ENEE 222: 11/26 Class

Material: Lecture videos 23.1, 23.2

1 The FIR filter described by

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]+b_{3} x[n-3]+b_{4} x[n-4]+b_{5} x[n-5]
$$

(where b_{0} and b_{5} are both nonzero) accepts the finite-duration input $x[\cdot]$ depicted below.

If n_{1} and n_{2} are, respectively, the time indices of the first and last nontrivial (nonzero) samples in the output sequence, then (n_{1}, n_{2}) equals
A. $(0,12)$
B. $(0,13)$
C. $(1,12)$
D. $(1,13)$

2 The convolution table shown below computes the response of a FIR filter to a finite-duration input sequence.

			-1	4	0	-4	1		
	3	5	1						
	3	5	1						y_{0}
y_{1}									
		3	5	1					y_{2}
			3	5	1				y_{3}
				3	5	1			y_{4}
					3	5	1		y_{5}
						3	5	1	y_{6}

The value of y_{3} is
A. 8
B. -2
C. 4
D. -3

3 Consider the FIR filter with input-output relationship

$$
y[n]=x[n]-x[n-4]
$$

If the filter produced the output $y[\cdot]$ shown below, what was the filter input $x[\cdot]$?

A. $x[0: 5]=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]^{T} ; \quad x[n]=0$ for all other n
B. $x[0: 3]=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T} ; \quad x[n]=0$ for all other n
C. $x[0: 4]=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T} ; \quad x[n]=0$ for all other n
D. $\quad x[0: 5]=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & -1 & -1\end{array}\right]^{T} ; \quad x[n]=0$ for all other n

4 When the input

$$
x[0: 4]=\left[\begin{array}{lllll}
1 & -3 & 4 & -1 & 2
\end{array}\right]^{T} ; \quad x[n]=0 \text { for all other } n
$$

is applied to a FIR filter, the output is given by

$$
y[0: 7]=\mathbf{c} ; \quad y[n]=0 \text { for all other } n
$$

If the input

$$
\tilde{x}[0: 8]=\left[\begin{array}{lllllllll}
1 & -3 & 4 & -1 & 0 & 6 & -8 & 2 & -4
\end{array}\right]^{T} ; \quad \tilde{x}[n]=0 \text { for all other } n
$$

is applied to the same filter, then the output will be given by ($\mathbf{0}_{i}$ denotes a vector of i zeros)
A. $\tilde{y}[0: 10]=\left[\mathbf{c} ; \mathbf{0}_{3}\right]-\left[\mathbf{0}_{3} ; 2 \mathbf{c}\right] ; \quad y[n]=0$ for all other n
B. $\tilde{y}[0: 11]=\left[\mathbf{c} ; \mathbf{0}_{4}\right]-\left[\mathbf{0}_{4} ; 2 \mathbf{c}\right] ; \quad y[n]=0$ for all other n
C. $\tilde{y}[0: 12]=\left[\mathbf{c} ; \mathbf{0}_{5}\right]-\left[\mathbf{0}_{5} ; 2 \mathbf{c}\right] ; \quad y[n]=0$ for all other n
D. None of the above.
$\mathbf{5}$ Let \mathbf{b} and \mathbf{s} be arbitrary vectors of length 6 and 9 , respectively. If $\mathbf{0}_{i}$ denotes a vector of i zeros, which of the following circular convolutions produces the vector

$$
\left[\mathbf{b} * \mathbf{s} ; \mathbf{0}_{2}\right] ?
$$

A. $\quad\left[\mathbf{b} ; \mathbf{0}_{8}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{5}\right]$
B. $\quad\left[\mathbf{b} ; \mathbf{0}_{9}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{6}\right]$
C. $\quad\left[\mathbf{b} ; \mathbf{0}_{10}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{7}\right]$
D. $\left[\mathbf{b} ; \mathbf{0}_{11}\right] \circledast\left[\mathbf{s} ; \mathbf{0}_{8}\right]$

6 Which (one or more) of the following signal sequences can be determined by circularly convolving two vectors of the same (finite) length?
A. The response of a FIR filter to any input sequence of finite duration.
B. The response of a FIR filter to any input sequence of infinite duration.
C. The response of a FIR filter to any periodic input sequence.
D. The impulse response of the cascade connection of any two FIR filters.

