ENEE 222: 11/26 Class

Material: Lecture videos 23.1, 23.2

1 The FIR filter described by

$$y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + b_3 x[n-3] + b_4 x[n-4] + b_5 x[n-5]$$

(where b_0 and b_5 are both nonzero) accepts the finite-duration input $x[\cdot]$ depicted below.



If n_1 and n_2 are, respectively, the time indices of the first and last nontrivial (nonzero) samples in the output sequence, then (n_1, n_2) equals

- A. (0, 12) B. (0, 13) C. (1, 12) D. (1, 13)
- **2** The convolution table shown below computes the response of a FIR filter to a finite-duration input sequence.

				-1	4	0	-4	1			
		3	5	1							y_0
			3	5	1						y_1
				3	5	1					y_2
					3	5	1				y_3
						3	5	1			y_4
							3	5	1		y_5
								3	5	1	y_6
e of y_3 is											

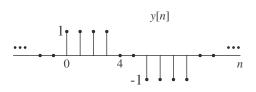
The value of y_3 is

A. 8 B. -2 C. 4 D. -3

3 Consider the FIR filter with input-output relationship

$$y[n] = x[n] - x[n-4]$$

If the filter produced the output $y[\cdot]$ shown below, what was the filter input $x[\cdot]$?



A. $x[0:5] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}^T;$ x[n] = 0 for all other nB. $x[0:3] = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T;$ x[n] = 0 for all other nC. $x[0:4] = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T;$ x[n] = 0 for all other nD. $x[0:5] = \begin{bmatrix} 1 & 1 & 1 & 1 & -1 & -1 \end{bmatrix}^T;$ x[n] = 0 for all other n 4 When the input

 $x[0:4] = [1 -3 4 -1 2]^T; \quad x[n] = 0$ for all other n

is applied to a FIR filter, the output is given by

 $y[0:7] = \mathbf{c};$ y[n] = 0 for all other n

If the input

 $\tilde{x}[0:8] = \begin{bmatrix} 1 & -3 & 4 & -1 & 0 & 6 & -8 & 2 & -4 \end{bmatrix}^T; \quad \tilde{x}[n] = 0 \text{ for all other } n$

is applied to the same filter, then the output will be given by $(\mathbf{0}_i \text{ denotes a vector of } i \text{ zeros})$

A. $\tilde{y}[0:10] = [\mathbf{c}; \mathbf{0}_3] - [\mathbf{0}_3; 2\mathbf{c}];$ y[n] = 0 for all other n

- B. $\tilde{y}[0:11] = [\mathbf{c}; \mathbf{0}_4] [\mathbf{0}_4; 2\mathbf{c}]; \quad y[n] = 0$ for all other n
- C. $\tilde{y}[0:12] = [\mathbf{c}; \mathbf{0}_5] [\mathbf{0}_5; 2\mathbf{c}];$ y[n] = 0 for all other n

D. None of the above.

5 Let **b** and **s** be arbitrary vectors of length 6 and 9, respectively. If $\mathbf{0}_i$ denotes a vector of *i* zeros, which of the following circular convolutions produces the vector

$$[\mathbf{b} * \mathbf{s}; \mathbf{0}_2]$$
 ?

- A. $[\mathbf{b}; \mathbf{0}_8] \circledast [\mathbf{s}; \mathbf{0}_5]$
- B. $[\mathbf{b}; \mathbf{0}_9] \circledast [\mathbf{s}; \mathbf{0}_6]$
- C. $[\mathbf{b}; \mathbf{0}_{10}] \circledast [\mathbf{s}; \mathbf{0}_7]$
- D. $[\mathbf{b}; \mathbf{0}_{11}] \circledast [\mathbf{s}; \mathbf{0}_8]$
- 6 Which (one or more) of the following signal sequences can be determined by *circularly* convolving two vectors of the same (finite) length?
 - A. The response of a FIR filter to any input sequence of finite duration.
 - B. The response of a FIR filter to any input sequence of infinite duration.
 - C. The response of a FIR filter to any periodic input sequence.
 - D. The impulse response of the cascade connection of any two FIR filters.