duration.
B. The response of a FIR filter to any input sequence of infinite duration.
C. The response of a FIR filter to any periodic input sequence.
D. The impulse response of the cascade connection of any two FIR filters.
3. Consider the finite-duration sequence $x[\cdot]$ plotted below.

Which of the following equations describes $x[n]$?
A. $x[n]=-3 \delta[n+1]+2 \delta[n]-\delta[n-1]+4 \delta[n-2]$
B. $x[n]=-3 \delta[n+1]+2 \delta[n]-\delta[n-2]+4 \delta[n-3]$
C. $x[n]=-3 \delta[n-1]+2 \delta[n]-\delta[n+1]+4 \delta[n+2]$
D. $x[n]=-3 \delta[n-1]+2 \delta[n]-\delta[n+2]+4 \delta[n+3]$
4. The finite-duration sequence $x[\cdot]$ shown below is the input to a linear time-invariant filter with impulse response $h[\cdot]$.

Which of the following equations describes the filter output?
A. $y[n]=2 \delta[n+1]+\delta[n-1]$
B. $y[n]=2 \delta[n-1]+\delta[n+1]$
C. $y[n]=2 h[n+1]+h[n-1]$
D. $y[n]=2 h[n-1]+h[n+1]$
5. When the input

$$
x[0: 4]=\left[\begin{array}{lllll}
1 & -3 & 4 & -1 & 2
\end{array}\right]^{T} ; \quad x[n]=0 \text { for all other } n
$$

is applied to a FIR filter, the output is given by

$$
y[0: 7]=\mathbf{c} ; \quad y[n]=0 \text { for all other } n
$$

If the input

$$
\tilde{x}[0: 8]=\left[\begin{array}{lllllllll}
1 & -3 & 4 & -1 & 0 & 6 & -8 & 2 & -4
\end{array}\right]^{T} ; \quad \tilde{x}[n]=0 \text { for all other } n
$$

is applied to the same filter, determine the output $\tilde{y}[\cdot]$.
6. A linear time-invariant system has frequency response $H\left(e^{j \omega}\right)$ as depicted below.

Which (one or more) of the following statements regarding the system input $x[\cdot]$ and output $y[\cdot]$ is true?
A. If $x[\cdot]=\delta[\cdot]$, then $y[\cdot]$ has finite duration.
B. If, for all $n, x[n]=\cos \left(\omega_{0} n\right)$, where $0 \leq \omega_{0} \leq \pi / 3$, then

$$
(\forall n) \quad y[n]=A\left(1-\frac{3 \omega_{0}}{\pi}\right) \cos \left(\omega_{0}\left(n-\frac{3}{2}\right)\right)
$$

C. If, for all $n, x[n]=\cos \left(\omega_{0} n\right)$, where $\pi / 3<\omega_{0} \leq \pi$, then $y[n]=0$ (for all n also).
D. If $x[\cdot]$ is periodic with period $L=5$, then $y[\cdot]$ is constant in time.

